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Abstract 

Floating point multiplier is widely used in digital signal 

processing applications. The performance of Field 

Programmable Gate Arrays (FPGAs) used for floating point 

application is low, because of complexity in operations. This 

creates less interest in making FPGAs for floating point 

applications. So we are going for the reconfigurable floating 

point multiplier which provides improved deployment of the 

multiplier in most of the applications. This performs double 

precision operation or single precision operation. Further 

power is reduced by using the spurious power suppression 
technique. The implementation shows a better performance 

with respect to power and delay. 

 

Keywords: Double precision, Single precision, 

Reconfigurable, Floating point multiplier (FPM). 

 

 

Introduction 

High processing performance and low power dissipation are 

the most important objectives in many multimedia and digital 

signal processing (DSP) systems, where multipliers are 

always the basic arithmetic unit and significantly influence the 
system’s performance and power dissipation. Multipliers 

using floating point numbers are in great demand because 

floating point numbers have good precision, since they never 

deliberately discard information. So a fast and energy-

efficient floating point unit is always needed in electronics 

industry. Field Programmable Gate Arrays (FPGA’s) are 

broadly used for scientific computation because of the ease of 

customizing the hardware for the application. The limited size 

and architecture of FPGAs are not well-suited for floating-

point applications. On the other hand, ASICs can be very 

efficient at floating-point operations, but lack the 
programmability and flexibility that is desired in many 

situations, and the cost of an ASIC can be prohibitively high. 

By overcoming the limitations of FPGAs, it will be a very 

attractive platform for floating point applications. So for the 

better utilization of the floating point multiplier unit, 

reconfigurable computing is added. A new computing method 

using reconfigurable architectures promises an intermediate 

trade-off between flexibility and performance. Reconfigurable 

computing uses hardware that can be adapted at run-time to 

facilitate greater flexibility without compromising on 

performance. The re-configurability of the hardware permits 

adaptation of the hardware for specific computations in each 

application to achieve higher performance compared to 

software. Here the re-configurability is applied to perform 

single precision and double precision floating point 

multiplication. In order to further enhance the multiplier in 

terms of power, an efficient power reduction technique 

namely the spurious power suppression technique is 

implemented which provides an eminent improvement in 

power and delay. 

 

 

Related Works 

In FPGA’s, re-configurability gives significant area utilization 

and delay improvements. A number of works has been 

proposed based on the configurability. Akkas [1] has 

produced the multiplier which is configured to perform either 

one quad precision multiplication or two double precision 

multiplications in parallel. It takes three cycles to perform 

quadruple precision multiplication and can produce a 

quadruple precision product every other cycle. And two 

double precision operations in parallel will take two cycles. 

Diniz and Govindu [3] have presented the design of a field 

programmable dual precision multiplier. By getting 
knowledge from these, the work is proposed for doing one 

double precision multiplication or two single precision 

multiplication. Mainly the multiplier work is based on the 

Akkas design [1]. But the difference is that they have used 

two multipliers for lower precision multiplication. These same 

multipliers are used in multi cycle for higher precision 

multiplication. Due to this structure the delay of multiplication 

operation is high in previous works. In proposed design, 

instead of two simple multipliers, Radix-4 booth concept and 

Wallace tree structured multiplier is used, so that, the speed of 

operation can be improved because of single cycle utilized for 
both single and double precision multiplication. This is the 

main advantage of this design. The reconfiguration can be 

obtained by just using control signal for multiplexers. 

Reconfiguration time is very low because it involves only 

changing the control signal for the multiplexers. But it has a 

disadvantage of having little more area than other works due 

to tree structured multiplier. And then the delay needed to 

perform the single precision operation is slightly high. The 

main advantage is flexibility in Floating Point Multiplier for 

FPGA architectures so that both double precision 
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multiplication and single precision multiplication can be 

performed. 

 

 

Floating Point Representation 

In general, a floating point number can be represented as 
±M x BE 

Where M is the mantissa 

E is the exponent 

B is the base. 

 

For binary case, the floating point number is represented as 

(-1)s x M x 2E 

where 2 is representing the implied base. Based on IEEE 754 

standard, floating point number consist of three fields 

1)  A sign bit (S) 

2)  Biased exponent (E) 

3)  Mantissa (M) 
 

The IEEE 754 floating-point standard uses 32 bits to represent 

a single precision floating-point number, including a single 

sign bit, exponent bits with bit width 8 and 23 bits of 

mantissa. The mantissa has effectively 24 bits including 1 

implied bit to the left of the decimal point not explicitly 

represented in the notation. 

 

 
 

Fig.1. IEEE 754 Single Precision Floating Point Number 

 

 

IEEE 754 uses 64 bits to represent double precision floating 

point number, including 1 sign bit, exponent bits with bit 

width 11 and 52 bits of mantissa. The mantissa has effectively 

53 bits including 1 implied bit to the left of the decimal point 
not explicitly represented in the notation 

. 

 
 

Fig.2. IEEE 754 Double Precision Floating Point Number 

 

 
Bias value for the 8 bit and 11 bit exponent is 127 and 1023 

respectively, then the representation is as follows 

X = (-1)Sx1. fx2(e-127) 

X = (-1)Sx1. fx2(e-1023) 

 

Floating point numbers are having higher precision compared 

to fixed point numbers so that discarding of information is 

low. 

 

 

Floating Point Multiplication 
Consider the two floating point numbers X1 = (s1, e1, f1) and 

X2 = (s2, e2, f2) each consists of 

 Sign bit 

 Exponent bits 

 Mantissa bits 

 

Then Floating point multiplication Xp can be obtained using 

following steps. 

sp = s1  s2 
ep = e1+e2-bias 
1. fp = 1. f1 x 1. f2 

 

This equation can be formed as data path as shown in Fig.3. 

 

In mantissa adjust block the normalization operation is used, 

based on that the exponent value has been changed. For 

double precision multiplication, the mantissas are getting 

multiplied using 53 x 53 bit multiplier. This multiplier can be 

configured as 24 x 24 bit multiplier; this will help to perform 

single precision multiplication. This single precision 

multiplier will take the inputs from LSB side of the inputs 

which is applied for double precision multiplication. 
 

 

Fig.3. Data Path of Floating Point Multiplication 

 

 

In this proposed work, Radix-4 modified booth algorithm with 

Wallace tree structure is used to perform the mantissa 

multiplication. Booth encoding is used to reduce the number 

of partial products into half the number of bits in multiplier 

(X). Due to this, number of levels in Wallace structure would 

be reduced. Then partial products have been added using 

number of full adders in Wallace structure to produce the final 

product. 
 

 

Multiplier Unit 

The structure consists of the components for double precision 

multiplication. One of the inputs is given as input for booth 

encoder and then output from this will drive the partial 

product generator. Another input for partial product generator 

is given which is same as the second mantissa value. This will 

produce the partial products in 27 rows. And then these all the 
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partial products are compressed using number of full adders 

and half adders to get the final sum. 

In this design multiplier [10] block consists of following 

blocks 

1)  Booth Encoder 

2)  53 x 53 bit Partial Product Generator 
3)  Wallace structure 

4)  CSA adder 

 

 

Booth Encoder 

Parallel Multiplication using basic Booth’s Recoding algorith

m technique based on the fact that partial product can 

be generated for group of consecutive 0’s and 1’s which is 

called as Booth’s recoding. These Booth’s Recoding 

algorithm [6] is used to generate efficient partial product. 

These Partial Products always have large number of bits than 

the input number of bits. This partial product width usually 
depends upon the radix scheme used for recoding. 

 

 

Modified Booth algorithm: 

One of the solutions of realizing high speed multipliers is to 

enhance parallelism which helps to decrease the number of 

subsequent calculation stages. The first version of the booth 

algorithm [8] (radix-2) had two disadvantages. They are: 

1)  The number of add subtract operations and the 

number of shift operations become variable and 

becomes inconvenient in designing parallel 
multipliers. 

2)  The algorithm becomes inefficient when there are 

isolated 1’s. 

 

These drawbacks are overcome by using modified radix-4 

booth algorithm which scans strings of three bits with the 

algorithm. 

 

 
 

Fig.4. Proposed multiplier structure 

 

 

 

Algorithm 

 Extend the sign bit by one position if necessary to 

ensure that n is even. 

 Add a zero to the right of the LSB of the multiplier. 

 Based on the value of each vector, each partial 

product will be 0, +y,-y, +2y or-2y. 
 

The negative values of y are made by taking the two’s 

complement. The multiplication of y is done by shifting y by 

one bit to the left. Thus, in any case, only n/2 partial products 

are generated in designing of n-bit parallel multipliers. The 

least significant block (LSB) uses only two bits of the 

multiplier, and assumes a zero for the third bit. The overlap is 

necessary so as to know what happened in the last block, since 

the MSB of the block acts like a sign bit. The modified booth 

algorithm using radix 4 method is the efficient technique. 

Based on this the booth encoder [10] is designed with three 
basic operator signals. 

1.  Direction-Direction operator is used to choose either 

the normal multiplicand(X) or inverse of 

multiplicand (~X). 

2.  Shift-Shift operator is shifting the bits by one 

position to left side. 

3.  Addition-Addition operator perform addition of one 

to partial product. 

 

The booth encoding can be simplified using the expressions 

that follows 

Direction Dm = Ym+1 ; 

Addition Am = Ym-1  Ym; 

Shift Sm = Ym+1  Ym 

 

 

 

Fig.5. Booth encoder circuit 

 

 

These signals are given to the partial product generator to 
produce the partial products based on the operator signal. 

Totally we are having 53 bits of mantissa, by grouping it as 3 

bits; we will get the 27 groups of 3 bits inputs. So for 27 

groups of bits all the 3 signals are generated and then it will 

trigger the partial product generator. 27 rows of partial 

products are generated according to the signals from the booth 

encoder. 

 

 

Partial Product Generator[PPG] 

Partial products are the intermediate results in the 

multiplications which are added to produce the final product. 
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In this design the partial products are generated based on the 

signals from booth encoder. 

 

 
 

Fig.6. Block diagram of PPG 

 
 

Here the output from the booth encoder is acting as one of the 

inputs to PPG and another input is given by the second 

mantissa value. Based on the encoder input value, the partial 

product selector has to be considered. Based on these 3 bits of 

groups, the partial products are produced with help of partial 

product selectors [6] such as 0, +1,-1, +2,-2. It illustrates how 

to calculate partial products from the bits of multiplicand B 

according to the values of the recoded digit. 

 

Table 1. Relationship of partial-product and recoded 

signed bits 
 

Multiplier bits Selection 

000 

001 

010 

011 

100 

101 

110 

111 

+0(0) 

+1(p1) 

+1(p1) 

+2(p2) 

-2(m2) 

-1(m1) 

-1(m1) 

-0(0) 

 

 

The computation of partial products given in Table 1 is 

simple: 
For p1, the partial products equal the bits of B. 

For p2, we obtain the partial products by a left shift of B. 

For m1, we need to invert the bits of B and add the value 1 at 

the least significant bit. 

For m2, we need to invert the bits of B, shift them left, and 

add the value 1 at the least significant bit. 

For the encoded digit equal to 0, all partial products bits are 

equal to 0. 

 

By doing these operations regarding to the table all the partial 

products in 27 rows is obtained, because of the 27 groups of 

bits of inputs to the partial product generator. These partial 

products are needed to be arranged in the proper format to get 

the correct result at the output side. 

 

 

Wallace tree structure 

Fast process for multiplication of two numbers was developed 

by Wallace [9]. 

 

 
 

Fig.7. Wallace element 

 

 

Two step process is used to multiply two numbers: 

(1)  The bit products are formed. 

(2)  The bit product matrix is “reduced” to a two row 

matrix by using carry-save adders. 

(3)  The last two rows are summed using a fast carry-

propagate adder to produce the product. 
 

The Wallace-Tree binary adder is a usual building block in the 

implementation of the binary multiplier, and is an integral 

element in the efficient implementation of high-speed binary 

multipliers. 

 

 

Proposed Spurious Power Suppression Technique (SPST) 

The problem of power consumption can be overcome with the 

use of different power consumption reduction techniques like 

Boolean Techniques, Guarded Evaluation, Partially Guarded 
Computation, Dynamic Range Determination and Glitching 

Power Minimization in the multiplier circuit. These above 

techniques has its won trade off like need of additional circuit, 

low percentage of power consumption reduction. The SPST 

[25] uses a logic circuit to detect the effective data range of 

arithmetic units like adders or multipliers. When a portion of 

data does not affect the final computing results, the data 

controlling circuits of the SPST latch this portion to avoid 

useless data transitions occurring inside the arithmetic units. 
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Besides, there is a data asserting control realized by using 

registers to further filter out the useless spurious signals of 

arithmetic unit every time when the latched portion is being 

turned on. This asserting control brings evident power 

reduction. Fig.8 shows the design of low power 

adder/subtractor with SPST. 
The adder /subtractor is divided into two parts, the 

most significant part (MSP) and the least significant part 

(LSP). The MSP of the original adder/subtractor is modified 

to include detection logic circuits, data controlling circuits, 

sign extension circuits, logics for calculating carry in and 

carry out signals. The most important part of this study is the 

design of the control signal asserting circuits, denoted as 

asserting circuits in Fig.8. Although this asserting circuit 

brings evident power reduction, it may induce additional 

delay.  

 

There are two implementing approaches for the 
control signal assertion circuits. The first implementing 

approach of control signal assertion circuit is using registers 

and the second using gates. Here the second method is used. 

The three output signals of the detection logic are close, 

Carr_ctrl, sign. The three output signals in the detection logic 

unit are given a certain amount of delay before they assert. 

This will filter out the glitch signals as well as keep the 

computation results correct.  

 

 

Implementation and Discussion 
For implementation Xilinx ISE Design Suite 13.1with VHDL 

programming was used. Simulation process was done using 

ISIM tool. 

 
 

Fig.8. Low Power Adder/Subtractor Adopting SPST 
 

 

Table 2. Comparison of floating point multiplier using and 

not using SPST technique 

 

 Number of Slice 

FFs 

Delay 

(ns) 

Power 

(mW) 

PDP 

(pJ) 

Without 

SPST 

555 14. 50 45. 83 664. 5 

With SPST 625 14. 40 44. 59 642. 1 
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Comparison of configurable floating point multiplier using 

and not using SPST technique is shown in Table 2. The results 

show that the floating point multiplier with power suppression 

technique shows improved results than compared to floating 

point multiplier without using suppression technique with 

respect to power and delay with acceptable increase in area. 

 

 

Conclusion 

This paper presents a flexible multimode floating-point 

multiplier for FPGAs. Each floating point multiplier can 

perform double-precision operation or single-precision 

operation. Results show that the FPGA with embedded 

multimode FPUs incorporated with power reduction technique 

provide considerable performance with respect to power and 

delay with the benefits seen in single-precision, double-

precision, fixed-point, and integer applications. 
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