The Analysis Of Structure Bituminous Knitting, Modified By A Rubber Crumb

S.N. Shabaev, E.M. Vakhyanov, S.A. Ivanov

Kuzbass State Technical University name T.F. Gorbachev, 28 Vesennaya Street, Kemerovo, Russia

Abstract-Poor quality ofroad asphalt(insufficient for the conditionsfracture toughness, Russian adhesion) -is one ofthe main causes ofpremature asphaltroadsurfaces.Polymers, failureof which allowchanging oneorseveralproperties suchas sensitivityto temperature change, cohesion, elasticity are introducedinto asphalt cementcompositionto modifyit. For the purpose of upgrading of bitumens polymers modifiers which physical and chemically interact with bitumen components are entered into them, allowing to reach high operational rates of a roadbed. The main shortcoming modified knitting is high cost. Use of comminuted rubber from waste automobile tires allows to reduce considerably cost without loss of service performance of material. Laboratory researches were made on the basis of the theory of scheduling of experiment in the certified road-building laboratory. Process of modification of bitumen is reasonable with use of the theory of pastes. The area of the rational structure modified knitting which application can increase considerably longevity of both career roads, and public roads is certain. Introduction of this material at construction will allow to organize a sales market for producers of comminuted rubber from the processed tires of heavy-load career motor transport.

Keywords: coal tar, comminuted rubber, the modified

1. INTRODUCTION

In recent years, the Russian Federation actively invests in road building. In 2015 the state corporation Avtodor, plans to construct over 12 thousand kilometers in Russiamore than 12 thousand kilometers of fnew high-speedroads, the quality of whichshould be as close to European standards [1]. The quality question, is actual and for career roads.

The structure-forming component of theasphalt concrete mixisasphalt cement, which largely determines theperformance properties of the final product-asphalt concrete. Cement should be chosen depending on the heating temperature of the coatingin the mosthot (summer) seasonand the temperature of the coldest days-0.92 or 0.98. For Kuzbass they are +61°C and 42°C, e.g. the binder plasticity intervals hould bemore than $100^{\circ}\mathrm{C}[2]$.

In most cases the heavy roadpetroleum bitumen withan intervalof plasticity, usually not exceeding 70°C [3] in accordance with the State Standard 22245-90 [4] is used a cement.

Polymers, which allowchanging oneorseveralproperties suchas sensitivityto temperature change, cohesion, elasticity are introducedinto asphalt cementcompositionto modifyit[5]. Polymer modified cement have higherplasticityrange asphalt comparison withconventional asphalt, which allows to maintainperformance characteristicsat lowandat hightemperatures. From 2009to 2012the consumption ofpolymer modified asphalt cementin increasedby 5.6 times, but stillitis much lower thanin other countries. Applying polymer modified asphalt cementprovides increasedoverhaul roadcoatingsfrom 3-4 to7-10 years, significantly increasing itsfracture toughness, heat resistance, shearresistance. water resistanceand frostresistancethatallows to fullyrecoup the construction costsover several years of operation[6].

In world practice, the following groups of polymer modified as phalt cement are used [7]:

1) asphalt plusstyrene-butadiene-styrene;

2)rubber modified road asphalt cement;

3)asphalt plusethylenevinylacetate;

4)asphalt pluslatex;

5)asphalt pluspolyolefin (synthetic rubber);

6)asphalt plussulfur;

7)asphalt pluscoal tar/epoxyresin.

In this work modification of bitumens with use of comminuted rubber as it is more perspective for the following reasons was investigated: 1) the problem of utilization of waste automobile tires which is already solved in the majority the developed countries of the world is in Russia only at an early stage of development. [8]; 2) the cost of the rubber asphalt, made with recovery of the rubber industry, below than when using other modified bituminous knitting.

Preparation ofasphalt concrete mixturesusingrubbercrumb can be carried outin two ways:dry and wet[9]. The drymethod involvesthe addition ofcrumb rubber in he mixingtank; the wet one is based on the preliminary introduction of crumbsinto the asphaltand preparation of rubber modified asphalt cement[10].The experience of usingrubbercrumb abroadindicatesthat the performanceproperties of coatings which arelaidusing"dry"methodshowedunsatisfactory results in most cases. The coatings,tripledfromasphalt concrete mixtures, in whichthe rubbermodifier isintroduced by the"wet" method, were moreresistant toruttingand had longer life. In this regard,in the United Statesin 1994,the introduction of rubber crumb inasphalt mix by "dry"

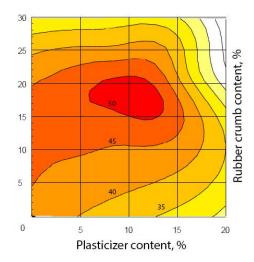
method was abandoned[11]. The use of the "wet"methodforms a bondbetween therubbercrumb and the asphalt forminga heterogeneous spatial structure, at the expense of that the material have the degree of elasticity that is sufficient for the most operational purposes [12]. Such structure can retain a large number of fine fillers without significants egregation [13].

The main disadvantage of producing rubber modified asphalt cement is the complexity of its rational composition choice selection and the development of its effective preparation technology.

The rational ratio of the components of rubber modified asphalt cement as well as temperature-timemodes of its preparation will vary considerably depending on the type of the asphalt used, the chemical structure and the rubber fraction [14]. For these reasons, a

simplelearning fromforeign colleaguesand using their rubber modified asphalt cement "recipes" is not possible.

2. MATERIALS AND METHODS


As partof the study the technology for rubber modified asphalt cement preparationleading toeffective rubbercrumb interactionwithasphalt has been developed. The heavy roadpetroleum bitumen and the crumb rubberfromused automobile tiresmanufactured in Russia were used as the raw materials.

Reliability of the drawn conclusions is confirmed by results of an assessment of the RBV physical and chemical properties.

In table 1 and drawing 1 reduced ring-and-ball softening temperature, in table 2 and figure 2 – depth of needle penetration at 25° C.

Tab. (1). - The table showing the changes of ring-and-ballsofteningtemperature related to theplasticizer and rubber crumb content

Rubbercrumbcontent, %	Plasticizercontent, %				
	0	5	10	15	
0	43	40	37	34	
5	45	43	41	39	
10	46	46	45	43	
15	47	48	50	46	
20	45	48	53	42	
25	38	41	41	37	

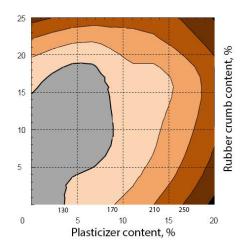


Fig. (1). - The graph showing the changes of ring-and-ballsofteningtemperature related to the plasticizer and rubber crumb content

Tab. (2). - The table showing the changes of the depth of needle penetration at 25°C related to the plasticizer and rubber crumb content

Rubbercrumbcontent,	Plasticizercontent, %			
%	0	5	10	15
0	90	145	177	230
5	110	110	150	216
10	120	113	138	182
15	130	115	140	168

20	175	157	172	198
25	220	220	230	240

Fig. (2). - The graph showing the changes of the depth of needle penetration at 25°C related to the plasticizer and rubber crumb content

3. RESULTS

The analysis of the presented data shows (fig. 3) that softening point on a ring-and-ball has a maximum at the content of softener in the range of 10 + -5% and the

content of comminuted rubber 20 +/-5 of %. Thus the increase in a penetration of in comparison with initial bitumen on 25-190 shares of mm is observed.

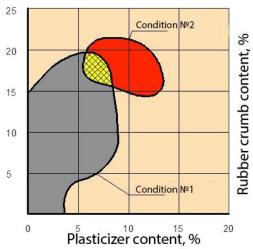


Fig. (3). - Discovery of the region fulfilling conditions 1 и 2

High performance of rubber modifiedasphalt cement isobtained through theuseof the "wet"method thestructuring of the system "rubber crumb-plasticizer-[15]. The developed technologyallows obtaining a stablepaste. It is known that a paste – is highly concentratedsuspensionhaving the structure. structure ofpastes- is aspatial netformed by theparticlesof the dispersed phase(rubber crumb), in the loop of which there is the dispersion medium (oil asphalt). We can say that a pasteoccupies an intermediate positionbetween a powderand a dilute suspension[16]. Since a paste is a structured system, its structural and mechanical properties, whichare characterizedby parameters such s viscosity,

elasticity, plasticity are its determinants. Pasteshavea coagulationstructure, sotheirtechnological propertiesare bythe mechanical mainly determined propertiesof interparticleliquid layers[17, 18]. Attractive forcesbetween the particles, dependingon distancebetween them (the thickness of the layers) and conditioned by Vander Waalsandhydrogen bonds are acted through theselayers. Moreover, the strength of the contactcan be reduced therepulsive forcesbetween the particles, providingaggregatestability of the suspension; thestructures why in theaggregatestabile suspensions are not formed or, if formed, are very fragile.

The oil asphalt absorptionoccurs on the surface of the rubbercrumb, therefore the plasticizermay react only with the free centers of the rubber crump surface [19]. In this case, the interaction between the molecules of the plasticizer with the rubber surface is hindered to some extent by the asphalt adsorption. Consequently, the binding of the plasticizer to the crumbsurface in the presence of the asphalt is reduced. It follows that in the course of the asphalt -the paste in fact - preparation, the incompletes tabilization of the disperse systems by the plasticizer occurs.

If the disperse systemstabilization is incomplete the double electric layer and the solvation shell of particles is broken only partially; the aggregation of

particles occursin certainareas, in the regions of the surface withoutstability factor, i.e. in places where the oil asphalt is adsorbed[20]. The spatialnet is formed, in the loops of which the dispersion medium(oil asphalt) is stored. The formedliquidlayer between theparticles, although decreasing the structure strength, givesit a certainflexibility andelasticity. The fine particles of rubbercrumb are completely stabilized. This is due to the denserlayersof the plasticizeron the small particlesthatcauses theirrepulsionand preventsaggregation[21, 22].

This assumption is supported by the photo of the asphalt cement dropbordershown in Figure 4.

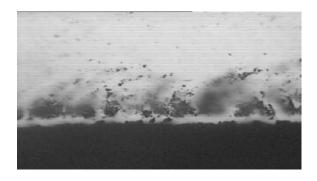
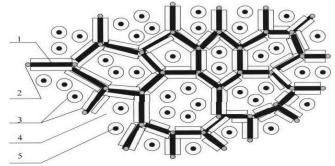



Fig. (4). - The asphalt cement dropborder(enlargement in 42 times)

The photographshows thatthe larger rubbercrumb particlesare in the "aggregated interconnection" between them along the surface areaswhich have no stability factor after the stabilization, forming the micro loopscontaining the dispersion mediuminside-asphalt[23]. The smallest rubbercrumb particlesare not

aggregated and present both inside the micro loops and in a free state and occupy the most "profitable" position. Consequently, we can assume that the rubber modified as phalt cement has the gel-like structure [24].

Therefore, the model of the spatial network of the asphalt cement can be presented as follows (Fig. 5).

Fig. (5). - The model of the spatial network of the asphalt cement (flat projection):1 – large rubber crump particles; 2 – surface areas of the particles with no stability factor; 3 – surface areas of the particles with stability factor; 4 – structure loops filled with the dispersion medium; 5 – small coal particles

4. EXCLUSION

Coagulationstructures differinthe distinct dependence of their structural and mechanical properties on the intensity of the mechanical interactions. No mass transfer processes in the structured systems can be started without destroying the previous structure therein. Destruction of spatial structures in the pastes-a complex process characterized by the fact that as the degree of destruction changes considerably and the mechanism of the

structure collapse(e.g.paste overheating - the beginning ofthe crumb rubber pyrolysis, etc.).

5. CONCLUSION

Thus, thetechnological properties of therubber modified asphalt cementare caused: by molecular cohesion of the dispersed *medium* particles with each other at points of their contact, where the thickness of

the dispersion medium layers between them is minimum (lacking stability factor). In the limiting case the complete phase contact is possible. Coagulation interaction of particles causes the formation of the structures with the significant reversible elastic properties; the presence of a thin film at the contact points between the particles [25].

CONFLICT OF INTERESTS

The author have no conflicts of interest to declare

REFERENCES

- [1]Road construction in Russia [Digital resource] // provincialynews.ru Access mode: http://provincialynews.ru/publ/nedvizhimost/stroitelstvo/ stroitelstvo avtomobilnykh dorog v rossii/15-1-0-172.
- [2] The State Standard 9128-2013. Asphalt concrete and polymer modified asphalt concrete mixtures, asphalt concrete, polymer asphalt concrete for roads and airports [Text] / Standardinform. Moscow, 2014.
- [3] Asphalt cement and rubber crumb modified asphalt cement. Experience / «INFOTECHS».— Moscow 2014. 20 p.
- [4] The State Standard 22245-90. Heavy roadpetroleum bitumen.Specifications [Text] / ГосстандартСССР.— Moscow, 1996.
- [5] Modified road cements, used in France [Digital resource] // www.nestor.minsk.by Access mode: http://www.nestor.minsk.by/sn/1998/35/sn83519.htm
- [6] Rosavtodor promotes science [Digital resource] // transportrussia.ru— Access mode: http://www.transportrussia.ru/avtomobilnyy-transport/rosavtodor-prodvigaet-nauku.html
- [7] New materials in construction / V.A. Verenko. Minsk: «Technoprint», 2004. 170 p.
- [8] «Sibur» has analyzed the problem of tire utilization in Russia [Digital resource] // sibur.colesa.ru. Access mode: http://sibur.colesa.ru/news/10449.html.
- [9] The modern and perspective thermolytic processes of deep processing Oilstock / Valyavin G.G., Suyunov R. R., Akhmetov S. A., Valyavin K.G., Under the editorship of S. A. Akhmetov. SPb.: Subsoil, 2010.
- [10] Andrews E.H. Resistance to ozone cracking in elastomer blends. Rubber Chemistry and Technology. 1967, 40 p. 635-649.
- [11] «Unirem» and other modifiers [Digital resource] // www.nk-group.ru Access mode: http://www.nk-group.ru/PUBLIKACII/A_dorogi_N_04-

2010 Unirem.pdf

- [12] Razgonnikova T.M. Experience of use of the modified bitumens (PVD) in road construction//Technique and technologies of road economy. Kemerovo: 1999.
- [13] The new life of «pressed out» asphalt [Digital resource] // i-stroy.ru Access mode: http://www.i-stroy.ru/docu/jkh/novaya_zhizn_vyizhatyih_bitumov/315 3 html
- [14] Heslop M.F., Feborn M.Y., Pooley G.R.(1982) «Recent developments in surface dressing» The highway End, Volume 28, Number. 7.

- [15] Poluyanov A.F., Makotinsky M.P. Prospects of production of polymeric materials for construction//Structural materials. 1986. No. 3.
- [16] CHEN, J.S. and C.H. LIN, 1999. Construction of Test Road to Evaluate Engineering Properties of Polymer-Modified Asphalt Binders.International Journal of Pavement Engineering, 01 Feb 2007.
- [17] Korenkova S.F., Davidenko O. V. Rol the organomineralnykh of complexes in structure the bitumokompozitsionnykh the knitting//Structural materials. 1998. No. 11.
- [18] Rudenskaya I.M., Rudensky A.V. Rheological behavior of bitumens. M.: The higher school, 1967.
- [19] Kirillova L.G., Filippova A.G., Okhotina N. A., Liakumovich A.G., Samuilov of Ya.D. Polimerbitumnye binding on the basis of threefold etilenpropilenovy synthetic rubber//Structural materials. 2000. No. 3.
- [20] The use of Modied Bituminous Binders in Road Construction, 2007. Published by the Asphalt Academy.
- [21] Smadja R., Deligne P. La mousse de bitumen // Rev. Generale des routes et des acrodromes, 1982. N587. P 72-75.
- [22] Bituminous binders for road construction and maintenance, 2007. Published by Sabita, pp. 13-18.
- [23] Organic knitting for road construction / Rudenskaya I.M., Ruden-sky A.V., M.: INFRA-M, 2010.
- [24] James E. Mark, BurakErman, C. Michael Roland The Science and Technology of Rubber. Fourth Edition. Oxford, 2013. –786 p.
- [25]Frolova M. K. Research of influence of hlorprenovy rubber (natrit) on structure and structural mechanical characteristics of bituminous and rubber compositions//Works Union-dornii. M.: 1977.-Ne89.