
International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 24 (2015) pp 43975-43982

© Research India Publications. http://www.ripublication.com

43975

Dimensionality Reduction for Text Preprocessing in Text Mining Using

NLTK

Rashmi S
1

Department of Computer Science and Applications, Jnanabharathi Campus, Bangalore University, Bangalore-560056, India

rashmi.karthik123@bub.ernet.in

Hanumanthappa M
2

Department of Computer Science and Applications, Jnanabharathi Campus Bangalore University, Bangalore-560056, India
hanu6572@bub.ernet.in

Jyothi N M
3

Department of MCA, Bapuji Institute of Engineering and Technology, Davangere-577004, India

Jyothi_nm@yahoo.com

Abstract

Today we are enjoying the fruits of digital era. The

technology now blossoms with the speed of lightening
causing turbulence for creating many smart devices. The

impact of such a revolution has led to a huge source of

information. Perceiving a meticulous piece of data by data

querying imposes an enormous amount of time and therefore

accuracy becomes a challenge. The result of an information

retrieval system for the user query is comparative to the index

of data storage. In this paper, the techniques of Natural

Language Processing such as Tokenization, Stop Word

Removal and Stemming is revisited by combining with

various methodologies of Data Mining namely Clustering and

Classification in order to achieve increased efficiency,

accuracy and decreased time quotient. The result obtained
with such an approach is analyzed through a comparative

study based on the parameters namely domain of token,

feature of tokens, number of tokens generated and time taken

for this preprocessing.

Keywords: Clustering, Classification, Information Retrieval,

Stemming, Stop-Words, Tokenization.

INTRODUCTION

Digitization, a new globe where we are living is over-flown
with inexhaustible information. The data is stored for over

many years compensating to its size to grow in large bytes.

Looking for required information has become a challenge and

is a time-consuming task. In order to solve this problem there

are many techniques available. Text mining is one among

these techniques that contributes for efficient Information

Retrieval (IR). Text mining/knowledge discovery is a process

of capturing the interesting data patterns from unstructured

documents often required in a web search. The obtained

information is tagged for logical finding or general hypotheses

about the necessary resource. IR is a science of information

searching process for large documents, databases and WWW.
IR is divided into sequence of steps as illustrated in figure 1.

Here, the user using some form of search engine issues a

query say q; q is taken for textual operations to detect if the

users‟ query is in compliance with the structure defined in the
IR system and as a result of this a redefined query q‟ is

obtained; q‟ is further analyzed for query optimization where

the source of users‟ request is defined in its logical view and

then indexed for subsequent retrieval.

Fig.1. Process Flow of Information Retrieval

Traditional approach of IR creates lot of chaos and awry to

provide good results hence for better retrieval IR is combined

with various approaches of text mining such as Tokenization,

Stop-Words Removal (SWR), Stemming, POS identification

and outlier‟s removal as depicted in figure 2. Illustrations

portrayed in figure 2 shows the implications of text

preprocessing for an efficient IR system. The principle behind

an IR system is to reduce the complexities of the document

searching process. However, if the size of the document is

huge the retrieval process takes lot longer than expected time.

Therefore in order to reduce these discrepancies the use of
various text processing modules and effective algorithms are

essential. The document when exposed to these modules will

be transformed into much simpler version of data that greatly

aids for smooth retrieval operations.

mailto:rashmi.karthik123@bub.ernet.in
mailto:hanu6572@bub.ernet.in
mailto:Jyothi_nm@yahoo.com

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 24 (2015) pp 43975-43982

© Research India Publications. http://www.ripublication.com

43976

Figure 3, shows the flowchart of the pre-processing stages in a

text mining environment. These preprocessing stages yields

the data query in a much more refined form that facilitates for

the fast information retrieval in an IR system. In this research

paper, the scope of tokenization, SWR and stemming is

evaluated by implementing the proposed algorithm on NLTK
interface.

 Tokenization: Process of dividing the documents into

token which are the basic building block of a

language

 Stop word removal: Process of removing the stop

words from the documents. Stop words are the high

frequency words in a document that do not play any

key role in textual analysis. For example, “the, are,

would” are some of the stop words in English

language.

 Stemming: Process of tagging the sub-ordinate words
to its base forms. Example for stemming process

“Loving, Lover, Lovely, Lovable” are the sub-

ordinate forms of the base form “Love”.

 Parsing / POS detection: Process of breaking down

the document into various forms of parsers such as

noun phrases, verb phrases and so on In the

upcoming section detailed implementation of IR

system is explained. To implement IR system, NLTK

(Natural Language tool kit)

Fig.2. Architecture of the Proposed System

Fig.3. Flow Chart of Text Pre-processing

1.1 Tools used
Natural Language Tool Kit (NLTK) is one of the leading data

mining platforms to implement the techniques of text mining

and to exert with natural language data. It has over 52 corpora

inbuilt for various types of lexical analysis. Using these

corpora major types of text processing procedures such as
tokenization, tagging, text classification, stemming can be

implemented. NLTK is built on python programs that assist

diverse range subjects under computational linguistics. It also

provides numerous library functions for working with natural

languages and to study the structure of lexicons. This tool is

freely available online alongside with good API

documentation that guide on the usage [1] and is compatible

with multiple operating systems such as Windows, MAC and

Linux.

LITERATURE SURVEY AND BACKGROUND
Exploration in text mining dates back to few decades from

now. Over the years improvisation in terms of accuracy and

efficiency in this process is gradually happening. Syntactic

structure of a language concentrates on natural language

processing at different levels such as text mining, web mining,

opinion mining and few others under text classification. In

2010, a model based in k-means algorithm was proposed by

Bouras [2]. This included generation of hypernyms through

WordNet and constructing “bag-of-words” leading to

generation of label. A method to find the frequent item sets

were studied using Apriori algorithm [3]. A supervised
classification approach was studied and analyzed to reduce the

computational time and to increase the accuracy on a

preprocessed data [4]. Vikram Singh and Balwinder Singh [5]

have proposed a tokenization algorithm relied on the training

data and the results were tested across the scoring of IR

probabilistic measures. Author Tanu Verma et al [6] has

explored the concepts of text mining by using RapidMiner and

has performed the tokenization process by using the length as

criteria to filter the tokens.

METHODOLOGIES AND IMPLEMENTATION
As explained in previous section the textual preprocessing is

series of operations performed on the document that helps for

easy retrieval of information. In this section, various

techniques and methodologies adopted to achieve syntactic

structure of a natural language is described. A step by step

procedure to achieve the above said mechanism is interpreted

by providing the implementation details as well.

3.1 Tokenization

Tokenization is an intrinsic segment in IR [7] which involves

breaking down the documents into individual tokens. A
habitual approach for tokenization is implanted using the

spaces as a filter to break the document into group of tokens.

The outlook of this method is called word tokenization.

Tokenization can be performed at sentence level also in which

case the document will be divided into set of sentences.

However though this task looks simple it contains few

challenges 1) Sentence tokenization can be achieved by

keeping “.” as a filter however for many abbreviations the use

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 24 (2015) pp 43975-43982

© Research India Publications. http://www.ripublication.com

43977

of “.” is evident. For example, observe the following sentence.

“Mr. Roy lived in New York. He worked in Royal Inc. and

earned lot of income for his living.” In this sentence definitely

“.” near Mr. and Inc. is not the right place to break the

sentence. However if “.” is used as filter criteria for sentence

tokenization the output would appear as follows: [“Mr”],
[“Roy lived in New York”], [“He worked in Royal Inc”],

[“and earned lot of income for his living”]. 2) Observe the

following sentence “Mr. Richard O‟ Colonel and Mrs. Renee

O‟ Colonel aren‟t taking part in tomorrow‟s occasion”. For O‟

Colonel which is the correct form of tokenization? [Colonel],

[OColonel], [O‟Colonel], [O, Colonel]? And for aren‟t, is it

[arent], [are, n, t], [aren, t] or [are, n‟t]? 3) Problem with

hyphenation. The use of hyphens in English is quite confusing

and tricky. In few cases hyphens are used while separating the

vowels (e.g. Co-operation) and in other places it is used to

connect names (e.g. C-DAC). 4) When performing word

tokenization, sometimes white spaces cannot be used as filter
to build the token. For e.g. the city names such as Hong Kong,

New York, Rio de Janeiro and so on exhibits this problem.

In order to overcome these challenges some form of heuristic

rules has to be applied. Breaking down the tokens at wrong

places in a document is really bad and is totally inappropriate.

For instance, if a search is made for “York University” and

the IR retrieves “New York University” then it sounds

meaningless and incoherent. Therefore it is very difficult to be

guaranteed as to which one is a consistent way of achieving

tokenization.

In our implementation, a rule based classifier is used to
perform tokenization. WordNet, a lexical database and a

thesaurus is made use to attain tokenization. Table 1 illustrates

the proposed algorithm to obtain set of tokens (word &

sentences) in a document. Figure 4 shows the diagrammatic

view of this procedure for one instance. Consider the example,

“Mr. Richard O‟ Colonel and Mrs. Renee O‟ Colonel aren‟t

going to take part in tomorrow‟s occasion that will be held at

San Francisco. Mr. Robert is the chief co-ordinator for this

event”. By applying the proposed RBC algorithm we get the

clusters as shown in figure 4.

Table 1 Proposed Algorithm (Rule Based Classifier RBC)

Rule Based classifier for Word/Sentence
Tokenization:
Input: Document
Output: Tokens
Step 1: Perform k-means cluster [Section 3.1.1]
Step 2: Words that appear in 1-cluster form the
first set of tokens, words in 2-cluster is another set
of tokens.
Filters used for the formation of tokens:

 ‘.’, white space for word tokenization

 .: are used for sentence delimiter

Step 3: Repeat step 2 until the words in all the
clusters are grouped as tokens

Fig.4. Document Clustering using k-means for Word

Tokenization

When the clusters of words are formed, the tagging of
WordNet and the contents of these clusters are made. This is

truly helpful for the cluster 3 as this contains the names of the

places. If the word in found in the WordNet dictionary then

the exact match of the word is retrieved from the dictionary. If

otherwise, the normal procedure of tokenization is performed.

The paradigm of above methodologies is implemented by

using one of the efficient computational linguistics tool NLTK

which makes use of python programs. This is shown in figure

5 & figure 6. The word tokenization and sentence tokenization

is performed for the given string. As observed the correct

form of tokenization is exhibited at all the scenarios.

Fig.5. Word tokenization achieved using NLTK tool

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 24 (2015) pp 43975-43982

© Research India Publications. http://www.ripublication.com

43978

Fig.6. Sentence tokenization achieved using NLTK tool

3. 1. 1 K-means clustering

Clustering is defined as the process of grouping the test data

into number of clusters. For instance, in a supermarket, the

items are clustered into various categories (apparels, jeans,

pants, trousers, t-shirts, formal wear and so on are clusters in

clothing sector. Further, this can be once again split into two
clusters as men‟s and women‟s clothing). In general, we have

„m‟ data points that need to be partitioned in k-clusters as Mk

such that k=1, 2, 3,.n. K-means aims at calculating a Centroid

point that minimizes distance of each of the data points to the

related cluster.

2

1 1

arg min (,) arg min || || 1
i i

k k

S i s i

j S j S

d

Equation 1 shows the point variance using K-means

clustering. Here, “S” is the set of points that belong to any

individual cluster say “j”. The value of “j” ranges from 1 to k
as k is the number of cluster formed for a given document.

represents the positions across the series of data points in

the cluster. Table 2 describes k-means algorithms for data

cluster.

Table 2 K-Means Algorithm for Cluster Points

k-means algorithm

Step 1: Initialize the clusters to a seed value (j) that ranges

from 1 to k

Step 2: Mark the closest data point to cluster I to belong to “i”

cluster
Step 3: Choose the minimum distance between these clusters

as shown in equation 1.

Step 4: calculate the Centroid [Euclidean Distance] for each

cluster until the clusters are convergent

3.2 Stop word Removal

In text mining, the accuracy of mined data is of utmost

crucial. In a context there are many words which do not play

any key role in textual search. The words which do not have

any significance in a key search are termed as „stop words‟.

These words can also be called as „noise‟. Hence removal of

noise is very important for any text mining procedure as noise

takes up lot of CPU time, search time and memory. Some of

the advantages of stop words removal are listed below

 Reduces the textual data in text mining search

 Improves performance by increasing the accuracy

and thereby decreasing the time complexity

 The storage space is reduced to minimal

 The overall response time and the throughput is

increased as the search for the context takes place in

few thousands of documents when compared to

millions of documents where the unnecessary words

are more likely to be present

In this section we discuss how to eliminate the stop words

from a given context using NLTK interface. The procedure is

tabulated in the below table 3

Table 3 Proposed Algorithm (Stop word Removal SWR)

Step 1: A list of stop words in English language is prepared

before hand

Step 2: The given document is split into token of words

Step 3: Scan each token of the document for a match of a

word in list prepared

Step 4: When there is a match between the token scanned and

the word in stop words list use string.remove to eliminate the

“matched string”

Step 5: Repeat step 4 until EOF is reached

As shown in table 3, the procedure for trimming the stop
words is straightforward and comprehensible. The above

procedure is compiled using NLTK. When a string of words is

passed as an input to this system, it first divides the string into

tokens and each token is then compared with the stop words

list [figure 6]. When an appropriate match is found the token

is removed from the given context. The output is shown in

figure 7 with appropriate indication of steps.

Fig.7. List of stop words saved as a corpus in NLTK

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 24 (2015) pp 43975-43982

© Research India Publications. http://www.ripublication.com

43979

Fig.8. Output showing the input context (black line), Split

into tokens (Red line) & Stop Word Removal (SWR)

(Green line)

3.3 Stemming/Lemmatization

Stemming is a process of mapping a word to its base form. It

is one way of forming tokens to its associated stem. For e.g.

„create‟, „creating‟, „creator‟, „created‟ and „creates‟ all are

mapped to the base form „create‟. Stemming plays a vital role

in indexing for a searching process which can also affect the

performance of search as well. A user‟s search query for the

term related to „love‟ should retrieve all the documents

containing any word with its base form „create‟. This
increases the recall ratio and accuracy of the IR system is also

improved.

3.3.1 Proposed methodology and an Example

Stemmer algorithm aims to remove suffixes from a given

word. This enables a faster retrieval of information in an IR

system. Further the size of the input data query is greatly

reduced and the complexity of the search is minimized. In this

section we discuss an efficient stemming procedure that is

found to remove the suffixes with better results. The

algorithm shows the extension of Porter Stemmer algorithm
inclusive of enhanced rules. Before studying the procedure of

the stemming algorithm there are some considerations to be

reserved. These measures are listed below

 Consider two words Wi and Wj which are

deliberated to produce a single stemmed word W.

 The above step can be achieved if there are no

differences between the 2 words Wi and Wj in two

sentences say S1 and S2. For instance, W1= „love‟

and W2= „lovely‟. In this example W1 and W2 can

be conflated to „love‟ without any discrepancies.

However if W1= „objects‟ and W2= „objection‟ are

enumerated in two sentences then suffix stemming
serves no good purpose here as the meaning of the

words are diverse and if they are to be stemmed to

„object‟ then it gives inappropriate meaning for the

context where W2 is present.

3.3.2 Algorithmic Procedure:

Vowels: A, E, I, O, U are called vowels

Consonants: All characters apart from vowels are called

consonants

Notations used:

c: Single Consonant

C: Group of Consonants {ccc,…..}

v: Single Vowel
V: Group of Vowels {vvv,…..}

W: Word  Group of vowels and consonants

S: Sentence  Collection of one or more words.

Since word is a combination of vowels and consonants each

word can take any form as indicated below in equation I.

CV …….. C

CV …….. V

VC …….. C

VC …….. V I

The generalization of I can be represented as,

[C] VC…….. [V] II

The square brackets in equation II indicates that an arbitrary

sequence of either consonants [C] or vowels [V] can be

encountered. The suffix removal can be denoted using the

following rules:

The suffix removal takes the form, (Condition) W1  W2

This shows that if the condition is met for a word „W1‟ then it

can be replaced with „W2‟. Let us consider the length of a

word is „n‟. Table 4 (Glossary-1) describes the rules and the
example.

Table 4-Proposed Algorithm (Stemmer) and the examples

Rule Condition Examples

Rule 1 [(n-1)>1] ment  Management  Manage

Development  Develop

Rule 2 [(n-1)>1] s  Loves  Love

Cares  Care

Rule 3 [(n-1)>1] ed  Engaged  Engage

Discussed Discuss

Rule 4 [(n-1)>1] ies  y Accessories Accessory

Accuracies  Accuracy

Rule 5 [(n-1)>1] ss  ss Discuss  Discuss

Access  Access

Rule 6 [(n-1)>1] pping 

p

Hopping  Hop

Chopping  Chop

Rule 7 [(n-1)>1] ize  Civilize  Civil

Hybridize  Hybrid

Rule 8 [(n-1)>1] ed  e Created  Create
Agreed  Agree

Rule 9 [(n-1)>1] ing  Talking  Talk

Monitoring  Monitor

Rule

10
[(n-1)>1] ization

 ize

Rationalization  Rationalize

Civilization  Civilize

Rule

11
[(n-1)>1] ational

 ate

Relational  Relate

Educational  Educate

Rule

12
[(n-1)>1] tional 

tion

Additional  Addition

Conventional  Convention

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 24 (2015) pp 43975-43982

© Research India Publications. http://www.ripublication.com

43980

Rule

13
[(n-1)>1] izer 

ize

Civilizer  Civilize

Hybridizer  Hybridize

Rule

14
[(n-1)>1] tive  t Abstractive  Abstract

Attractive  Attract

Rule

15
[(n-1)>1] ator 

ate

Creator  Create

Accelerator  Accelerate

Rule

16
[(n-1)>1] fulness

 ful

Awfulness  Awful

Beautifulness  Beautiful

Rule

17
[(n-1)>1] iveness

 ive

Effectiveness  Effective

Abortiveness  Abortive

Rule

18
[(n-1)>1] lize  l Generalize  General

Animalize  Animal

Rule
19

[(n-1)>1] ivity 
ive

Creativity  Creative
Sensitivity  Sensitive

Rule

20
[(n-1)>1] alism 

al

Socialism  Social

Fatalism  Fatal

Rule

21
[(n-1)>1] zable 

ze

Fertilizable  Fertilize

Recognizable  Recognize

Rule

22
[(n-1)>1] ation 

ate

Creation  Create

Abbreviation  Abbreviate

Rule

23
[(n-1)>1] sness 

s

Biasness  Bias

Consciousness  Conscious

Rule

24
[(n-1)>1] lessness



Agelessness  Age

Shamelessness  Shame

Rule

25
[(n)>=1] able  e Achievable  Achieve

Able  e [not satisfied as able =

(!(n>=1))]

Rule

26
[(n-1)>1] ly  Lovely  Love

Safely  Safe

Rule

27
[(n-1)>1] ily  y Happily  Happy

Angrily  Angry

Rule

28
[(n-1)>1] ness  Effectiveness  Effective

Kindness  Kind

Rule
29

[(n-1)>1] ful  Helpful  Help
Mindful  Mind

Rule

30
[(n-1)>1] ical  ic Magical  Magic

Ethical  Ethic

Rule

31
[(n-1)>1] iness 

y

Happiness  Happy

Angriness  Angry

Rule

32
[(n-1)>1] able  Achievable  Achiev

Approachable  Approach

Rule

33
[(n-1)>1] al  Accidental  Accident

Botanical  Botanic

Rule

34
[(n-1)>1] ive  Creative  Creat

Abortive  Abort

Rule

35

[(n-1)>1] ier  y Happier  Happy

Easier  Easy

Rule

36

[(n-1)>1] iest y Easiest Easy

Happiest  Happy

Rule

37

[(n-1)>1] zing ze Amazing Amaze

The rules proposed in table 4 (Glossary-1) are user detersive.
The search is more composed with the application of these

rules. The results obtained with the proposed rules are more

polished. However there are many complex words with

complex stem. The cut off mechanism is quite not

straightforward at all the times. The procedure has to be

manifested depending upon the entanglement of the word

given as an input or the words present in the document.

Furthermore the procedure of suffix stripping is sequential

and has to be performed in stages rather than enforcing brute

force appeal. To illustrate, observe the word

“CHANNELIZATIONS” which takes the following forms:
Step 1: Apply Rule 2 Result: CHANNELIZATION

Step 2: Apply Rule 10 Result: CHANNELIZE

Step 3: Apply Rule 18 Result: CHANNEL

The result of the proposed procedure is shown in figure 9

using NLTK.

Fig.9. Output of Stemmer algorithm using NLTK

Experimental Results

Analysis test is conducted to study the accuracy of all the

proposed algorithms and procedure in various stages in

tokenization, SWR and stemming process. To begin with,

initially tokenization was carried out as shown in section 3.1.

This analogy segregates the given context into individual

words in the form of tokens. The results obtained in this

evaluation prove that the suggested algorithm can be adopted

efficiently for multiple variants of documents with varying

size and complexity. Table 5 shows the evaluation outcome.

The universal accuracy was calculated from the obtained
results and was perceived to be 94% accurate. This manifold

implies that espousal of the proposed algorithm is efficient

when collated with existing approaches.

In the second step the SWR technique is evaluated. The

procedure of SWR is tested for the complexity ratio. The

number of tokens is counted in two phases 1) Before applying

SWR and 2) After applying SWR. Once the output is obtained

the number of words reduced is calculated and the percentage

of this reduction is calculated. The test is performed for 3

different instances. The result of this evaluation is indicated in

the table 6. As observed from the table SWR procedure
reduces the size of context almost by half. The overall

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 24 (2015) pp 43975-43982

© Research India Publications. http://www.ripublication.com

43981

percentage of size reduction of the context is found to be 49%.

This is very useful in a key search in text mining. The list of

stop words can be scaled up by adding few more words that

are not necessarily required for the document search. It is also

studied that with the increase in this list the search is refined

more with faster and better results.

Table 5 Evaluation result of the proposed RBC procedure

 No. of

words in

the input

context

No. of

words

correctly

tokenized

No. of words

not tokenized/

tokenized

incorrectly

% of

correctness

& accuracy

Document

1

94 89 5 95%

Document

2

256 245 11 96%

Document

3

1068 972 96 91%

Table 6 Evaluation result of the proposed SWR procedure

 No. of

tokens

before

SWR

No. of
tokens

after SWR

Number of
words

reduced

% of size
reduction of the

document

Document

1

94 54 40 42%

Document

2

256 198 148 57%

Document

3

1068 589 459 44%

In the last and final stage the performance of stemming

algorithm is examined. A corpus of 5000 words was taken to

study the performance of the algorithm. The corpus was
divided into number of tokens which resulted in 5000 tokens.

Proposed stemmer algorithm procedure was followed to

accomplish suffix stripping. This analysis is shown in the

below table 7. From the table 7, total words that are correctly

stemmed are 4454 out of 5000 words. Therefore the overall

accuracy achieved by the proposed stemmer procedure is

89%. The result obtained in this appraisal was very much

encouraging and it indicates that the data query given to an IR

system must be varnished with heterogeneous phases of text

pre-processing. When the query undergoes these processing

the IR system provides better search results that are apt for the

user. Table 8 shows the evaluation test conducted for a
profuse range of corpora available in NLTK. NLTK has many

inbuilt corpus. A pilot study was coordinated on five of the

selected corpora from NLTK.

Therefore from table 8 it is clear that when the text pre-

processing phases such as tokenization, stop word removal

and stemming is applied the overall document reduction will

of 80% less. From these results it is evident that the proposed

methodologies can be utilized to improvise the search and to

procure more accurate content. It must also be noted that the

results attained in this work is independent of the domain and

feature space. The number of tokens abundantly affects the

overall performance. The nature of tokens, its features affects

the stemmer variations of the proposed procedures. The

effectiveness of these procedures depends on the utilization of

some of the efficient data mining approaches such as

classification and clustering. The data samples were studied

and the study reveals that there is high reduction rate in terms
of size and tokens. This also indicates the time complexity

reduction.

Table 7 Evaluation result of the proposed Stemmer

procedure

 No. of words

Stemmed in step 1 2987

Stemmed in step 2 1028

Stemmed in step 3 390

Stemmed in step 4 49

Words not stemmed 128

Words stemmed wrongly 418

Table 8 Overall Evaluation Result of the proposed

procedures [Tokenization, SWR, and Stemmer]

 No. of

tokens

Total

No. of
tokens

after

SWR

% of

document
reduction

after SWR

Total No.

of tokens
after

Stemmer

algorithm

% of

document
reduction

after

Stemmer

algorithm

Crubadan 5288 1655 68% 298 81%

Australian

Broadcasting

Commission

2006

8735 2858 67% 572 79%

ComTrans 11904 4518 62% 914 80%

Brown 16608 4600 72% 796 82%

INSPEC 27468 9672 64% 1853 81%

Conclusion

In this research paper the artifacts of the text pre-processing in

text mining is studied. The phases discussed in this work show
the techniques to remove the „noise‟ which is a major criterion

in efficient IR systems. In order to improve the overall

performance of an IR interface it is very important to

eliminate these „noises‟. We have identified these „noises‟ in

text mining and classified them in two stages as Stop Word

Removal (SWR) and Stemming. To go through in these

categories, the data query has to be tokenized based on either

words or sentences. To enhance the results data mining

techniques are used. K-means algorithm makes tokenization

easier and simpler. The final result of this investigation amidst

the challenges and shortcomings is encouraging when
compared to the existing ones.

Future Enhancements

The extension of this work can be done to evaluate various

features of text mining such as POS tagging for a syntactic

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 24 (2015) pp 43975-43982

© Research India Publications. http://www.ripublication.com

43982

language structure, semantic indexing for the knowledge

representation and opinion mining for a sentiment analysis.

References:

[1] Bird, Steven, Edward Loper and Ewan Klein (2009),

Natural Language Processing with Python. O‟Reilly

Media Inc.

[2] Bouras, C. & Tsogkas, V. 2010. "W-kmeans:

Clustering News Articles Using WordNet".

[3] Maheshwari, P. & Agrawal, J. 2010. "Centroid

Based Text Clustering". Retrieved October 3, 2013

[4] Qiujun, L. 2010. "Extraction of News Content for

Text Mining Based on Edit Distance”

[5] Vikram Singh and Balwinder Saini “Probabilistic

Ranking of Documents using Vectors in Information

Retrieval” Balwinder Saini,Vikram Singh
Proceedings of the International Conference on

Computational Intelligence in Data Mining, 20-21,

Volume 33, 2015, pp 613-624 Springer

[6] Tanu Verma et al “Tokenization and Filtering

Process in RapidMiner” International Journal of

Applied Information Systems (IJAIS)-ISSN: 2249-

0868 Foundation of Computer Science FCS, New

York, USA Volume 7-No. 2, April 2014

[7] S. Ceri et al., Web Information Retrieval,

“Informational Retrieval Process” Data-Centric

Systems and Applications, DOI 10.1007/978-3-642-
39314-3_2, © Springer-Verlag Berlin Heidelberg

2013

