On Intuitionistic Fuzzy Volterra Spaces

S. Sharmila

Department of Mathematics, Nirmala College for Women, Coimbatore, sharmi.skumar@gmail.com

I. Arockiarani,

Department of Mathematics, Nirmala College for Women, Coimbatore, stell11960@yahoo.co.in

Abstract

The aim of this paper is to study some results concerning intuitionistic fuzzy Volterra spaces and study conditions under which an intuitionistic fuzzy topological space is an intuitionistic fuzzy Volterra space.

Keywords: Intuitionistic fuzzy dense set, intuitionistic fuzzy G_{δ} —set, intuitionistic fuzzy F_{σ} —set, intuitionistic fuzzy first category, intuitionistic fuzzy Volterra space, intuitionistic fuzzy Baire space,

Introduction

The concepts of fuzzy sets and fuzzy set operations were first introduced by L.A.Zadeh [16] in his classical paper. Thereafter the paper of C.L.Chang [7] paved the way for the subsequent tremendous growth of the numerous fuzzy topological concepts. Since then much attention has been paid to generalise the basic concepts of general topology in fuzzy setting and thus a modern theory of fuzzy topology has been developed. The concepts of Volterra spaces have been studied extensively in classical topology in [10,11,12,13]. In this paper we investigate several characterisations of intuitionistic fuzzy Volterra spaces and study under what conditions an intuitionistic fuzzy topological space becomes an intuitionistic fuzzy Volterra space.

Preliminaries

Definition 2.1 [2]. An intuitionistic fuzzy set (IFS, in short) A in X is an object having the form $A = \{x, \mu_A(x), \nu_A(x) / x \in X\}$ where the functions $\mu_A : X \to I$ and $\nu_A : X \to I$ denote the degree of membership (namely $\mu_A(x)$) and the degree of nonmembership (namely $\nu_A(x)$) of each element $x \in X$ to the set A on a nonempty set X and $0 \le \mu_A(x) + \nu_A(x) \le 1$ for each $x \in X$. Obviously every fuzzy set A on a nonempty set X is an IFS's A and B be in the form $A = \{x, \mu_A(x), 1 - \mu_A(x) / x \in X\}$

Definition 2.2 [2]. Let X be a nonempty set and the IFS's A and B be in the form $A = \{x, \mu_A(x), \nu_A(x) / x \in X\}$, $B = \{x, \mu_B(x), \nu_B(x) / x \in X\}$ and let

 $A = \{A_j : j \in J\}$ be an arbitrary family of IFS's in X. Then we define

- (i) $A \subseteq B$ if and only if $\mu_A(x) \le \mu_B(x)$ and $\nu_A(x) \ge \nu_B(x)$ for all $x \in X$.
- (ii) A=B if and only if $A \subseteq B$ and $B \subseteq A$.
- (iii) $\overline{A} = \{x, v_A(x), \mu_A(x) / x \in X\}.$
- (iv) $A \cap B = \{x, \mu_A(x) \cap \mu_B(x), \nu_A(x) \cup \nu_B(x) / x \in X \}.$
- (V) $A \cup B = \{x, \mu_A(x) \cup \mu_B(x), \nu_A(x) \cap \nu_B(x) / x \in X\}$
- (vi) $1_{\sim} = \{\langle x, 1, 0 \rangle x \in X \}$ and $0_{\sim} = \{\langle x, 0, 1 \rangle x \in X \}$.

Definition 2.3 [6]. An intuitionistic fuzzy topology (IFT, in short) on a nonempty set X is a family τ of an intuitionistic fuzzy set (IFS, in short) in X satisfying the following axioms:

- (i) $0_{\sim}, 1_{\sim} \in \tau$.
- (ii) $A_1 \cap A_2 \in \tau$ for any $A_1, A_2 \in \tau$.
- (iii) $\bigcup A_i \in \tau$ for any $A_i : j \in J \subseteq \tau$.

The complement A of intuitionistic fuzzy open set (IFOS, in short) in intuitionistic fuzzy topological space (IFTS, in short) (X, τ) is called an intuitionistic fuzzy closed set (IFCS, in short).

Definition 2.4 [6]. Let (X, τ) be an IFTS and $A = \{x, \mu_A(x), \nu_A(x)\}$ be an IFS in X. Then the fuzzy interior and closure of A are denoted by

- (i) $cl(A) = \bigcap \{K: K \text{ is an IFCS in } X \text{ and } A \subseteq K \}.$
- (ii) $\operatorname{int}(A) = \bigcup \{G: G \text{ is an IFOS in X and } G \subseteq A \}.$

Definition 2.5[6]. Let (X, τ) be any intuitionistic fuzzy topological space(IFTS, in short). Let A be an intuitionistic sets in (X, τ) . Then the intuitionistic fuzzy closure operator satisfy the following properties:

- (i) 1 IFcl(A) = IF int(1 A)
- (ii) $1 IF \operatorname{int}(A) = IFcl(1 A)$

Definition 2.6[8]. An intuitionistic fuzzy set A in intuitionistic fuzzy topological space (X, τ) is called

intuitionistic fuzzy dense if there exists no intuitionistic fuzzy closed set B in (X, τ) such that $A \subseteq B \subseteq 1_{\sim}$.

Definition 2.7[8]. If A is an intuitionistic fuzzy nowhere dense set in (X, τ) then \overline{A} is an intuitionistic fuzzy dense set in (X, τ)

Definition 2.8.[8]. Let A be an intuitionistic fuzzy set in (X,τ) . If A is an intuitionistic fuzzy closed set in (X,τ) with $IF \operatorname{int}(A) = 0_{\sim}$, then A is an intuitionistic fuzzy nowhere dense set in (X,τ) .

Definition 2.9.[8]. An intuitionistic fuzzy topological space (X,τ) is called an intuitionistic fuzzy submaximal space if each intuitionistic fuzzy set A in (X,τ) such that IFcl(A) = 1 then $A \in \tau$.

Definition 2.10.[8]. Let (X,τ) be an intuitionistic fuzzy topological space. An intuitionistic fuzzy set A in (X,τ) is called intuitionistic fuzzy first category if $A=\bigcup_{i=1}^{\infty}B_i$, where B_i 's are intuitionistic fuzzy nowhere dense sets in (X,τ) . Any other intuitionistic fuzzy set in (X,τ) is said to be of intuitionistic fuzzy second category.

Definition 2.11.[8]. An intuitionistic fuzzy topological space (X,τ) is called intuitionistic fuzzy first category if the intuitionistic fuzzy 1_{\sim} is an intuitionistic fuzzy first category in (X,τ) . That is $1_{\sim} = \bigcup_{i=1}^{\infty} A_i$, where A_i 's are intuitionistic fuzzy nowhere dense sets in (X,τ) otherwise (X,τ) is said to be of intuitionistic fuzzy second category.

Definition 2.12.[9]. An intuitionistic fuzzy topological space (X,τ) is called an intuitionistic fuzzy Baire space if $IF \operatorname{int}(\bigcup_{i=1}^{\infty} A_i) = 0_{\sim}$, where A_i 's are intuitionistic fuzzy nowhere dense sets in (X,τ) .

Definition 2.13.15]. An intuitionistic fuzzy topological space (X,τ) is called an intuitionistic fuzzy hyper connected space if every intuitionistic fuzzy open set is intuitionistic fuzzy dense in (X,τ) . That is $IFcl(A_i)=1_{\sim}$ for all $A_i\in\tau$.

Definition 2.14.[15]. Let (X,τ) be an IFTS and be an IFS in X. Then A is called $\operatorname{IF} G_\delta$ if $A=\bigcap_{i=1}^\infty A_i$ where each $A_i\in T$.

Definition.2.15[15]. Let (X,\mathcal{T}) be an IFTS and be an IFS in X. Then A is called IF F_{σ} if $A=\bigcup_{i=1}^{\infty}A_{i}$ where each $A_{i}\in T$.

Definition 2.16. [15]. An intuitionistic fuzzy topological space (X,τ) is called intuitionistic fuzzy P-space, if countable intersection of intuitionistic fuzzy open sets in (X,τ) is intuitionistic fuzzy open. That is, every non-zero intuitionistic fuzzy G_{δ} —set in (X,τ) is intuitionistic fuzzy open in (X,τ) .

Definition.2.17[14]. A fuzzy topological space (X, τ) is called an intuitionistic fuzzy strongly irresolvable space if $IFcl(A) = 1_{\sim}$ for any nonzero fuzzy set A in (X, τ) implies that $IFcl(IF \operatorname{int}(A)) = 1_{\sim}$.

Definition 2.18.[15]. An intuitionistic fuzzy topological space (X,τ) is called intuitionistic fuzzy volterra space, if $IFcl(\bigcap_{i=1}^{N}A_{i})=1_{\sim}$ where A_{i} 's are intuitionistic fuzzy dense and intuitionistic fuzzy G_{δ} — sets in (X,τ) .

Intuitionistic Fuzzy Volterra Space

Theorem 3.1. If A is an IF dense set and IF G_{δ} - set in an intuitionistic fuzzy topological space (X, τ) , then 1-A is an IF first category set in (X, τ) .

Proof. Since A is an IF G_{δ} – set in (X, τ) , $A = \bigcap_{i=1}^{\infty} (A_i)$, where $A_i \in \tau$ and since A is an IF dense set in (X, τ) , $IFcl(A) = 1_{\sim}$. Then $IFcl(\bigcap_{i=1}^{\infty} (A_i)) = 1_{\sim}$. $IFcl(\bigcap_{i=1}^{\infty}(A_{i}))\subseteq\bigcap_{i=1}^{\infty}(IFcl(A_{i}))\,.$ $\begin{array}{ll} 1_{_\sim} \subseteq \bigcap\limits_{i=1}^{^\infty} (IFcl(A_i)) \text{ . That is, } \bigcap\limits_{i=1}^{^\infty} (IFcl(A_i)) = 1_{_\sim} \text{ . Then we} \\ \text{have } \quad IFcl(A_i) = 1_{_\sim} \quad \text{for } \quad \text{each} \quad A_i \in \tau \text{ and } \quad \text{hence} \end{array}$ $IFcl(IF int(A_i)) = 1$ which implies that $1 - IFcl(IF \operatorname{int}(A_i)) = 0$ and hence $IF \operatorname{int}(IFcl(1-A_i)) = 0$. Therefore 1-A_i is nowhere (X,τ) . Now $1 - A = 1 - \bigcap_{i=1}^{\infty} (A_i) = \bigcup_{i=1}^{\infty} (1 - A_i).$ Therefore

 $1-A=\bigcup_{i=1}^{\infty}(1-A_i)$ where (1-A_i)'s are IF nowhere dense sets in (X,τ) . Hence 1-A is an IF first category set in (X,τ) .

Proposition 3.2. If the IF first category sets B_i are formed from the IF dense and IF G_δ — sets A_i in an IF Volterra space (X,τ) , then IF int $(\bigcup_{i=1}^\infty (B_i) = 0_{\sim}$.

Proof. Let A_i 's (i=1 to N) be IF dense and IF G_{δ} — sets in an IF Volterra space (X,τ) . Then $IFcl(\bigcap_{i=1}^{\infty}(A_i))=1$. Now $1-IFcl(\bigcap_{i=1}^{N}(A_i))=0$, implies that $IF \operatorname{int}(\bigcup_{i=1}^{N}(1-A_i))=0$. Since the IFS A_i 's (i=1 to N) are IF dense and IF G_{δ} — sets in (X,τ) . By theorem 3.1, (1-A_i)'s are IF first category sets in (X,τ) . Let B_i =1-A_i. Hence $IF \operatorname{int}(\bigcup_{i=1}^{N}(A_i))=0$, where B_i 's are IF first category sets in (X,τ) .

Proposition 3.3. If the IFTS (X, τ) is an IF strongly irresolvable Baire space, then (X, τ) is an IF Volterra space.

Proof. Let A_i 's (i=1 to N) be IF dense and IF G_{δ} — sets in an IF Volterra space (X,τ) . Since (X,τ) is an IF strongly irresolvable space, $IFcl(A_i)=1$ _, implies that $IFcl(IFint(A_i))=1$ _. Then $1-IFcl(IFint(A_i))=0$ _. This implies that $IFint(IFcl(1-A_i))=0$ _. Hence (1-A_i)'s are IF nowhere dense sets (X,τ) . Suppose that B_i's are IF nowhere dense sets in (X,τ) in which B_i=1-A_i (i = 1 to N). Now $\bigcup_{i=1}^N (1-A_i) \subseteq \bigcup_{i=1}^\infty B_i$. Then we have $IFint(\bigcup_{i=1}^N (1-A_i)) \subseteq IFint(\bigcup_{i=1}^\infty B_i)$. Since the IFTS (X,τ) is an IF Baire space, $IFint(\bigcup_{i=1}^\infty (B_i))=0$ _. This implies that $1-IFcl(\bigcap_{i=1}^N (A_i))=0$ _. Then we have $IFcl(\bigcap_{i=1}^N (A_i))=1$ _. Therefore (X,τ) is an IF Volterra space.

Proposition 3.4. If the IFP-space (X, τ) is an IF hyperconnected space, then (X, τ) is an IF Volterra space.

Proof. Let A_i 's (i=1 to N) be IF dense and IF G_δ — sets in an IF Volterra space (X,τ) . Since (X,τ) is an IF P-space, A_i 's are IF G_δ — sets in (X,τ) implies that A_i 's are IFOS in (X,τ) . Then $\bigcap_{i=1}^N (A_i) \in \tau$. Also since (X,τ) is an IF hyperconnected space, $\bigcap_{i=1}^N (A_i) \in \tau$ implies that $IFcl(\bigcap_{i=1}^N (A_i)) = 1_{\mathbb{Z}}$. Therefore (X,τ) is an IF Volterra space

Proposition 3.5. If the IFTS (X, τ) is an IF submaximal and IF hyperconnected space, then (X, τ) is an IF Volterra space.

Proof. Let A_i 's (i=1 to N) be IF dense and IF G_δ — sets in an IF Volterra space (X,τ) . Since (X,τ) is an IF submaximal space, $IFcl(A_i)=1_\sim$, implies that $A_i\in\tau$ in (X,τ) . Then we have $IF\operatorname{int}(A_i)=A_i$. This implies that $IFcl(IF\operatorname{int}(A_i))=IFcl(A_i)$. Thus $IFcl(IF\operatorname{int}(A_i))=1_\sim$ for the IF dense sets A_i in (X,τ) . Thus (X,τ) is IF strongly irresolvable space. Now $A_i\in\tau$ implies that $\bigcap_{i=1}^N (A_i)\in\tau$. Also since (X,τ) is IF hyperconnected space, $\bigcap_{i=1}^N (A_i)\in\tau$ implies that $IFcl(\bigcap_{i=1}^N (A_i))=1_\sim$. Therefore (X,τ) is an IF Volterra

Definition 3.6. An IFTS (X, τ) is called IF regular space if each IFOS A in (X, τ) is such that $A = \bigcup_{i=1}^{\infty} A_i$, where $A_i \in \tau$ and $IFcl(A_i) \subseteq A$ for each i.

Definition.3.7. An IFTS (X, τ) is called IF totally second category space if every non-zero IFCS in (X, τ) is an IF second category set in (X, τ) .

Theorem 3.8. If (X, τ) is called IF totally second category, IF regular then (X, τ) is an IF Baire space.

Proof. Let (X, τ) is called IF totally second category, IF regular space and A_i be I S and IF dense sets in (X, τ) . Let $A = \bigcap_{i=1}^{\infty} A_i$. Then $1 - A = 1 - \bigcap_{i=1}^{\infty} A_i = \bigcup_{i=1}^{\infty} (1 - A_i)$. Since A_i

is IFOS FO and IF dense sets in (X,τ) , 1-A_i is IF nowhere dense sets in (X,τ) for each $i\in N$. Hence 1-A is IF first category set in (X,τ) . Now we claim that IFcl(A)=1. Suppose that $IFcl(A)\neq 1$. Then there exists a non-zero IF closed set B in (X,τ) such that $A\subset B\subset 1$. Hence $1-A\supset 1-B\supset 0$. Since B is IFCS in (X,τ) , 1-B is IFOS in (X,τ) . Since (X,τ) is IF regular and 1-B is IF open there exists C in (X,τ) , such that $1-B=\bigcup_{i=1}^{\infty}C$ and $IFcl(C)\subseteq 1-B$. Now

$$IFcl(\bigcap C) \subset 1-B \subset 1-A$$
, that is $IFcl(\bigcap C) \subset 1-A$.

Since 1-A is IF first category set, then $IFcl(\bigcap C)$ is a IF

first category set in (X,τ) . Now $IFcl(\cap C)$ is an IFCS in an IF totally second category space, then $IFcl(\cap C)$ is not an IF first category set in (X,τ) , which is a contradiction. Hence the assumption that $IFcl(A) \neq 1$ does not hold. Therefore IFcl(A) = 1. Hence (X,τ) is an IF Baire space.

Proposition 3.9. If (X, τ) is called IF totally second category, IF regular and IF strongly irresolvable space, then (X, τ) is an IF Volterra space.

Proof. Let A_i 's (i=1 to N) be IF dense and IF G_δ —sets in an IF Volterra space (X,τ) . Since (X,τ) is an IF totally second category, IF regular space, by theorem 3.9, (X,τ) is an IF Baire space. Then (X,τ) is an IF strongly irresolvable Baire space. By proposition 3.3, (X,τ) is an IF Volterra space.

Theorem 3.10. [15] If A is an IF dense and IFOS in (X, τ) , then 1-A is an IF nowhere dense set in (X, τ) .

Theorem 3.11. Let (X, τ) be an IFTS. Then the following are equivalent:

- (i) (X, τ) is an IF Baire space.
- (ii) $IF \operatorname{int}(A) = 0_{\sim}$ for every IF first category set A in (X, τ) .

(iii) $IF \operatorname{int}(B) = 1_{\sim}$ for every IF residual set B in (X, τ) .

Proof. $(i) \Rightarrow (ii)$. Let A be an IF first category set in (X,τ) . Then $A=\bigcup_{i=1}^{\infty}(A_i)$, where A_i 's are IF nowhere dense sets in (X,τ) . Now $IF \operatorname{int}(A) = IF \operatorname{int}(\bigcup_{i=1}^{\infty} A_i) = 0$. (Since (X, τ) is an IF Baire space). Therefore $IF \operatorname{int}(A) = 0$ $(ii) \Rightarrow (iii)$. Let B be an IF residual set in (X, τ) . Then 1-B is an IF first category set in (X, τ) . By hypothesis, $IF \operatorname{int}(1-B) = 0$ which implies that 1 - IFcl(B) = 0. Hence we have, IFcl(B) = 1. $(iii) \Rightarrow (i)$. Let A be an IF first category set in (X, τ) . Then $A = \bigcup_{i=1}^{\infty} (A_i)$, where A_i 's are IF nowhere dense sets in (X,τ) . Since A is an IF first category set in (X,τ) , 1-A is an If residual set in (X,τ) . By hypothesis, we have IFcl(1-A) = 1. Then 1 - IF int(A) = 1, which implies that $IF \operatorname{int}(A) = 0_{\sim}$. Hence $IF \operatorname{int}(\bigcup_{i=1}^{\infty} (A_i)) = 0_{\sim}$, where A_i 's are IF nowhere dense sets in (X, τ) . Hence (X,τ) is an IF Baire space.

Proposition 3.12. If (X, τ) is called IF totally second category, IF regular and IF P-space, then (X, τ) is an IF Volterra space.

Proof. Let (X,τ) is called IF totally second category, IF regular and IF P-space. Let A_i 's (i=1 to N) be IF dense and IF G_δ — sets in an IF Volterra space (X,τ) . Since (X,τ) is an IF P-space, A_i 's are IF G_δ — sets in (X,τ) implies that A_i 's are IFOS in (X,τ) . By theorem 3.10 (1- A_i)'s are IF nowhere dense sets in (X,τ) . Now the IFS $A=\bigcup_{i=1}^\infty (1-A_i)$ is an IF first category set in (X,τ) . Since (X,τ) is an IF totally second category, IF regular space, by theorem 3.8 (X,τ) is an IF Baire space. Then by theorem 3.11 IF $\operatorname{int}(A)=0_{\sim}$ in (X,τ) . This implies that IF $\operatorname{int}(\bigcup_{i=1}^\infty (1-A_i))=0_{\sim}$.

$$IF \operatorname{int}(1 - \bigcap_{i=1}^{\infty} (A_i)) = 1 - IFcl(\bigcap_{i=1}^{\infty} (A_i))$$
 implies that

$$\begin{split} 1-IFcl(\bigcap_{i=1}^{\infty}(A_i) &= 0_{\sim} \text{. That is, } IFcl(\bigcap_{i=1}^{\infty}(A_i) = 1_{\sim} \text{. Then} \\ \text{we} & \text{have} & IFcl(\bigcap_{i=1}^{N}(A_i) = 1_{\sim} \text{. Since} \\ IFcl(\bigcap_{i=1}^{\infty}(A_i)) &\subseteq IFcl(\bigcap_{i=1}^{N}(A_i) \text{. Therefore } (X,\tau) \text{ is an IF} \\ \text{We have} & IFcl(\bigcap_{i=1}^{\infty}(A_i)) &= IFcl(\bigcap_{i=1}^{N}(A_i) \text{. Therefore } (X,\tau) \text{ is an IF} \\ \text{We have} & IFcl(\bigcap_{i=1}^{\infty}(A_i)) &= IFcl(\bigcap_{i=1}^{N}(A_i) \text{. Therefore } (X,\tau) \text{ is an IF} \\ \text{We have} & IFcl(\bigcap_{i=1}^{N}(A_i)) &= IFcl(\bigcap_{i=1}^{N}(A_i) \text{. Therefore } (X,\tau) \text{ is an IF} \\ \text{We have} & IFcl(\bigcap_{i=1}^{N}(A_i)) &= IFcl(\bigcap_{i=1}^{N}(A_i)) \text{. Therefore } (X,\tau) \text{ is an IF} \\ \text{We have} & IFcl(\bigcap_{i=1}^{N}(A_i)) &= IFcl(\bigcap_{i=1}^{N}(A_i)) \text{.} \end{aligned}$$

Volterra space.

References

- [1] K. Atanassov, "Intuitionistic fuzzy sets", Fuzzy Sets and Systems, Vol. 20, No.1, pp. 87-96, 1986.
- K. Atanassov, "Intuitionistic fuzzy sets past, present, [2] and future", CLBME-Bulgarian Academy of Science, Sofia, 2003
- K. Atanassov and Stoeva, "Intuitionistic fuzzy sets", [3] Polish Syrup, On interval and fuzzy mathematics, Poznan, Vol. 8, pp. 23-26, 1983.
- [4] K. Atanassov and Stoeva, "Intuitionistic L-fuzzy sets", Cybernetics and System research, Elsevier, Amsterdam, pp. 539-540, 1984.
- [5] G. Balasubramanian, "Maximal Fuzzy Topologies", Kybernetika, Vol. 5, No. 31, pp. 459-464, 1995.
- [6] D. Coker, "An introduction to intuitionistic fuzzy topological spaces", Fuzzy Sets and Systems, Vol. 88, pp. 81-89, 1997.
- C.L. Chang, "Fuzzy topological spaces", J. Math. [7] Anal. Appl., Vol. 24, pp. 182-190, 1968.
- E.Roja [8] Dhavaseelan, and M.K.Uma, "Intuitionistic fuzzy resolvable and intuitionistic fuzzy irresolvable spaces", Scientia Magna, Vol. 2, No. 7, pp. 59-67, 2011.
- [9] R. Dhavaseelan, "Intuitionistic fuzzy Baire Spaces", Annals of Fuzzy Mathematics and Informatics, Vol. 10, No. 2, pp. 215-219, 2015,
- D.B. Gauld and Z. Piotrowski, "On Volterra spaces", [10] Far East J. Math. Sci., Vol. 1, No. 2, pp. 209-214,
- [11] D.B. Gauld, Sina Greenwood and Z. Piotrowski, "On Volterra spaces-II", pp.173.
- G. Gruenhage and D. Lutzer, "Baire and Volterra [12] spaces", Proc. Amer. Soc. 128, pp. 3115-3124, 2000.
- Jiling Cao and David Gauld, "Volterra spaces [13] revisited", J.Aust. Math. Soc., Vol. 79, No. 1, pp. 61-76, 2005.
- Sharmila.S and I. Arockiarani, "Characterization of [14] intuitionistic fuzzy strongly irresolvable spaces". (Communicated).
- Sharmila.S and I. Arockiarani, "On intuitionistic [15] fuzzy almost resolvable and almost irresolvable spaces". (Communicated).
- L.A. Zadeh, "Fuzzy sets", Information and Control, [16] Vol. 8, pp. 338-353, 1965.