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Abstract

Floating point multiplier is widely used in digital signal
processing applications. The performance of Field
Programmable Gate Arrays (FPGASs) used for floating point
application is low, because of complexity in operations. This
creates less interest in making FPGAs for floating point
applications. So we are going for the reconfigurable floating
point multiplier which provides improved deployment of the
multiplier in most of the applications. This performs double
precision operation or single precision operation. Further
power is reduced by using the spurious power suppression
technique. The implementation shows a better performance
with respect to power and delay.
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Introduction

High processing performance and low power dissipation are
the most important objectives in many multimedia and digital
signal processing (DSP) systems, where multipliers are
always the basic arithmetic unit and significantly influence the
system’s performance and power dissipation. Multipliers
using floating point numbers are in great demand because
floating point numbers have good precision, since they never
deliberately discard information. So a fast and energy-
efficient floating point unit is always needed in electronics
industry. Field Programmable Gate Arrays (FPGA’s) are
broadly used for scientific computation because of the ease of
customizing the hardware for the application. The limited size
and architecture of FPGAs are not well-suited for floating-
point applications. On the other hand, ASICs can be very
efficient at floating-point operations, but lack the
programmability and flexibility that is desired in many
situations, and the cost of an ASIC can be prohibitively high.
By overcoming the limitations of FPGAs, it will be a very
attractive platform for floating point applications. So for the
better utilization of the floating point multiplier unit,
reconfigurable computing is added. A new computing method
using reconfigurable architectures promises an intermediate
trade-off between flexibility and performance. Reconfigurable
computing uses hardware that can be adapted at run-time to
facilitate greater flexibility without compromising on
performance. The re-configurability of the hardware permits

adaptation of the hardware for specific computations in each
application to achieve higher performance compared to
software. Here the re-configurability is applied to perform
single precision and double precision floating point
multiplication. In order to further enhance the multiplier in
terms of power, an efficient power reduction technique
namely the spurious power suppression technique is
implemented which provides an eminent improvement in
power and delay.

Related Works

In FPGA'’s, re-configurability gives significant area utilization
and delay improvements. A number of works has been
proposed based on the configurability. Akkas [1] has
produced the multiplier which is configured to perform either
one quad precision multiplication or two double precision
multiplications in parallel. It takes three cycles to perform
quadruple precision multiplication and can produce a
quadruple precision product every other cycle. And two
double precision operations in parallel will take two cycles.
Diniz and Govindu [3] have presented the design of a field
programmable dual precision multiplier. By getting
knowledge from these, the work is proposed for doing one
double precision multiplication or two single precision
multiplication. Mainly the multiplier work is based on the
Akkas design [1]. But the difference is that they have used
two multipliers for lower precision multiplication. These same
multipliers are used in multi cycle for higher precision
multiplication. Due to this structure the delay of multiplication
operation is high in previous works. In proposed design,
instead of two simple multipliers, Radix-4 booth concept and
Wallace tree structured multiplier is used, so that, the speed of
operation can be improved because of single cycle utilized for
both single and double precision multiplication. This is the
main advantage of this design. The reconfiguration can be
obtained by just using control signal for multiplexers.
Reconfiguration time is very low because it involves only
changing the control signal for the multiplexers. But it has a
disadvantage of having little more area than other works due
to tree structured multiplier. And then the delay needed to
perform the single precision operation is slightly high. The
main advantage is flexibility in Floating Point Multiplier for
FPGA architectures so that both double precision
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multiplication and single precision multiplication can be
performed.

Floating Point Representation

In general, a floating point number can be represented as
+M x B®

Where M is the mantissa

E is the exponent

B is the base.

For binary case, the floating point number is represented as
(-1 x M x 2¢

where 2 is representing the implied base. Based on IEEE 754
standard, floating point number consist of three fields

1) A sign bit (S)

2) Biased exponent (E)

3) Mantissa (M)

The IEEE 754 floating-point standard uses 32 bits to represent
a single precision floating-point number, including a single
sign bit, exponent bits with bit width 8 and 23 bits of
mantissa. The mantissa has effectively 24 bits including 1
implied bit to the left of the decimal point not explicitly
represented in the notation.
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Fig.1. IEEE 754 Single Precision Floating Point Number

IEEE 754 uses 64 bits to represent double precision floating
point number, including 1 sign bit, exponent bits with bit
width 11 and 52 bits of mantissa. The mantissa has effectively
53 bits including 1 implied bit to the left of the decimal point
not explicitly represented in the notation
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Fig.2. IEEE 754 Double Precision Floating Point Number

Bias value for the 8 bit and 11 bit exponent is 127 and 1023
respectively, then the representation is as follows

X = (-1)%1. fx2©12)

X = (-1)°x1. fx2® 1%

Floating point numbers are having higher precision compared
to fixed point numbers so that discarding of information is
low.

Floating Point Multiplication

Consider the two floating point numbers X1 = (s1, el, f1) and
X2 = (s2, €2, 2) each consists of

) Sign bit

. Exponent bits
. Mantissa bits

Then Floating point multiplication X, can be obtained using
following steps.

$5=51DS;

e, = e1+ey.bias

1.f,=1.fx1.1,

This equation can be formed as data path as shown in Fig.3.

In mantissa adjust block the normalization operation is used,
based on that the exponent value has been changed. For
double precision multiplication, the mantissas are getting
multiplied using 53 x 53 bit multiplier. This multiplier can be
configured as 24 x 24 bit multiplier; this will help to perform
single precision multiplication. This single precision
multiplier will take the inputs from LSB side of the inputs
which is applied for double precision multiplication.

Expl Exp2 Mantl
l £ bias l

Exponent Adder | Multiplier

\ 4 \ 4 l

Mant2
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Mantissa adjust
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Fig.3. Data Path of Floating Point Multiplication

In this proposed work, Radix-4 modified booth algorithm with
Wallace tree structure is used to perform the mantissa
multiplication. Booth encoding is used to reduce the number
of partial products into half the number of bits in multiplier
(X). Due to this, number of levels in Wallace structure would
be reduced. Then partial products have been added using
number of full adders in Wallace structure to produce the final
product.

Multiplier Unit

The structure consists of the components for double precision
multiplication. One of the inputs is given as input for booth
encoder and then output from this will drive the partial
product generator. Another input for partial product generator
is given which is same as the second mantissa value. This will
produce the partial products in 27 rows. And then these all the
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partial products are compressed using number of full adders
and half adders to get the final sum.

In this design multiplier [10] block consists of following
blocks

1) Booth Encoder
2) 53 x 53 bit Partial Product Generator
3) Wallace structure

4) CSA adder

Booth Encoder

Parallel Multiplication using basic Booth’s Recoding algorith
m technique based onthe factthat partial product can
be generated for group of consecutive 0’s and 1’s which is
called as Booth’s recoding. These Booth’s Recoding
algorithm [6] is used to generate efficient partial product.
These Partial Products always have large number of bits than
the input number of bits.  This partial product width usually
depends upon the radix scheme used for recoding.

Modified Booth algorithm:

One of the solutions of realizing high speed multipliers is to

enhance parallelism which helps to decrease the number of

subsequent calculation stages. The first version of the booth

algorithm [8] (radix-2) had two disadvantages. They are:

1) The number of add subtract operations and the
number of shift operations become variable and

becomes inconvenient in designing parallel
multipliers.
2) The algorithm becomes inefficient when there are

isolated 1’s.

These drawbacks are overcome by using modified radix-4
booth algorithm which scans strings of three bits with the
algorithm.

“ 1

Booth Encoder |

l

53 hit Partial Products Generator

¥

L J

Wallace structure (Fa and HA)

]

54 adder

L.

Final Sum

Fig.4. Proposed multiplier structure

Algorithm

. Extend the sign bit by one position if necessary to
ensure that n is even.

. Add a zero to the right of the LSB of the multiplier.

Based on the value of each vector, each partial
product will be 0, +y,-y, +2y or-2y.

The negative values of y are made by taking the two’s
complement. The multiplication of y is done by shifting y by
one bit to the left. Thus, in any case, only n/2 partial products
are generated in designing of n-bit parallel multipliers. The
least significant block (LSB) uses only two bits of the
multiplier, and assumes a zero for the third bit. The overlap is
necessary so as to know what happened in the last block, since
the MSB of the block acts like a sign bit. The modified booth
algorithm using radix 4 method is the efficient technique.
Based on this the booth encoder [10] is designed with three
basic operator signals.

1. Direction-Direction operator is used to choose either

the normal multiplicand(X) or inverse of
multiplicand (~X).

2. Shift-Shift operator is shifting the bits by one
position to left side.

3. Addition-Addition operator perform addition of one

to partial product.

The booth encoding can be simplified using the expressions
that follows

Direction D= Y a1 ;

Addition Apn=Yn1® Yo,

Shift Sy = Ym1 @ Y

Y1 E : Dy

5 : .
Yo | :
¥ 1 ' E

e e e ——

Fig.5. Booth encoder circuit

These signals are given to the partial product generator to
produce the partial products based on the operator signal.
Totally we are having 53 bits of mantissa, by grouping it as 3
bits; we will get the 27 groups of 3 bits inputs. So for 27
groups of bits all the 3 signals are generated and then it will
trigger the partial product generator. 27 rows of partial
products are generated according to the signals from the booth
encoder.

Partial Product Generator[PPG]
Partial products are the intermediate results in the
multiplications which are added to produce the final product.
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In this design the partial products are generated based on the
signals from booth encoder.

53 bit input

}{ .
Partial product
y —{ Booth > generatar
Encoder

™l
¥

L v

Partial products

Fig.6. Block diagram of PPG

Here the output from the booth encoder is acting as one of the
inputs to PPG and another input is given by the second
mantissa value. Based on the encoder input value, the partial
product selector has to be considered. Based on these 3 bits of
groups, the partial products are produced with help of partial
product selectors [6] such as 0, +1,-1, +2,-2. It illustrates how
to calculate partial products from the bits of multiplicand B
according to the values of the recoded digit.

Table 1. Relationship of partial-product and recoded
signed bits

Multiplier bits Selection
000 +0(0)
001 +1(pl)
010 +1(pl)
011 +2(p2)
100 -2(m2)
101 -1(m1)
110 -1(m1)
111 -0(0)

The computation of partial products given in Table 1 is
simple:

For p1, the partial products equal the bits of B.

For p2, we obtain the partial products by a left shift of B.

For m1, we need to invert the bits of B and add the value 1 at
the least significant bit.

For m2, we need to invert the bits of B, shift them left, and
add the value 1 at the least significant bit.

For the encoded digit equal to O, all partial products bits are
equal to 0.

By doing these operations regarding to the table all the partial
products in 27 rows is obtained, because of the 27 groups of
bits of inputs to the partial product generator. These partial
products are needed to be arranged in the proper format to get
the correct result at the output side.

Wallace tree structure
Fast process for multiplication of two numbers was developed
by Wallace [9].

Full adder Full adder

Adder (2 bit)

Fig.7. Wallace element

Two step process is used to multiply two numbers:
(€D)] The bit products are formed.

2 The bit product matrix is “reduced” to a two row
matrix by using carry-save adders.
3) The last two rows are summed using a fast carry-

propagate adder to produce the product.

The Wallace-Tree binary adder is a usual building block in the
implementation of the binary multiplier, and is an integral
element in the efficient implementation of high-speed binary
multipliers.

Proposed Spurious Power Suppression Technique (SPST)

The problem of power consumption can be overcome with the
use of different power consumption reduction techniques like
Boolean Techniques, Guarded Evaluation, Partially Guarded
Computation, Dynamic Range Determination and Glitching
Power Minimization in the multiplier circuit. These above
techniques has its won trade off like need of additional circuit,
low percentage of power consumption reduction. The SPST
[25] uses a logic circuit to detect the effective data range of
arithmetic units like adders or multipliers. When a portion of
data does not affect the final computing results, the data
controlling circuits of the SPST latch this portion to avoid
useless data transitions occurring inside the arithmetic units.

44004



International Journal of Applied Engineering Research ISSN 0973-4562 VVolume 10, Number 24 (2015) pp 44001-44006
© Research India Publications. http://www.ripublication.com

Besides, there is a data asserting control realized by using
registers to further filter out the useless spurious signals of
arithmetic unit every time when the latched portion is being
turned on. This asserting control brings evident power
reduction. Fig.8 shows the design of low power
adder/subtractor with SPST.

The adder /subtractor is divided into two parts, the
most significant part (MSP) and the least significant part
(LSP). The MSP of the original adder/subtractor is modified
to include detection logic circuits, data controlling circuits,
sign extension circuits, logics for calculating carry in and
carry out signals. The most important part of this study is the
design of the control signal asserting circuits, denoted as
asserting circuits in Fig.8. Although this asserting circuit
brings evident power reduction, it may induce additional
delay.

There are two implementing approaches for the
control signal assertion circuits. The first implementing
approach of control signal assertion circuit is using registers
and the second using gates. Here the second method is used.
The three output signals of the detection logic are close,
Carr_ctrl, sign. The three output signals in the detection logic
unit are given a certain amount of delay before they assert.
This will filter out the glitch signals as well as keep the
computation results correct.

Implementation and Discussion

For implementation Xilinx ISE Design Suite 13.1with VHDL
programming was used. Simulation process was done using
ISIM tool.
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Fig.8. Low Power Adder/Subtractor Adopting SPST

Table 2. Comparison of floating point multiplier using and
not using SPST technique

Number of Slice|Delay |Power PDP
FFs (ns) (mW) (pJ)
Without 555 14.50 |45.83 664.5
SPST
With SPST [625 14.40 |44.59 642. 1
700+ —
600 i
500-
400-
300+
200+
100+ B no of slices
0 T 7 7|l delay
without with B power
SPST  SPST = PDP

Comparison of configurable floating point multiplier using
and not using SPST technique is shown in Table 2. The results
show that the floating point multiplier with power suppression
technique shows improved results than compared to floating
point multiplier without using suppression technique with
respect to power and delay with acceptable increase in area.

Conclusion

This paper presents a flexible multimode floating-point
multiplier for FPGAs. Each floating point multiplier can
perform double-precision operation or single-precision
operation. Results show that the FPGA with embedded
multimode FPUs incorporated with power reduction technique
provide considerable performance with respect to power and
delay with the benefits seen in single-precision, double-
precision, fixed-point, and integer applications.
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