# **Biogeography Based Optimization For Dynamic Economic Load Dispatch**

#### V. Vasudevan

Asssistant Professor Department of Electrical Engineering Annamalai University Annamalainagar-608002 Tamil Nadu, INDIA vvasudharun@gmail.com

#### P. Aravindhababu

Professor Department of Electrical Engineering Annamalai University Annamalainagar-608002 Tamil Nadu, INDIA aravindhababu\_18@rediffmail.com

#### **Abstract**

This paper attempts to develop a new methodology for dynamic economic load dispatch (DELD) using biogeography based optimization (BBO). The DELD is an extension of static economic load dispatch to determine the generation schedule of the committed units so as to meet the predicted load demand over a time horizon at minimum operating cost taking into account the ramp rate constraints. The BBO, inspired from the geographical distribution of biological species, searches for optimal solution through the migration and mutation operators. The proposed method divides the DELD problem into several sub-problems, each representing an ELD of an interval, and solves the each sub-problem using BBO. The simulation results on a 10 unit test problem clearly indicate that the developed method is robust and computationally efficient.

Keywords: Dynamic economic load dispatch, biogeography based optimization.

## **NOMENCLATURE**

| J.                                                  |  |  |  |  |  |  |  |
|-----------------------------------------------------|--|--|--|--|--|--|--|
| fuel cost coefficients of the $i^{th}$ generator    |  |  |  |  |  |  |  |
| biogeography based optimization                     |  |  |  |  |  |  |  |
| loss coefficients                                   |  |  |  |  |  |  |  |
| dynamic economic load dispatch                      |  |  |  |  |  |  |  |
| down-ramp limit of $i^{th}$ generator in $_{MW/h}$  |  |  |  |  |  |  |  |
| coefficients of valve point effects of the $i^{th}$ |  |  |  |  |  |  |  |
| generator<br>economic load dispatch                 |  |  |  |  |  |  |  |
| fuel cost function of the $i^{th}$ generator in     |  |  |  |  |  |  |  |
| h                                                   |  |  |  |  |  |  |  |
| habitat suitability index                           |  |  |  |  |  |  |  |
| $i^{th}$ habitat                                    |  |  |  |  |  |  |  |
| maximum number of iterations for convergence check  |  |  |  |  |  |  |  |
| number of intervals                                 |  |  |  |  |  |  |  |
| number of generators                                |  |  |  |  |  |  |  |
| number of habitats                                  |  |  |  |  |  |  |  |
| number of elite habitats                            |  |  |  |  |  |  |  |
| proposed method                                     |  |  |  |  |  |  |  |
|                                                     |  |  |  |  |  |  |  |

| $P_{Git}$                        | real power generation of $i^{th}$ generator at |  |  |  |  |  |  |  |
|----------------------------------|------------------------------------------------|--|--|--|--|--|--|--|
|                                  | interval-t                                     |  |  |  |  |  |  |  |
| $P_{Gi}^{\min} \& P_{Gi}^{\max}$ | minimum and maximum generation limits          |  |  |  |  |  |  |  |
|                                  | of $i^{th}$ generator respectively             |  |  |  |  |  |  |  |
| $P_{Dt}$                         | total power demand at interval-t               |  |  |  |  |  |  |  |
| $P_{Lt}$                         | net transmission loss at interval-t            |  |  |  |  |  |  |  |
| $P^{\mathrm{mod}}$               | habitat modification probability               |  |  |  |  |  |  |  |
| $P_m$                            | mutation probability                           |  |  |  |  |  |  |  |
| SIV                              | suitability index variable                     |  |  |  |  |  |  |  |
| $UR_i$                           | up-ramp limit of $i^{th}$ generator in $MW/h$  |  |  |  |  |  |  |  |
| $\Phi(P_G)$                      | objective function to be minimized             |  |  |  |  |  |  |  |
| Ψ                                | augmented objective function to be             |  |  |  |  |  |  |  |
|                                  | minimized                                      |  |  |  |  |  |  |  |
| λ                                | immigration rate                               |  |  |  |  |  |  |  |
| μ                                | emigration rate                                |  |  |  |  |  |  |  |

## 1. INTRODUCTION

Dynamic Economic Load Dispatch (DELD) is used to determine the optimal generation schedule of on-line generators, so as to meet the predicted load demand over certain problem period of time at minimum operating cost under various system and operational constraints. It is a dynamic optimization problem taking into account the constraints imposed on system operation by generator ramprate limits. Due to the ramp-rate constraints of a generator, the operational decision at an hour may affect the operational decision at a later hour. It has a look-ahead capability which is necessary to schedule the load beforehand so that the system can anticipate sudden load changes in near future. The DELD problem can be formulated as a large-scale, optimization problem, which is quite difficult due to its inherent high dimensional, non-convex and nonlinear nature. The dimension of the problem increases rapidly with the system size and the scheduling horizon [1].

Over the years, numerous methods with various degrees of near-optimality, efficiency, ability to handle difficult constraints and heuristics are suggested in the literature for solving the dynamic dispatch problems. These optimization techniques can be classified into three main categories. The first category is mathematical programming-based or heuristically-based, such as the lambda iterative method [2], gradient projection method [3], Lagrange relaxation [4], linear programming [5], nonlinear programming [6], interior point methods [7], dynamic programming [8], etc. The advantages of these methods are: optimality is mathematically proven in some algorithms; they can be applied to large-scale problems; they have no problem-specific parameters to specify; moreover, some of these methods are computationally fast. However, these methods can converge to a local optimum and are sensitive to the initial starting points [9]. Many of these techniques are not applicable to a certain class of cost functions; for example lambda-iterative, Lagrange relaxation and gradient technique methods, etc when used to solve DELD with non-smooth or non-convex cost functions, can fail to get global optimal solutions. For non-monotonically increasing incremental cost functions, the lambda iterative method may not result in the optimal solution and Linear programming usually faces poor computation efficiency. Dynamic programming can solve DELD problems with nonsmooth cost functions; however, it suffers from the "curse of dimensionality" and local optimality [8].

The second category is the methods based on artificial intelligence, such as artificial neural networks [10] and stochastic optimization methods such as genetic algorithm (GA) [11], simulated annealing (SA) [12], evolutionary programming (EP) [13], differential evolution (DE) [14], particle swarm optimization (PSO) [15] and Hopfield neural network (HNN) that have been successfully used for solving the DELD problems. Artificial neural networks such as HNN have been found to generate a high quality solution for the DELD problems with smooth cost functions [10]. Stochastic optimization methods can solve DELD without any or fewer restrictions on the shape of the cost function curves due to their ability to seek the global optimal solution. Moreover, these algorithms do not depend on the first and second differentials of the objective function.

The third category is the hybrid methods, which combine two or more techniques previously mentioned in order to get best features in each algorithm. These methods such as evolutionary programming with sequential quadratic programming [16], particle swarm optimization with sequential quadratic programming [17], Hopfield neural network with quadratic programming [18] have proven their effectiveness in solving the DELD problems.

Recently, a Biogeography-Based Optimization (BBO), a population based stochastic optimization technique sharing information between candidates solutions based on their fitness values, has been suggested for solving optimization problems by Simon [19]. It has been applied to a variety of power system optimization problems [20-23] and found to yield satisfactory results. This paper attempts to apply BBO in solving the DELD problem by splitting it into several subproblems with a view of enhancing the computational efficiency and robustness.

## 2. PROBLEM FORMULATION

The goal of the DELD problem is to determine the combination of output of all generating units that minimize the total fuel cost over the dispatch period while satisfying all

kinds of physical and operational constraints DELD can be expressed as an optimization problem with various complicated constraints.

The objective of DELD problem is to minimize the total fuel cost of all ng generators over the given dispatch period of nt intervals

Minimize 
$$\Phi(P_G) = \sum_{t=1}^{nt} \sum_{i=1}^{ng} F_i(P_{Git})$$
 (1)

Subject to

$$\sum_{i=1}^{ng} P_{Git} - P_{Dt} - P_{Lt} = 0 t \in nt (2)$$

$$P_{Gi}^{\min} \le P_{Git} \le P_{Gi}^{\max} \qquad i \in ng, t \in nt$$
 (3)

$$\begin{split} P_{Git} - P_{Git-1} &\leq UR_i \quad i \in ng \quad t = 2, \cdots, nt \\ P_{Git-1} - P_{Git} &\leq DR_i \quad i \in ng \quad t = 2, \cdots, nt \end{split} \tag{4}$$

Where

$$F_{i} (\mathbf{e}_{Git}) = a_{i} P_{Git}^{2} + b_{i} P_{Git} + c_{i} + \left| d_{i} \sin \mathbf{e}_{Git}^{1} - P_{Git} \right|$$
 (5)

$$P_{Lt} = \sum_{i=1}^{ng} \sum_{i=1}^{ng} P_{Git} B_{ij} P_{Gjt} + \sum_{k=1}^{ng} B_{0k} P_{Gkt} + B_{00}$$
 (6)

## 3. BIOGEOGRAPHY BASED OPTIMIZATION

BBO, based on the concept of biogeography, is a stochastic optimization technique for solving multimodal optimization problems [19]. In BBO, a solution is represented by a habitatic consisting of solution features named Suitability Index Variables (SIV), which are represented by real numbers. It is represented for a problem with nd decision variables as

$$h_i = [SIV_{i,1}, SIV_{i,2}, SIV_{i,3}, \dots, SIV_{i,nd}]$$
 (7)

The suitability of sustaining larger number of species of a habitat- $\dot{i}$  can be modeled as a fitness measure referred to Habitat Suitability Index ( HSI ) as

$$HSI_{i} = f(h_{i}) = f(SIV_{i,1}, SIV_{i,2}, SIV_{i,3}, \dots, SIV_{i,nd})$$
 (8)

High *HSI* represents a better quality solution and low *HSI* denotes an inferior solution. The aim is to find optimal solution in terms of *SIV* that maximizes the *HSI*.

Each habitat is characterized by its own immigration rate  $\lambda$  and emigration rate  $\mu$ . A good solution enjoys a higher  $\mu$  and lower  $\lambda$  and vice-versa. The immigration and emigration rates are the functions of the number of species in the habitat and defined for a habitat containing k-species as

$$\mu_k = E^{\max} \left( \frac{k}{n} \right) \tag{9}$$

$$\lambda_k = I^{\max} \left( 1 - \frac{k}{n} \right) \tag{10}$$

When  $E^{\max} = I^{\max}$ , the immigration and emigration rates can be related as

$$\lambda_k + \mu_k = E^{\text{max}} \tag{11}$$

A population of candidate solutions is represented as a vector of habitats similar to any other evolutionary algorithm. The features between the habitats are shared through migration operation, which is probabilistically controlled through habitat modification probability,  $P^{\mathrm{mod}}$ . If a habitat  $h_i$  in the population is selected for modification, then it  $\lambda$  is used to probabilistically decide whether or not to modify each SIV in that habitat. The  $\mu$  of other solutions are thereafter used to select which of the habitats in the population shall migrate randomly chosen SIVs to the selected solution  $h_i$ .

The cataclysmic events that drastically change the HSI of a habitat is represented by mutation of SIVs. The mutation operation modifies a habitat's SIV randomly based on mutation rate  $P_m$  and tends to increase diversity among the population, avoids the dominance of highly probable solutions and provides a chance of improving the low HSI solutions. Mutation rate of each solution set can be calculated in terms of species count probability using the following equation:

$$P_m = m^{\max} \left( \frac{1 - P^k}{P^{\max}} \right) \tag{12}$$

## 4. PROPOSED METHOD

In all the evolutionary based solution methods, each member in the population consists of real power generation of all the generating plants at all intervals of the scheduling horizon. These methods involve a large number of decision variables, which is the product of the number of generating plants and the number of intervals over the scheduling period. For example, a problem with 10 generating units over a scheduling horizon of 24 intervals involves 240 decision variables, representing a search space with dimension of 240, thereby making the search process very complex and time consuming [3, 7, 24]. In the proposed method (PM), the DELD problem is divided in to a number of sub-problems, each representing an ELD of interval-t. The real power generations of each sub-problem at interval-t, involving ng decision variables, are considered to denote the habitat as

$$h_i = P_{G1t}, P_{G2t}, \cdots, P_{Gngt}$$
(13)

The HSI function can be tailored through penalizing the fuel cost by the power balance constraint for the t-th subproblem as

Maximize 
$$HSI = \frac{1}{1 + \Psi}$$
 (14)

Where

$$\Psi = \sum_{i=1}^{ng} F_i(P_{Git}) + K_1 \sum_{i=1}^{ng} \P_{Git} - P_{Dt} - P_{Lt}$$
(15)

Initially the interval  $t = t^{o}$ , whose power demand approximately equals the average of the minimum and maximum power demands, is chosen; and the lower and upper bound of the habitat for the initial interval is set as

$$h^{\min} = \begin{bmatrix} P_{G1}^{\min}, P_{G2}^{\min}, \dots, P_{Gng}^{\min} \end{bmatrix}$$

$$h^{\max} = \begin{bmatrix} P_{G1}^{\max}, P_{G2}^{\max}, \dots, P_{Gng}^{\max} \end{bmatrix}$$
(16)

The ELD problem is iteratively solved using the BBO for the chosen initial interval-t. Then the ELD problem is formulated

for the subsequent intervals t = t + 1, with the lower and upper limits for the habitat is set by considering the ramp rate limit constraint of Eq. (4) and solved for this interval using BBO.

$$h^{\min} = \begin{bmatrix} \mathbf{h}^{\min}, h_2^{\min}, \cdots, h_{ng}^{\min} \end{bmatrix} - h^{\max} = \begin{bmatrix} \mathbf{h}^{\max}, h_2^{\max}, \cdots, h_{ng}^{\max} \end{bmatrix}$$

$$(17)$$

Where

$$h_{j}^{\min} = \begin{cases} P_{Git-1} - DR_{i} & \text{if } \mathbf{Q}_{Git-1} - DR_{i} \geq P_{Gj}^{\min} \\ P_{Gj}^{\min} & \text{else} \end{cases}$$

$$h_{j}^{\max} = \begin{cases} P_{Git-1} + UR_{i} & \text{if } \mathbf{Q}_{Git-1} + UR_{i} \geq P_{Gj}^{\max} \\ P_{Gj}^{\max} & \text{else} \end{cases}$$

$$(18)$$

The above BBO based solution process is repeated by incrementing the interval-t till the last interval-nt of the scheduling horizon. Similarly the preceding sub-problems of the initial interval  $t=t^o$  is obtained by decrementing the interval as t=t-1 and solved using the BBO till the solution for the first interval is obtained. The limits of the habitat during this phase can be set as

$$h_{j}^{\min} = \begin{cases} P_{Git+1} - UR_{i} & \text{if } \P_{Git+1} - UR_{i} \geqslant P_{Gj}^{\min} \\ P_{Gj}^{\min} & \text{else} \end{cases}$$

$$h_{j}^{\max} = \begin{cases} P_{Git+1} + DR_{i} & \text{if } \P_{Git+1} + DR_{i} \geqslant P_{Gj}^{\max} \\ P_{Gj}^{\max} & \text{else} \end{cases}$$

$$(19)$$

The real power generations obtained for each interval over the scheduling horizon represent the optimal solution of the DELD problem. The solution process of the PM is explained through the flow chart of Fig.1.

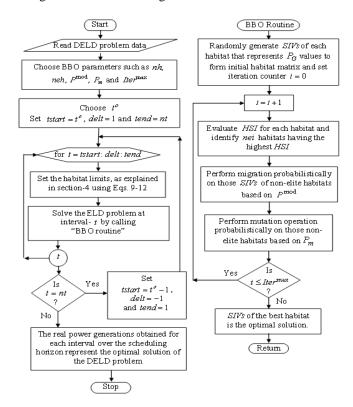


Fig.1 Flow Chart of the PM with BBO subroutine

#### 5. NUMERICAL RESULTS

The PM is tested on a test system possessing 10 generating units. The fuel cost coefficients including valve-point effects, generation limits, and ramp rate limits are given in Table 1. The power demand data over a scheduling period of 24 hours are given in Fig.2. The network loss is neglected in the solution process. The software package for PM is developed in Matlab platform and executed in a 2.3 GHz Pentium-IV personal computer. There is no guarantee that different executions of the BBO converge to the same solution due to the stochastic nature of the algorithm, and hence the PM is applied to these test system for 20 independent trials (300 iterations per trial) with the selected parameters and the best ones are presented. The results obtained by the PM for the test system are compared with a few of the existing methods of SQP, EP, HQ-PSO, AIS and ICPSO, outlined in [16, 25-27] and discussed.

**Table 1 Generator Data** 

|    | $P_G^{\mathrm{min}}$ | $P_G^{\mathrm{max}}$ | а      | b        | c        | d   | e     | UR | DR |
|----|----------------------|----------------------|--------|----------|----------|-----|-------|----|----|
| 1  | 150                  | 470                  | 21.600 | 958.200  | 958.200  | 450 | 0.041 | 80 | 80 |
| 2  | 135                  | 460                  | 21.050 | 1313.600 | 1313.600 | 600 | 0.036 | 80 | 80 |
| 3  | 73                   | 340                  | 20.810 | 604.970  | 604.970  | 320 | 0.028 | 80 | 80 |
| 4  | 60                   | 300                  | 23.900 | 471.600  | 471.600  | 260 | 0.052 | 50 | 50 |
| 5  | 73                   | 243                  | 21.620 | 480.290  | 480.290  | 280 | 0.063 | 50 | 50 |
| 6  | 57                   | 160                  | 17.870 | 601.750  | 601.750  | 310 | 0.048 | 50 | 50 |
| 7  | 20                   | 130                  | 16.510 | 502.700  | 502.700  | 300 | 0.086 | 30 | 30 |
| 8  | 47                   | 120                  | 23.230 | 0.004800 | 639.400  | 340 | 0.082 | 30 | 30 |
| 9  | 20                   | 80                   | 19.580 | 0.109080 | 455.600  | 270 | 0.098 | 30 | 30 |
| 10 | 55                   | 55                   | 22.540 | 0.009510 | 692.400  | 380 | 0.094 | 30 | 30 |

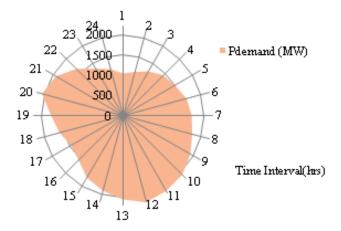


Fig.2 Power Demand over the scheduling horizon

The optimal generations obtained by the PM over the scheduling period is graphically presented in Fig 3. The corresponding fuel cost over the scheduling horizon is presented through Fig 4. The best fuel cost obtained by the PM for this test system is compared with those of the existing method in Fig.5. It is observed from these results that the PM offers the lowest fuel cost of  $1016818 \, \text{\$/h}$  compared to other

methods. The computational efficiency of any optimization method is a crucial factor for its practical applicability. Therefore the normalized execution time (NET) in seconds is compared with those of the existing methods in Fig 6. It can be observed from the figure that the PM is computationally efficient in offering the optimal solution.

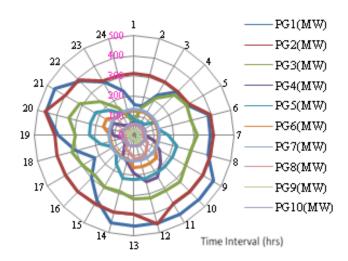


Fig.3 Optimal real power generations of the PM

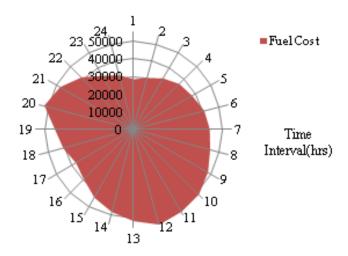


Fig.4 Fuel cost of the PM over the scheduling period

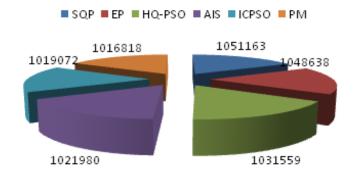


Fig 5 Comparison of Fuel Costs (\$/h)

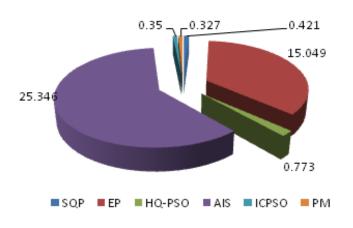


Fig 6 Comparison of NET

#### 6.CONCLUSION

The BBO, inspired from the geographical distribution of biological species, searches for optimal solution for multimodal optimization problems through the migration and mutation operators. A new innovative methodology using BBO has been elucidated for solving DELD problem, which is a complex non-linear optimization problem involving large number of decision variables and the ramp rate constraints. The problem has been split into a number of sub-problems and each sub-problem has been solved using BBO. The simulation results on 10 unit test system clearly revealed that the dignifying method is robust and computationally efficient.

## **ACKNOWLEDGEMENTS**

The authors gratefully acknowledge the authorities of Annamalai University for the facilities offered to carry out this work.

#### REFERENCES

- 1. Wood AJ & Woolenberg BF, "Power generation, operation and control", John Willey & Sons, New York, 1996.
- 2. W.G Wood, "Spinning reserve constraints static and dynamic economic dispatch", IEEE Trans Power Apparatus Syst PAS-101(2): 338-1338, 1982.
- 3. G.P Granelli, P Marannino, M Montagna, A Silvestri, "Fast and efficient gradient projection algorithm for dynamic generation dispatching", IEE Proc Gener Transm Distrib., 136(5): 295-302, 1989.
- 4. K.S Hindi, M.R Ghani, "Dynamic economic dispatch for large scale power systems: a Lagrangian relaxation approach, Int J Elect Power Energy Syst., 13(1): 51-56, 1991.
- 5. C.B Somuah, N Khunaizi "Application of linear programming redispatch technique to dynamic generation allocation", IEEE Trans Power Syst 5 (1): 20-26, 1990.
- 6. X.S Han, H.B Gooi, D Kirschen, "Dynamic economic dispatch: feasible and optimal solutions", IEEE Trans Power Syst 16 (1): 22-28, 2001.

- 7. X.S Han, H.B Gooi, "Effective economic dispatch model and algorithm", Elect Power Energy Syst 29: 113-120, 2007.
- 8. Z.X Liang, J.D Glover, "A zoom feature for a dynamic programming solution to economic dispatch including transmission losses", IEEE Trans Power Syst., 7(2): 544-550, 1992.
- 9. R Chakrabarti, P.K Chattopadhyay, M Basu, C.K Panigrahi, "Particle swarm optimization technique for dynamic economic dispatch, IE(I) Journal-EL 87: 48-54, 2006.
- 10. R.H Liang, "A neural-based redispatch approach to dynamic generation allocation", IEEE Trans Power Syst 14 (4): 1388-1393, 1999.
- 11. Basu, M, "Dynamic economic emission dispatch using nondominated sorting genetic algorithm-II", Elect Power Energy Syst., 30: 140-149, 2008.
- 12. C.K Panigrahi, P.K Chattopadhyay, R.N Chakrabarti, M Basu, "Simulated annealing technique for dynamic economic dispatch", Elect Power Components Syst., 34 (5): 577-586, 2006.
- 13. K.S Swarup, A Natarajan, "Constrained optimization using evolutionary programming for dynamic economic dispatch", Proc 3rd Int Conf Intell Sensing Inform Processing, 314-319, 2005.
- 14. R Balamurugan, S Subramanian, "An improved differential evolution based dynamic economic dispatch with non-smooth fuel cost function", Journal of Electrical Systems 3 (3): 151-161, 2007.
- 15. C.K Panigrahi, P.K Chattopadhyay, R Chakrabarti, "Load dispatch and PSO algorithm for DED control", Int J Autom Control 1 (2-3): 182-194, 2007.
- 16. D Attaviriyanupap, H Kita, E Tanaka, J Hasegawa, "A hybrid EP and SQP for dynamic economic dispatch with nonsmooth incremental fuel cost function", IEEE Trans Power Syst., 17(2): 411-416, 2002.
- 17. T.A.A Victoire, A.E Jeyakumar, "Reserve constrained dynamic dispatch of units with valve-point effects", IEEE Trans Power Syst 20(3): 1273-1282, 2005.
- 18. A.Y Abdelaziz, M.Z Kamh, S.F Mekhamer, M.A.L Badr, "A hybrid HNN-QP approach for dynamic economic dispatch problem", Elect Power Syst Res., 78 (10): 1784-1788, 2008.
- D Simon, "Biogeography-based optimization", IEEE Trans on Evolutionary Computation, 12(6): 702-713, 2008
- 20. R Rarick, D Simon, F Villaseca and B Vyakaranam, "Biogeography-based optimization and the solution of the power flow problem", IEEE International Conference on Systems, Man, and Cybernetics, San Antonio, SMC: 1003-1008, 2009.
- 21. A Bhattacharya and K.P Chattopadhyay, "Solution of optimal reactive power flow using biogeography-based optimization", Int Journal of Electrical and Electronics Engineering 4(8): 568-576, 2010.
- 22. A.Bhattacharya and K.P Chattopadhyay, "Application of biogeography-based optimization to

- solve different optimal power flow problems", IET Proc Gener., Transm & Distrib 5(1): 70-80, 2011.
- 23. S.Rajasomashekar and P Aravindhababu, "Biogeography-based optimization technique for best compromise solution of economic emission dispatch", Swarm and Evolutionary Computations, dx.doi.org/10.1016/j.swevo. 2012.06.001, 2012.
- 24. K.S Hindi, M.R Ab Ghani, "Multi-period economic dispatch for large scale power systems", Proc IEE Pt C, 136(3): 130-136, 1989.
- 25. Chakraborty S, Senjyu T, Yona A, Saber AY, Funabashi T, "Solving economic load dispatch problem with valve-point effects using a hybrid quantum mechanics inspired particle swarm optimization". IETGenerTransmDistrib,5:1042-52, 2011.
- 26. Hemamalini S, Simon SP, "Dynamic economic dispatch using artificial immune system for units with valve-point effect", Electr Power Energ Syst, 33: 868-74, 2011.
- 27. Wang Y, Zhou J, Qin H, Lu Y, "Improved chaotic particle swarm optimization algorithm for dynamic economic dispatch problem with valve-point effects" Energ Convers Manag,1:2893-900, 2010.