
International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 24 (2015) pp 44001-44006

© Research India Publications. http://www.ripublication.com

44001

Implementation of Low Power Multi-Precision Floating Point Multiplier

D. Gokila

Assistant Professor, Department of Electronics and Communication Engineering,

United Institute of Technology, Coimbatore, Coimbatore District gokiladr@gmail. com

Dr. H. Mangalam

Professor, Department of Electronics and Communication Engineering

Sri Krishna College of Engineering and Technology, Coimbatore, Coimbatore District hmangalam2@gmail.com

Abstract

Floating point multiplier is widely used in digital signal

processing applications. The performance of Field

Programmable Gate Arrays (FPGAs) used for floating point

application is low, because of complexity in operations. This

creates less interest in making FPGAs for floating point

applications. So we are going for the reconfigurable floating

point multiplier which provides improved deployment of the

multiplier in most of the applications. This performs double

precision operation or single precision operation. Further

power is reduced by using the spurious power suppression
technique. The implementation shows a better performance

with respect to power and delay.

Keywords: Double precision, Single precision,

Reconfigurable, Floating point multiplier (FPM).

Introduction

High processing performance and low power dissipation are

the most important objectives in many multimedia and digital

signal processing (DSP) systems, where multipliers are

always the basic arithmetic unit and significantly influence the
system’s performance and power dissipation. Multipliers

using floating point numbers are in great demand because

floating point numbers have good precision, since they never

deliberately discard information. So a fast and energy-

efficient floating point unit is always needed in electronics

industry. Field Programmable Gate Arrays (FPGA’s) are

broadly used for scientific computation because of the ease of

customizing the hardware for the application. The limited size

and architecture of FPGAs are not well-suited for floating-

point applications. On the other hand, ASICs can be very

efficient at floating-point operations, but lack the
programmability and flexibility that is desired in many

situations, and the cost of an ASIC can be prohibitively high.

By overcoming the limitations of FPGAs, it will be a very

attractive platform for floating point applications. So for the

better utilization of the floating point multiplier unit,

reconfigurable computing is added. A new computing method

using reconfigurable architectures promises an intermediate

trade-off between flexibility and performance. Reconfigurable

computing uses hardware that can be adapted at run-time to

facilitate greater flexibility without compromising on

performance. The re-configurability of the hardware permits

adaptation of the hardware for specific computations in each

application to achieve higher performance compared to

software. Here the re-configurability is applied to perform

single precision and double precision floating point

multiplication. In order to further enhance the multiplier in

terms of power, an efficient power reduction technique

namely the spurious power suppression technique is

implemented which provides an eminent improvement in

power and delay.

Related Works

In FPGA’s, re-configurability gives significant area utilization

and delay improvements. A number of works has been

proposed based on the configurability. Akkas [1] has

produced the multiplier which is configured to perform either

one quad precision multiplication or two double precision

multiplications in parallel. It takes three cycles to perform

quadruple precision multiplication and can produce a

quadruple precision product every other cycle. And two

double precision operations in parallel will take two cycles.

Diniz and Govindu [3] have presented the design of a field

programmable dual precision multiplier. By getting
knowledge from these, the work is proposed for doing one

double precision multiplication or two single precision

multiplication. Mainly the multiplier work is based on the

Akkas design [1]. But the difference is that they have used

two multipliers for lower precision multiplication. These same

multipliers are used in multi cycle for higher precision

multiplication. Due to this structure the delay of multiplication

operation is high in previous works. In proposed design,

instead of two simple multipliers, Radix-4 booth concept and

Wallace tree structured multiplier is used, so that, the speed of

operation can be improved because of single cycle utilized for
both single and double precision multiplication. This is the

main advantage of this design. The reconfiguration can be

obtained by just using control signal for multiplexers.

Reconfiguration time is very low because it involves only

changing the control signal for the multiplexers. But it has a

disadvantage of having little more area than other works due

to tree structured multiplier. And then the delay needed to

perform the single precision operation is slightly high. The

main advantage is flexibility in Floating Point Multiplier for

FPGA architectures so that both double precision

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 24 (2015) pp 44001-44006

© Research India Publications. http://www.ripublication.com

44002

multiplication and single precision multiplication can be

performed.

Floating Point Representation

In general, a floating point number can be represented as
±M x BE

Where M is the mantissa

E is the exponent

B is the base.

For binary case, the floating point number is represented as

(-1)s x M x 2E

where 2 is representing the implied base. Based on IEEE 754

standard, floating point number consist of three fields

1) A sign bit (S)

2) Biased exponent (E)

3) Mantissa (M)

The IEEE 754 floating-point standard uses 32 bits to represent

a single precision floating-point number, including a single

sign bit, exponent bits with bit width 8 and 23 bits of

mantissa. The mantissa has effectively 24 bits including 1

implied bit to the left of the decimal point not explicitly

represented in the notation.

Fig.1. IEEE 754 Single Precision Floating Point Number

IEEE 754 uses 64 bits to represent double precision floating

point number, including 1 sign bit, exponent bits with bit

width 11 and 52 bits of mantissa. The mantissa has effectively

53 bits including 1 implied bit to the left of the decimal point
not explicitly represented in the notation

.

Fig.2. IEEE 754 Double Precision Floating Point Number

Bias value for the 8 bit and 11 bit exponent is 127 and 1023

respectively, then the representation is as follows

X = (-1)Sx1. fx2(e-127)

X = (-1)Sx1. fx2(e-1023)

Floating point numbers are having higher precision compared

to fixed point numbers so that discarding of information is

low.

Floating Point Multiplication
Consider the two floating point numbers X1 = (s1, e1, f1) and

X2 = (s2, e2, f2) each consists of

 Sign bit

 Exponent bits

 Mantissa bits

Then Floating point multiplication Xp can be obtained using

following steps.

sp = s1 s2
ep = e1+e2-bias
1. fp = 1. f1 x 1. f2

This equation can be formed as data path as shown in Fig.3.

In mantissa adjust block the normalization operation is used,

based on that the exponent value has been changed. For

double precision multiplication, the mantissas are getting

multiplied using 53 x 53 bit multiplier. This multiplier can be

configured as 24 x 24 bit multiplier; this will help to perform

single precision multiplication. This single precision

multiplier will take the inputs from LSB side of the inputs

which is applied for double precision multiplication.

Fig.3. Data Path of Floating Point Multiplication

In this proposed work, Radix-4 modified booth algorithm with

Wallace tree structure is used to perform the mantissa

multiplication. Booth encoding is used to reduce the number

of partial products into half the number of bits in multiplier

(X). Due to this, number of levels in Wallace structure would

be reduced. Then partial products have been added using

number of full adders in Wallace structure to produce the final

product.

Multiplier Unit

The structure consists of the components for double precision

multiplication. One of the inputs is given as input for booth

encoder and then output from this will drive the partial

product generator. Another input for partial product generator

is given which is same as the second mantissa value. This will

produce the partial products in 27 rows. And then these all the

Mant2

MantRes
ExpRes

Mant1

Exp2 Exp1

bias

Exponent Adder

Bias subtract

Exponent adjust Rounding unit

Mantissa adjust

Multiplier

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 24 (2015) pp 44001-44006

© Research India Publications. http://www.ripublication.com

44003

partial products are compressed using number of full adders

and half adders to get the final sum.

In this design multiplier [10] block consists of following

blocks

1) Booth Encoder

2) 53 x 53 bit Partial Product Generator
3) Wallace structure

4) CSA adder

Booth Encoder

Parallel Multiplication using basic Booth’s Recoding algorith

m technique based on the fact that partial product can

be generated for group of consecutive 0’s and 1’s which is

called as Booth’s recoding. These Booth’s Recoding

algorithm [6] is used to generate efficient partial product.

These Partial Products always have large number of bits than

the input number of bits. This partial product width usually
depends upon the radix scheme used for recoding.

Modified Booth algorithm:

One of the solutions of realizing high speed multipliers is to

enhance parallelism which helps to decrease the number of

subsequent calculation stages. The first version of the booth

algorithm [8] (radix-2) had two disadvantages. They are:

1) The number of add subtract operations and the

number of shift operations become variable and

becomes inconvenient in designing parallel
multipliers.

2) The algorithm becomes inefficient when there are

isolated 1’s.

These drawbacks are overcome by using modified radix-4

booth algorithm which scans strings of three bits with the

algorithm.

Fig.4. Proposed multiplier structure

Algorithm

 Extend the sign bit by one position if necessary to

ensure that n is even.

 Add a zero to the right of the LSB of the multiplier.

 Based on the value of each vector, each partial

product will be 0, +y,-y, +2y or-2y.

The negative values of y are made by taking the two’s

complement. The multiplication of y is done by shifting y by

one bit to the left. Thus, in any case, only n/2 partial products

are generated in designing of n-bit parallel multipliers. The

least significant block (LSB) uses only two bits of the

multiplier, and assumes a zero for the third bit. The overlap is

necessary so as to know what happened in the last block, since

the MSB of the block acts like a sign bit. The modified booth

algorithm using radix 4 method is the efficient technique.

Based on this the booth encoder [10] is designed with three
basic operator signals.

1. Direction-Direction operator is used to choose either

the normal multiplicand(X) or inverse of

multiplicand (~X).

2. Shift-Shift operator is shifting the bits by one

position to left side.

3. Addition-Addition operator perform addition of one

to partial product.

The booth encoding can be simplified using the expressions

that follows

Direction Dm = Ym+1 ;

Addition Am = Ym-1 Ym;

Shift Sm = Ym+1 Ym

Fig.5. Booth encoder circuit

These signals are given to the partial product generator to
produce the partial products based on the operator signal.

Totally we are having 53 bits of mantissa, by grouping it as 3

bits; we will get the 27 groups of 3 bits inputs. So for 27

groups of bits all the 3 signals are generated and then it will

trigger the partial product generator. 27 rows of partial

products are generated according to the signals from the booth

encoder.

Partial Product Generator[PPG]

Partial products are the intermediate results in the

multiplications which are added to produce the final product.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 24 (2015) pp 44001-44006

© Research India Publications. http://www.ripublication.com

44004

In this design the partial products are generated based on the

signals from booth encoder.

Fig.6. Block diagram of PPG

Here the output from the booth encoder is acting as one of the

inputs to PPG and another input is given by the second

mantissa value. Based on the encoder input value, the partial

product selector has to be considered. Based on these 3 bits of

groups, the partial products are produced with help of partial

product selectors [6] such as 0, +1,-1, +2,-2. It illustrates how

to calculate partial products from the bits of multiplicand B

according to the values of the recoded digit.

Table 1. Relationship of partial-product and recoded

signed bits

Multiplier bits Selection

000

001

010

011

100

101

110

111

+0(0)

+1(p1)

+1(p1)

+2(p2)

-2(m2)

-1(m1)

-1(m1)

-0(0)

The computation of partial products given in Table 1 is

simple:
For p1, the partial products equal the bits of B.

For p2, we obtain the partial products by a left shift of B.

For m1, we need to invert the bits of B and add the value 1 at

the least significant bit.

For m2, we need to invert the bits of B, shift them left, and

add the value 1 at the least significant bit.

For the encoded digit equal to 0, all partial products bits are

equal to 0.

By doing these operations regarding to the table all the partial

products in 27 rows is obtained, because of the 27 groups of

bits of inputs to the partial product generator. These partial

products are needed to be arranged in the proper format to get

the correct result at the output side.

Wallace tree structure

Fast process for multiplication of two numbers was developed

by Wallace [9].

Fig.7. Wallace element

Two step process is used to multiply two numbers:

(1) The bit products are formed.

(2) The bit product matrix is “reduced” to a two row

matrix by using carry-save adders.

(3) The last two rows are summed using a fast carry-

propagate adder to produce the product.

The Wallace-Tree binary adder is a usual building block in the

implementation of the binary multiplier, and is an integral

element in the efficient implementation of high-speed binary

multipliers.

Proposed Spurious Power Suppression Technique (SPST)

The problem of power consumption can be overcome with the

use of different power consumption reduction techniques like

Boolean Techniques, Guarded Evaluation, Partially Guarded
Computation, Dynamic Range Determination and Glitching

Power Minimization in the multiplier circuit. These above

techniques has its won trade off like need of additional circuit,

low percentage of power consumption reduction. The SPST

[25] uses a logic circuit to detect the effective data range of

arithmetic units like adders or multipliers. When a portion of

data does not affect the final computing results, the data

controlling circuits of the SPST latch this portion to avoid

useless data transitions occurring inside the arithmetic units.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 24 (2015) pp 44001-44006

© Research India Publications. http://www.ripublication.com

44005

Besides, there is a data asserting control realized by using

registers to further filter out the useless spurious signals of

arithmetic unit every time when the latched portion is being

turned on. This asserting control brings evident power

reduction. Fig.8 shows the design of low power

adder/subtractor with SPST.
The adder /subtractor is divided into two parts, the

most significant part (MSP) and the least significant part

(LSP). The MSP of the original adder/subtractor is modified

to include detection logic circuits, data controlling circuits,

sign extension circuits, logics for calculating carry in and

carry out signals. The most important part of this study is the

design of the control signal asserting circuits, denoted as

asserting circuits in Fig.8. Although this asserting circuit

brings evident power reduction, it may induce additional

delay.

There are two implementing approaches for the
control signal assertion circuits. The first implementing

approach of control signal assertion circuit is using registers

and the second using gates. Here the second method is used.

The three output signals of the detection logic are close,

Carr_ctrl, sign. The three output signals in the detection logic

unit are given a certain amount of delay before they assert.

This will filter out the glitch signals as well as keep the

computation results correct.

Implementation and Discussion
For implementation Xilinx ISE Design Suite 13.1with VHDL

programming was used. Simulation process was done using

ISIM tool.

Fig.8. Low Power Adder/Subtractor Adopting SPST

Table 2. Comparison of floating point multiplier using and

not using SPST technique

 Number of Slice

FFs

Delay

(ns)

Power

(mW)

PDP

(pJ)

Without

SPST

555 14. 50 45. 83 664. 5

With SPST 625 14. 40 44. 59 642. 1

0

100

200

300

400

500

600

700

without

SPST

with

SPST

no of slices

delay

power

PDP

Comparison of configurable floating point multiplier using

and not using SPST technique is shown in Table 2. The results

show that the floating point multiplier with power suppression

technique shows improved results than compared to floating

point multiplier without using suppression technique with

respect to power and delay with acceptable increase in area.

Conclusion

This paper presents a flexible multimode floating-point

multiplier for FPGAs. Each floating point multiplier can

perform double-precision operation or single-precision

operation. Results show that the FPGA with embedded

multimode FPUs incorporated with power reduction technique

provide considerable performance with respect to power and

delay with the benefits seen in single-precision, double-

precision, fixed-point, and integer applications.

References

1. A.Akkas¸ and M. J. Schulte, “A quadruple precision

and dual double precision floating-point multiplier, ”

in Proc. Euromicro Symp. Digit. Syst. Des. (DSD), p.

76, 2003.

2. G. Even, S. M. Mueller, and P.M. Seidel, “A dual

precision IEEE floating-point multiplier, ” Integr.

VLSI J., vol. 29, no. 2, pp. 167-180, 2000.

3. P. C. Diniz and G. Govindu, “Design of a field-

programmable dual-precision floating-point
arithmetic unit, ” in Proc. Int. Conf. Field Program.

Logic Appl. (FPL), pp. 1-4, 2006.

4. IEEE Standard for Binary Floating-Point Arithmetic,

ANSI/IEEE Std 754, 1985.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 24 (2015) pp 44001-44006

© Research India Publications. http://www.ripublication.com

44006

5. D. A. Patterson and J. L. Hennessy, Computer

Organization and Design, 3rd ed. San Francisco,

CA: Morgan Kaufmann, ch. H. 5, 2005.

6. M. Nicolaidis and R. O. Duarte, “Fault-secure parity

prediction booth multipliers, ” IEEE Des. Test, vol.

16, no. 3, Jul., pp. 90-101, 1999.
7. W.C. Yeh and C.W. Jen, “High-speed booth encoded

parallel multiplier design, ” IEEE Trans. Comput.,

vol. 49, no. 7, Jul, pp. 692-701, 2000.

8. A.D. Booth, “A signed binary multiplication

technique, ” Quarterly J. Mechan. Appl. Math., vol.

4, pp. 236-240, 1951.

9. C.S. Wallace, “A suggestion for a fast multiplier, ”

IEEE Trans. Electron. Comput, vol. EC-13, no. 1,

Feb., pp. 14-17, 1964.

10. Ki-seon Cho, Jong-on Park, Jin-seok Hong and

Goang-seog Choi, “54x54-Bit radix-4 multiplier

based on modified booth algorithm”, ACM,
GLSVLSI’03, Washington, DC, USA, pp. 233-236,

2003.

11. Padma Devi, AshimaGirdher and Balwinder Singh.

“Improved carry select adder with reduced area and

low power consumption”, International Journal of

Computer Applications, vol. 3, no. 4, 2010.

12. Sudharsanarani B. and Vijayakumarraju V.

“Reducing the size of partial product array in two’s

complement multipliers”, International Journal of

Logic and Computation (IJLP), vol. 5, issue 2, pp.

714-727, 2012.
13. Vojin G. Oklobdzija “High-Speed VLSI arithmetic

units: Adders and Multipliers”, Sep 1999.

14. Wen M. C., Wang S. J. and Lin Y. N. “Low-power

parallel multiplier with column bypassing”,

Electronics letter, vol. 41, no. 10, 2005.

15. Yee Jern Chong and Sri Parameswaran

“Configurable multimode floating point units for

FPGAs”, IEEE Trans. VLSI, vol. 19, no. 11, Nov,

pp. 2033-2044, 2011.

16. Y. Dou, S. Vassiliadis, G. Kuzmanov, and G.

Gaydadjiev, “64-bit floating point FPGA matrix

multiplication, ” in Proc. ACM/SIGDA13thInt.
Symp. Field-Program. GateArrays, pp. 86-95, 2005.

17. K. S. Hemmert and K. D. Underwood, “Analysis of

the double-precision floating point FFT on FPGAs, ”

presented at the ACM Int. Symp. Field Program.

Gate Arrays, Monterey, CA, Feb 2004.

18. G. Govindu, S. Choi, V. K. Prasanna, V. Daga, S.

Gangadharpalli, andV. Sridhar, “Ahigh-performance

and energy efficient architecture for floating-point

based LU decomposition on FPGAs, ” in Proc. 11th

Reconfigurable Arch. Workshop(RAW), SantaFe,

NM, Apr, p. 149a, 2004.
19. M. deLorimer and A. DeHon, “Floating point sparse

matrix-vector multiply or FPGAs, ” in Proc. ACM

Int. Symp. Field Program Gate Arrays, Monterey,

CA, Feb, pp. 75-85, 2005.

20. Convey Computer Corporation, “Convey computer, ”

Richardson, TX, [Online]. Available: http:// www.

conveycomputer. com/2008-2010.

21. K. Underwood, “FPGAs vs. CPUs: Trends in peak

floating-point performance, ” in Proc. ACM/SIGDA

12th Int. Symp. Field Program. Gate Arrays,

Monterey, CA, Feb. pp. 171-180, 2004.

22. M. J. Beauchamp, S. Hauck, and K. S. Hemmert,

“Embedded floating-point units in FPGAs, ” in Proc.
IEEE Symp. Field Program. Gate Arrays (FPGA),

pp. 12-20, 2006.

23. C. H. Ho, P. H. W. Leong, W. Luk, S. J. E. Wilton,

and S. Lopez-Buedo, “Virtual embedded blocks: A

methodology for evaluating embedded elements in

FPGAs, ” in Proc. IEEE Symp. Field-Program.

Custom Comput. Mach. (FCCM), pp. 35-44, 2006.

24. C. H. Ho, C. W. Yu, P. H. W. Leong, W. Luk, and S.

J. E. Wilton, “Domain-specific hybrid FPGA:

Architecture and floating point applications, ” in Proc

Int. Conf. Field Program. Logic Appl. (FPL), pp.

196-201, 2007.
25. Kuan-Hung Chen and Yuvan-Sun Chu, ” A Low

Power Multiplier with the Spurious Power

Suppression Technique” IEEE Trans. VLSI systems,

vol. 15, no. 7, July 2007.

