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Abstract- The article describes the construction of a
linear operator which puts into correspondence an
arbitrary 27 - periodic function with zero mean
trigonometric  polynomial. During an operator
construction the decomposition in Fourier series, the
Weil operator of fractional integration, Lagrange
interpolation polynomial, the properties of fractional
differentiation and fractional integration are used. An
operator type is obtained, the corresponding formula is
derived. A formula type is shown taking into account
the form of the trigonometric complex numbers. The
relationship of the generalized interpolation operator

A, with Fourier operator S, is cosidered. The

n
approximation of functions by the means of an obtained
polynomial operator and the evaluation of error is
verified using a computer algebra system Wolfram
Mathematica. The approximation of function by a
trigonometric polynom obtained by the derived
formulas is conducted for different functions at
different values of node numbers. The calculations
showed that the difference module between the values
of 2 - periodic function with a zero mean value and
the values of trigonometric polynomial, constructed

with the help of an operator A, (@;t), decrease with

the order of « integration (the values 0,5<a <1

were considered). The value of the modulus is less if a
midportion of the interval is taken, presumably it is

related to the fact that the difference ¢ — A @

converges on the average. The growth of node
number N also make the function approximation better.

Keywords: fractional integration, Weil fractional
integral, linear operator, trigonometric polynomial,
interpolation polynomial, polynomial operator

1. INTRODUCTION

The issues of integration distribution by fraction
order are studied from the wvery beginning of the
integral calculation. Currently, there is an increased
interest to the problems of fractional calculation [1].
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The fractional integration and differentiation are used
during the modeling of the processes and phenomena in
various fields [2], [3], [4]. Lagrange interpolation
polynomial viewed in this paper, also finds its use in
the fields of mathematics and its applications [5].

Let @(X) — 27 -periodic function, which is

decomposed into a Fourier series: ¢(X) ~ Z:(pke"‘X :
k=—c0
1% o
o = > Ie @(X)dx . The functions with a zero
T
0

mean value are considered: As

@ =0.

o™ (x) ~ Z:(ik)”q)keikX , the fractional integration

k=—o0
by Weil is determined as follows:
15p~ 3 ae”
T (k)
This definition may be interpreted in the

following form:

2r
Ifgo:ij(p(x—t)\}’f‘dt, a>0, re
=0 ) _

_ar
0 it . cos(kt+2j
YI(t) = =2y —————— 2~
=0 kz_l(iik)a 2 e

The paper determines the type of polynomial
operator which puts into correspondence the
trigonometric polynomial with 27 -periodic function,
satisfying the following conditions:

12(T ) ) =17 (o)(t, ), where t, — are equidistant
nodes at (—7; 7). The check of the obtained formulae

[6].

k=1

is performed using the system Wolfram Mathematica.

2. The construction of generalized
polynomial operator An
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Let’s introduce the designation

H, = {a_20+ > a, coskt+b, sin kt} = {che‘ks}
k=-n k=-n

— the set of all trigonometric polynomials with the
order no greater than N [7].

Let’s denote a linear operator via A , the
which puts into the
Vo(t)eC,, and polynomial

operator correspondence

polynomial the

T, (t) e H], satisfying the following terms:
M) =12 (@)(E). k=-n,n, @)

where t, is presented by equispaced nodes

_ 2krx

S 2n+1
Let’s consider the class ¢(t) € C(0,27), in

t, =-n,n.

such units where each free member ¢, =0.

Let’s examine A, .

ES C eikt
1Y (p;t) = k. ——  Weil fractional
* kz_:l(iuk)
integration operator [6].
Let’s assume that
n .
A (9it) =, (1) = D_c (¢, )e" . where ¢, (¢,)
=t

are complex Fourier ratios ¢, (t). Then we obtain the

following:
C Ck(wn)elkI _Ia t _ 2]”
Z-—a_ nt((o)(tj): [l a—
=t ctlk) 2n+1
j=—-n,n.
Let us consider the "left-hand" fractional

integral in detail for certainty 17 (@;t) =17 (p;t)
(note that W* (t) =P (t)).

Let’s prove the following theorem:

Theorem 1
Let’s  present

A, (@;1) in the following form:

the  polynomial  operator

A0 = (L, @),

where L, (z;t) — Lagrange interpolation polynomial

within  the nodes t,..,t,for the function
2(t) = 1“(¢;t), o(t) eC(0,27).
Proof.
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Let’s represent A, in the following form (2).

A polynomial operator satisfies the condition
(2), therefore,

VG%LO%aMWm=me»

= 2k
“ 2+l
Let’s consider the presentation A, (@;t).

k=-n,n.

At ¢, =0 T (pt)=)ce™, then
e
n Cei|t
1“(T, )= (i
(T)=2 Gy
It is clear that
L@zt =L[12 (@0 ]=1(T,:1).
n ikt
Then L, (z;t) = C_ke -
i (ik)
According to definition
94X 1y = D= (x:t) = 3 (k) c, ()e™ .
dt kL
Therefore,
n (i, \ ikt
D“(L,(z;1))= Z('k).—ci,eﬂn((o:t)-
i (k)

The statement is proved.
Let’s obtain the type of polynomial operator A, .

. \ Ck((”)eiktj
) =T, (zt) =D
Z(j) n(Z ) WF1 Ok)a

j=—-n,n.
T, (z;t) — the polynomial of the
degreen.
T.z)=L,(z1).0Q
where L, (z;t) - Lagrange interpolation
polynomial of n-th degree for the function
2jrm
2nj+1’ -
At that there is no C, member.

z(t) along the nodes t; =

Let's put down the Lagrange polynomial
in the complex form

L (z;t) = Zn:e‘k‘

k=—n

L Zn: z(t;)e”™

2n+1 =,
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Let’s obtain from (3)

Zn: Cy (Fo)el _ Z aikt Z Z('[j)e_iktj

rx Cerutaniny (9) K _ N7 ik (il *{ k T
Alpt) = M21(Ik) ‘;m‘? MZ:le (ik) ‘;:1 7k+,u(2n+1) (o ()

|k|=L (ik)“ k=-n Jf_n Let's offer the other formula (4), considering that
, the complex numbers may be represented in the
Here we obtain the coefficients: trigonometric form.
ik)* - “( agk (1))
¢ = )" Syt )e ™ A@D = 1 (ot ) e
2n+1=, 1= =t
k=-n,n. i
By substituting them into a necessary (ik)* :|k|“e759nk,
polynomial T, (¢;t), we obtain the following: wi
—s
2 = — k)+|sm —sgn K). Let’s
(ik)“ " ej cos( 7 san ([
T.(pit)=> ce =>e" == 2(t))e " = 1 (%) > (ik)“€’
kZ:1 kle 2n+ ,Z:n (Ziﬁsidb;eparately =
agl Sg”k |k(t—t-)
(ik) ™™ = > |k V=
| S =g
i.e.
Y 1) IK|* [cos+|sm(sgn k)j(cosk(t —t;)+isink(t—t, )):
A= L 317t e LS
r—n [k|=1
. (4) :Z|k|“(cos%cosk(t—tj)+icosa—2”sink(t—tj)+
So, the theorem is proved. k=t
Theorem 2. _ +isin ﬂsgn kcosk(t—t;)—sin %sgn ksink(t —tj)j
The linear  operator that associates
- T
Vo(t) €C,, . the polynomial T,(t)eH, and = Z|k| (cos—cosk(t t;)— sm—sgn ksink(t—t;)+
satisfying the conditions (1) we obtain the following: = 2
A (pit)=——— Z 1 (p;t. )Z('k)a pik(t) +i(cosa—2”sin k(t—tj)+sina—2”sgn kcosk(t—tj)D =
r—n [k|=1
S or . an
f we take into account that in (4) kzn\k\ cos—cosk +sm?smk(t )+ ooszsmk(t—ti)—smzcosk(t—tj)]]+
] aa—’ﬁnk : . arm . ( am . . an
(Ik)a :|k| g2 * , then the polynomial An((p;t) +k2‘k (coscoskl t)- sm25|nk(t—ti)+|[cos25|nk(t—tj)+smzcosk(t—ti)]j:
may be put down in the following form [ ]ik ([coscoskt t)- sina—;sink(t—tj)+i[—cosa—zﬂsink(t—tj)—sina—zﬁcosk(t—tj)]}
" (t-; )+%asgn =
A"((p’t) - ZI ((D,t )Z|k| +[cos—coskt -t;) sinﬂsink(t—tj)+i[cosﬂsink(t—ti)+sinﬂcosk(t—g))]]:
r n |k|=1 2 2 2
We obtained the following formula 1 . .
) g =)k (2coscoskt t;)- 25|naz7[smk(t—tj)]:
A (o) = (k) (17 (i) ™.
K=t =22k“cos(%+k(t—tj)).
While 1“(@;t) = z(t), k=t
(D“ ) Another polynomial representation was
¢, (2)= Cm Y (2) = C_m () , obtained A, (¢;1):
(im*  (im)*
z(const) =0, m=0. An(go,t)——ZI“(gp,t )Z(lk)“ et =
i i E Chugann (0) ]7—n k=1
R +1Ze %C e ZC“ anl? \%([kw(Zml)])

Let’s introduce C,En) (Z) in A (o;1):
45196
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‘£ Z 1“(pit, )Zk“ cos[—+ K(t—t, ))

Jf—n
(4)

3. The relation of An C operator with
the Fourier operator and the evaluation of
error

Let's consider the relationship of the generalized

interpolation operator A, with Fourier operator S, .

S,(#it) = Yc (9" = [ D, (t-Xp()cx.

ck+y(2n+1) (¢)

)= (i ol
€ (20)-6"(z5) =¢, (2 ch“‘ wa \u\:1(i[k+/l(2n+l)])a

u‘l

@0
0" Z Ck+;x(2n+1
p=-e

LS (@
,t _Sn ,t — k a K+2(2n+1) em
AGD=S, 0= 2, 00° 2 G uan ]

Z{m} el tCk+,u(2n-¢—1) (¢)

Theorem.

A (pt) Vo) eC,_, % <a <1 issimilar on

sin(2n -|-1)1 the average at the rate of
where D, (t)= —the Dirichlet kernel. EI (Q)c < ”¢_ An(”” /1+0' ET ((P)c
sin—
o’ =max z

1 K+ u(2n+1
C(9) === [p(x)e " dt. u( )

27 Proof.
Theorem. Due to (5) and the fact that
For any function ¢(t) € C,_ the following formula is ikt e - k ¢

’ )= e k)* Y| ————— | Coy o
a true one: A (oit) é (ik) ﬂz_:l K+ 2(2n+1) e (2)
n ) 0 k a
Aﬂ(w’t)_sn ((O,t) = elkt |:—:| ¢ +u(Zn+
;‘1 yz_:l K+ p(2n+1) Kruand) go(;(t) €Cy,

1(5) _AW ( S A} zc # « ( )
At that the series (5) is similar on the average. 0=Ap=(0=5,0)+(50-Ag)= ¥ LGP "R ey Cusu(eniy 19
Proof.

that has the order
derivative « , the following formulae are the true ones:

(/)(X);t}.

For any functiong(t) eC,_,

a

a N d_
Esn (¢(X)’t) - Sn{ dt

Snp— An¢>=?j—:[3n(zo;t)— L, (zo;1)].

P, (1) =) —c,(9),
2,(t) =1%(p51), p€C,,.

S0 (201 =Ly (21) = 22(60(20) {7 (20)

S, (2510)— A, (90i8) = X 17 e, 20) -l (2) b
20 =S2,0.

45197

As S p—Agpe Hn, p-S,p¢ Hn, then their
scalar product makes zero:

(0—S,0,5,0—Ap)=0, peC,,.
Therefore,

lo- Al =lo-S.al. +[S.0-Adl. =
= Z\ck(go)\ +Z

[|=n+1 Tt

< i‘ck (‘/’)‘2 + Zn:{

[k|=n+1 [k|=1

2

a
:| Ck+,u(2n+1)((0) <

;{ k+u(2n+1)

S

‘,u‘:l

i k

[ k + ,u(2n +l)

Z|Ck ((P)| T o, z Z‘ck+,¢z(2n+l) ((/))‘

IK|=n+1 CEpE

@+0?) Sle@f =a+o2)E @) ).

[k|=n-+1

2
Cktu(2n41) ((P)‘ } <

(DGCZE'

where the following sum is designated by Gf :
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2a

ke

o? = max y
" Zk+y(2n+1)

n=1

4. CALCULATIONS IN WOLFRAM
MATHEMATICA SYSTEM

In this section let's present calculation results
carried out in the Wolfram Mathematica system. This
system contains a number of functions for the

[ 3 5

interpolation, it is often used in the calculations [8], [9].
In order to test our formulas the following function is

taken in the first case: ¢(t) =sin3,6t. The
polynomial A, (¢; t) values are calculated according to

the formula (4') for N=8 and n=50 at « =0,6.
The figures 1, 2 show the corresponding graphs.

— o)

Anlgit)

Lt

L 1
-3 -2 -1

Fig (1). The function ¢(t) = Sin 3,6t approximation by the polynomial A, (¢;t)at n=8

05

— o)

Aulg:0)

-3 -1 -1

Fig(2). The approximation of the function ¢(t) = sin 3,6t by polynomial A, (¢;t) for n=20

The figures 3, 4, 5 represent the function
o(t) =sin 3,6t +sin 2t approximation by the

polynomial A, (¢;t) at n =50 and at different
values of « .
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-3 w 1

-2

Fig(3). The approximation of the function ¢(t) = sin 3,6t +sin 2t by polynomial A, (¢;t), =50, =0,6

-3 W 1

-

-2+

Fig(4). The approximation of the function ¢(t) =sin 3,6t +sin 2t by polynomial A, (¢;t),
n=50,a=08

— @)

— (gt

-

-2t

Fig(5). The approximation of the function ¢(t) = Sin 3,6t +sin 2t by polynomial A, (¢;1),
n=50,a=0,99
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The maximum values of |(o(t) ~ A (¢; t)| cases are_ considered - when the whole interval and
the medium part of interval are taken. The results

are calculated at. different -values of ¢ for the are presented in Table 1.
function @(t) =sin 3,6t +sin2t, n=50. Two

Table 1. Maximum values |§o(t) - A (o t)| at n=50, ¢(t) =sin3,6t +sin 2t

0.8 0.9 0.95 0.99
1.07917 | 0.87513 | 0.64192 | 0.37329

0.6 0.7
1.53177 | 1.32091

[94
max|p(t;) — A, (@) i=—n,n

0.05513 | 0.0533 |0.04498 | 0.02799 | 0.01543 | 0.00326

N | D
NS

max|(0(ti) - A (o )| ==

The figures 6, 7, 8 demonstrate the values
|§o(t) - A (o; t)| at differentx .

— Bl -Anlé:tl

t

-3 -2 -1 2 3

Fig(6). The values |§o(t) - A (o; t)| at ¢ =0,6, n=50

04f

— [l -Apid:0l

2 3

2 -1 0 1

Fig(7). The values |(p(t) - A (o t)| at «=0,8, n=50
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05

0.4

— [l -dnl$:0l

03

o1F

t
-3 -2 -1 o 1 2 3

Fig(8). The values |(p(t) - A (o; t)| at ¢ =0,99, n=50

5. CONCLUSION
The difference module between the values of 277 - periodic function with a zero mean value and trigonometric

polynomial values, constructed with the help of the operator An(ga; t), decreases at « increase (the following values

were considered: 0,5 < o <1). The value of this module is less if you take the middle part of the interval.

6. SUMMARY

Thus, the formulas are derived for the representation of an operator, which associates trigonometric polynomial
and 27 - periodic function with a zero mean value. The approximation of functions by polynomial is checked using
computer algebra system Wolfram Mathematica. The work in the system showed that an increase in the number of nodes n
improves the function approximation, which is natural for such tasks. We considered the values 0,5 <« <1. Also lists

the maximum values of the difference module between the values of the initial function and the values of a polynomial are
presented. According to these data, one can see the dependence of difference module values from the value ¢r .
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