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Abstract

This paper attempts to develop a new methodology for
dynamic economic load dispatch (DELD) using biogeography
based optimization (BBO). The DELD is an extension of
static economic load dispatch to determine the generation
schedule of the committed units so as to meet the predicted
load demand over a time horizon at minimum operating cost
taking into account the ramp rate constraints. The BBO,
inspired from the geographical distribution of biological
species, searches for optimal solution through the migration
and mutation operators. The proposed method divides the
DELD problem into several sub-problems, each representing
an ELD of an interval, and solves the each sub-problem using
BBO. The simulation results on a 10 unit test problem clearly
indicate that the developed method is robust and
computationally efficient.

Keywords: Dynamic economic load dispatch, biogeography
based optimization.

NOMENCLATURE

a; by ¢ fuel cost coefficients of the i generator

BBO biogeography based optimization

B B, By, loss coefficients

DELD dynamic economic load dispatch

DR, down-ramp limit of i™ generator in mw /n

d; e coefficients of valve point effects of the i
generator

ELD economic load dispatch

€ fuel cost function of the i™ generator in
$/h

HSI habitat suitability index

h i™ habitat

Iterm® maximum number of iterations for
convergence check

nt number of intervals

ng number of generators

nh number of habitats

neh number of elite habitats

PM proposed method

Psit real power generation of i generator at
interval-t

Pg?in&Pg?aX minimum and maximum generation limits
of ith generator respectively

Pot total power demand at interval-t

P net transmission loss at interval-t

pmod habitat modification probability

P, mutation probability

SIv suitability index variable

UR, up-ramp limit of ith generator in MW /h

D(Pg) objective function to be minimized

Y augmented objective function to be
minimized

A immigration rate

1 emigration rate

1. INTRODUCTION

Dynamic Economic Load Dispatch (DELD) is used to
determine the optimal generation schedule of on-line
generators, so as to meet the predicted load demand over
certain problem period of time at minimum operating cost
under various system and operational constraints. It is a
dynamic optimization problem taking into account the
constraints imposed on system operation by generator ramp-
rate limits. Due to the ramp-rate constraints of a generator, the
operational decision at an hour may affect the operational
decision at a later hour. It has a look-ahead capability which is
necessary to schedule the load beforehand so that the system
can anticipate sudden load changes in near future. The DELD
problem can be formulated as a large-scale, optimization
problem, which is quite difficult due to its inherent high
dimensional, non-convex and nonlinear nature. The dimension
of the problem increases rapidly with the system size and the
scheduling horizon [1].

Over the years, numerous methods with various degrees of
near-optimality, efficiency, ability to handle difficult
constraints and heuristics are suggested in the literature for
solving the dynamic dispatch problems. These optimization
techniques can be classified into three main categories. The
first category is mathematical programming-based or
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heuristically-based, such as the lambda iterative method [2],
gradient projection method [3], Lagrange relaxation [4], linear
programming [5], nonlinear programming [6], interior point
methods [7], dynamic programming [8], etc. The advantages
of these methods are: optimality is mathematically proven in
some algorithms; they can be applied to large-scale problems;
they have no problem-specific parameters to specify;
moreover, some of these methods are computationally fast.
However, these methods can converge to a local optimum and
are sensitive to the initial starting points [9]. Many of these
techniques are not applicable to a certain class of cost
functions; for example lambda-iterative, Lagrange relaxation
and gradient technique methods, etc when used to solve
DELD with non-smooth or non-convex cost functions, can fail
to get global optimal solutions. For non-monotonically
increasing incremental cost functions, the lambda iterative
method may not result in the optimal solution and Linear
programming usually faces poor computation efficiency.
Dynamic programming can solve DELD problems with non-
smooth cost functions; however, it suffers from the “curse of
dimensionality” and local optimality [8].

The second category is the methods based on artificial
intelligence, such as artificial neural networks [10] and
stochastic optimization methods such as genetic algorithm
(GA) [11], simulated annealing (SA) [12], evolutionary
programming (EP) [13], differential evolution (DE) [14],
particle swarm optimization (PSO) [15] and Hopfield neural
network (HNN) that have been successfully used for solving
the DELD problems. Artificial neural networks such as HNN
have been found to generate a high quality solution for the
DELD problems with smooth cost functions [10]. Stochastic
optimization methods can solve DELD without any or fewer
restrictions on the shape of the cost function curves due to
their ability to seek the global optimal solution. Moreover,
these algorithms do not depend on the first and second
differentials of the objective function.

The third category is the hybrid methods, which combine two
or more techniques previously mentioned in order to get best
features in each algorithm. These methods such as
evolutionary  programming  with  sequential quadratic
programming [16], particle swarm optimization with
sequential quadratic programming [17], Hopfield neural
network with quadratic programming [18] have proven their
effectiveness in solving the DELD problems.

Recently, a Biogeography-Based Optimization (BBO), a
population based stochastic optimization technique sharing
information between candidates solutions based on their
fitness values, has been suggested for solving optimization
problems by Simon [19]. It has been applied to a variety of
power system optimization problems [20-23] and found to
yield satisfactory results. This paper attempts to apply BBO in
solving the DELD problem by splitting it into several sub-
problems with a view of enhancing the computational
efficiency and robustness.

2. PROBLEM FORMULATION

The goal of the DELD problem is to determine the
combination of output of all generating units that minimize
the total fuel cost over the dispatch period while satisfying all

kinds of physical and operational constraints DELD can be
expressed as an optimization problem with various
complicated constraints.

The objective of DELD problem is to minimize the total fuel
cost of all Ng generators over the given dispatch period of

Nt intervals

nt ng
Minimize ®(Pg)=>_ > F;(Ps;t) @
t=1 =1
Subject to
ng
ZPGit_PDt_PLt:O tent 2
i-1
PGmiin < PG @ < PGmiaX ie ng,tent 3

Poit — Fsit-1 SUR
Poit-1—Fsit <DR;
Where

~ . i R
F i 5 PGy +biPsic +; +‘ d; sin e{(PGr?m —Psit) L 5)

ieng t=2,---,nt

4
ieng t=2,---,nt @

ng ng ng

PLe = Z Z Poit Bij Po jt + Z Bok Pekt + Boo (6)
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3. BIOGEOGRAPHY BASED OPTIMIZATION

BBO, based on the concept of biogeography, is a stochastic
optimization technique for solving multimodal optimization
problems [19]. In BBO, a solution is represented by a habitat-
| consisting of solution features named Suitability Index
Variables (SIV), which are represented by real numbers. It is
represented for a problem with Nd decision variables as

hi =[SIVi1, SIV; 2, SIV; 3.+, SIV, 4] (7
The suitability of sustaining larger number of species of a

habitat-1 can be modeled as a fitness measure referred to
Habitat Suitability Index (HSI ) as

HSI; = f(hy) = F(SIV;1, SIV; 5, SIV; 3+, SIV] 1g) (8)
High HSI represents a better quality solution and low HSI

denotes an inferior solution. The aim is to find optimal
solution in terms of SIV that maximizes the HSI.

Each habitat is characterized by its own immigration rate A4
and emigration rate 2 . A good solution enjoys a higher u
and lower A and vice-versa. The immigration and emigration
rates are the functions of the number of species in the habitat

and defined for a habitat containing ¢ -species as

= (&) ©
A = 1M [1—%) (10)

When E™® = 1M the immigration and emigration rates can
be related as

A+ e =E™ (11)

A population of candidate solutions is represented as a vector
of habitats similar to any other evolutionary algorithm. The
features between the habitats are shared through migration
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operation, which is probabilistically controlled through habitat
modification probability, P™9. If a habitat h, in the

[}

population is selected for modification, then it A is used to
probabilistically decide whether or not to modify each SIV in
that habitat. The £ of other solutions are thereafter used to

select which of the habitats in the population shall migrate
randomly chosen SIVs to the selected solution h; .

The cataclysmic events that drastically change the HSI of a
habitat is represented by mutation of SIVs. The mutation
operation modifies a habitat’s SIV randomly based on

mutation rate Pm and tends to increase diversity among the

population, avoids the dominance of highly probable solutions
and provides a chance of improving the low HSI solutions.
Mutation rate of each solution set can be calculated in terms
of species count probability using the following equation:

max| 1— P*
Pm =m X(W (12)

4. PROPOSED METHOD

In all the evolutionary based solution methods, each member
in the population consists of real power generation of all the
generating plants at all intervals of the scheduling horizon.
These methods involve a large number of decision variables,
which is the product of the number of generating plants and
the number of intervals over the scheduling period. For
example, a problem with 10 generating units over a
scheduling horizon of 24 intervals involves 240 decision
variables, representing a search space with dimension of 240,
thereby making the search process very complex and time
consuming [3, 7, 24]. In the proposed method (PM), the
DELD problem is divided in to a number of sub-problems,
each representing an ELD of interval-t. The real power
generations of each sub-problem at interval-t, involving ng

decision variables, are considered to denote the habitat as
h = Peltapeztv"‘vpengt_ (13)
The HSI function can be tailored through penalizing the fuel

cost by the power balance constraint for the t—th sub-
problem as

Maximize HSI :L (14)
1+¥
Where
ng ng 5
k3 :ZFi(Peit)+ Klz €sit —Por — P~ (15)
i=1 i=1

Initially the interval t=1°, whose power demand
approximately equals the average of the minimum and
maximum power demands, is chosen; and the lower and upper

bound of the habitat for the initial interval is set as
hmin _ min min Pmin

= fG1 G2 """ FGng
- (16)
pmax _ pmax pmax pmax
= BG1 "G2 """ FGng _

The ELD problem is iteratively solved using the BBO for the
chosen initial interval-{. Then the ELD problem is formulated

http://www.ripublication.com

for the subsequent intervalst =t+1, with the lower and
upper limits for the habitat is set by considering the ramp rate
limit constraint of Eq. (4) and solved for this interval using
BBO.

hmin _ |1min, hénin'.__'hr%inj

hmaX — llmaxlhgnax"“’hrrréax: (17)
Where
- N i
i :{Pen_lp;i?Ri if €5 —DR; > PRI
! |
G j else (18)

s :{PGit—l Jrrn:iRi if €1 +UR; :S Pei”

Psj else
The above BBO based solution process is repeated by
incrementing the interval-t till the last interval- Nt of the
scheduling horizon. Similarly the preceding sub-problems of

the initial interval t=t° is obtained by decrementing the
interval as t =t —1 and solved using the BBO till the solution
for the first interval is obtained. The limits of the habitat
during this phase can be set as

hjmin :{PGit+l _URI if éGi[+l _URI :>_ Pijin

PSy" else (19)

hj[nax _ {PGiHl ':]EERi if ()Git+l + DR; :<_ PijaX
Psj else

The real power generations obtained for each interval over the

scheduling horizon represent the optimal solution of the

DELD problem. The solution process of the PM is explained

through the flow chart of Fig.1.

BE O Routine
/’ﬁead DELD problem data Fandomly generate S7Fsof each

+ hahitat that represents 5 walues to
Choose BBO paratmeters suchas sply ‘ foren indtial habitat matixz and set

neh, P B, and fefe iteration counter £ =0

¥

Choose #°
Set tstart =17, delt=1 and tend=nt

Ewaluate AS57 for each hahitat and

1‘7 identify sei habitats hawing the
highest &57
i +

Perform migmtion probabilistically
on those S7Vs of non-elite habitats
basedan M

Set the habitat lirnits, as exsplained
in section-4 using Egs. 9-12

; !
Solve the ELD problem at
interval- ¢ by calling Petform tutation operation
“BE O routine” probabilistically on those non-

elite habitats based on 5,

Set
tstent =17 —1,
delt=—1
and fend=1

SiVe of the best habitat
is the optimmal solution.
The real power generations obtained for i

each interval over the scheduling

hotizon represent the optitmal solution of
the DELD problem

Fig.1 Flow Chart of the PM with BBO subroutine
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5. NUMERICAL RESULTS

The PM is tested on a test system possessing 10 generating
units. The fuel cost coefficients including valve-point effects,
generation limits, and ramp rate limits are given in Table 1.
The power demand data over a scheduling period of 24 hours
are given in Fig.2. The network loss is neglected in the
solution process. The software package for PM is developed
in Matlab platform and executed in a 2.3 GHz Pentium-IV
personal computer. There is no guarantee that different
executions of the BBO converge to the same solution due to
the stochastic nature of the algorithm, and hence the PM is
applied to these test system for 20 independent trials (300
iterations per trial) with the selected parameters and the best
ones are presented. The results obtained by the PM for the test
system are compared with a few of the existing methods of
SQP, EP, HQ-PSO, AIS and ICPSO, outlined in [16, 25-27]
and discussed.

Table 1 Generator Data

P [pe=] @ b C d | e [URDR

150 | 470 |21.600] 958.200 | 958.200 |450({0.041|80| 80

135 | 460 |21.050]1313.600]1313.600(600{0.036| 80| 80

73 | 340 |20.810| 604.970 | 604.970 |320/0.028) 80 | 80

60 | 300 |23.900| 471.600 | 471.600 |260/0.052| 50 | 50

73 | 243 |21.620| 480.290 | 480.290 |280/0.063)| 50 | 50

57 1160 |17.870| 601.750 | 601.750 |310/0.048)| 50|50

20 | 130 |16.510| 502.700 | 502.700 |300/0.086| 30|30

47 | 120 |23.230]0.004800| 639.400 [340(0.082|30| 30

OO |NO(UT|R(WIN|F-

20 | 80 |19.580|0.109080| 455.600 |270]0.098| 30|30

[y
o

55 | 55 |22.540|0.009510| 692.400 |380]0.094|30|30

Time Intervall rs)

Fig.2 Power Demand over the scheduling horizon

The optimal generations obtained by the PM over the
scheduling period is graphically presented in Fig 3. The
corresponding fuel cost over the scheduling horizon is
presented through Fig 4. The best fuel cost obtained by the
PM for this test system is compared with those of the existing
method in Fig.5. It is observed from these results that the PM

offers the lowest fuel cost of 1016818%$/h compared to other

methods. The computational efficiency of any optimization
method is a crucial factor for its practical applicability.
Therefore the normalized execution time (NET) in seconds is
compared with those of the existing methods in Fig 6. It can
be observed from the figure that the PM is computationally
efficient in offering the optimal solution.

1 — PGLMW)
3 —— PGIMW)
oA —— PGI(MW)
ﬁ —— PG4
o\ —— PGS(MW)
,—— POS(MT)

PG MWV
! /% poawW)
S PGH(MW)
.. : -1 —— PG10(MW)
i ] ~
W 13_ L Time Interval (hrs)

24
23 SDI:H:IEI —t— 2 __3 mFuelCost
22 apodo— L 4
21/ NS
20 \ &
17 7 Tirue
1| 2 Interval{hra)
17+

Fig.4 Fuel cost of the PM over the scheduling period

BSOF MEP WHO-PSO MAS W|CPSO MPMN

1016818 10511&=

101207

45638

1021980 1031552

Fig 5 Comparison of Fuel Costs ($/h)
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0.35 0.327 n4z1

15.04%

0773
WLZOF MEP WHO-PS0O WA W|CPSO P

Fig 6 Comparison of NET

6.CONCLUSION

The BBO, inspired from the geographical distribution of
biological species, searches for optimal solution for
multimodal optimization problems through the migration and
mutation operators. A new innovative methodology using
BBO has been elucidated for solving DELD problem, which
is a complex non-linear optimization problem involving large
number of decision variables and the ramp rate constraints.
The problem has been split into a number of sub-problems
and each sub-problem has been solved using BBO. The
simulation results on 10 unit test system clearly revealed that
the dignifying method is robust and computationally efficient.
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