
International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 23 (2015) pp 43442-43445 

© Research India Publications.  http://www.ripublication.com 

43442 

Application of arc-length method to calculate deflected state of the 

compressed strut with random initial imperfection 
 

 

Mondrus Vladimir Lvovich 

 

Institute of Construction and Architecture, National Research University “Moscow State University of Civil Engineering”, 

26 Yaroslavskoye shosse, Moscow, Russian Federation, 129337 mondrus@mail.ru 

 

Smirnov Vladimir Aleksandrovich 
 

Institute of Construction and Architecture, National Research University “Moscow State University of Civil Engineering”, 

26 Yaroslavskoye shosse, Moscow, Russian Federation, 129337 belohvost@list.ru 

 

 

Abstract. 

This article examines the question of post-critical deformation 

of the compressed strut of variable cross-section, with random 

initial imperfections. These struts are widely used in various 

industries, as well as in elements of quasi-zero stiffness 

vibration isolation systems. Given the high complexity of 

accounting for accurate profile of initial imperfections the 

detailed analysis of its impact on stress-strain state of the strut 

is required. 
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In many industries struts with constant or variable cross 

section along the length of the member are used as a support 

member, perceiving axial load [1, 2, 3, 6, 7]. From structural 

mechanics theory [3-5] it is known that the presence of initial 

curvature of the central compressed strut leads to higher 

stresses in the critical section, compared with a perfectly 

straight strut. Moreover, in many engineering structures, 

including quasi-zero stiffness vibration isolators [6, 7] 

variable cross-section struts, compressed above the critical 

force, are used. Since any strut has the initial imperfection, the 

calculation method, especially for over-loaded or critical 

elements, should account for this factor. However, in practice, 

the initial curvature of the strut is considered to be in the form 

of a harmonic function. Hence it is of great interest the 

description of the process of geometrically nonlinear 

deformation of compressed struts with initial curvature, 

specified as a random function. 

We will consider the central compressed strut of length L 

under the action of compressive axial force P, the value of 

which may exceed the critical Euler force. The calculation 

scheme is presented in Fig. 1. 

 

 
 

Fig. 1. Design diagram. 

We assume that the initial curvature of the strut w0(x) has the 

standard normal distribution. The initial system of differential 

equations describing large displacement of the strut of 

variable cross section has the form: 
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θ0-the initial curvature of the beam. 

To account for variable cross-section in the calculation, the 

following relation is used: 

1( ) ( )EI s EI f s
  (2) 

In Eq. (2) considered: EI1-rigidity of one of the sections of the 

beam, f(s) is a dimensionless function that sets the change of 

the stiffness of the strut along its length. 

Boundary conditions for the case of a rigidly clamped strut are 

given by: 
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This boundary value problem is solved by the shooting 

method via reducing its to initial value problem. Due to the 

fact that there are 6 unknowns in in Eq. (1), and from 

boundary conditions (3) we know only 3 of them, the 

remaining 3 unknowns are determined using the shooting 

procedure. The minimization of the residual in this case is 

achieved by the method of arc-length continuation [8-10], 

where for the leading argument we use the arc length of the 

curve of equilibrium states. Method for solution of this 

problem was developed in [11]. The initial curvature of the 

rod was set by a random number generator and multiplied by 

the scale-factor A, which was assumed to be 10
-10

 and 10
-9

. 

There were performed ten trials for each type of the strut. 

Calculations were performed for the strut with a linearly 

varying cross-section, schematically represented in Fig. 2. 
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Fig. 2. Cross-section of the strut 

 

 

In accordance with Fig. 2 the calculations were made for n = 

0, 8; 1, 0 and 1, 5. According to the results of the calculations 

elastic characteristics of the strut in the axis "axial load — 

axial displacement" was plotted. Fig. 3-5 shows the 

calculation results for struts with n = 0, 8; 1, 0 and 1, 5 

respectively. The characters in Fig. 3-5 represent deformation 

curves corresponding to different shapes of the initial 

curvature of the strut. 

 

 
а) А = 10

-10
 

 
б) А = 10

-9 

 

Fig. 3. Elastic curve for strut with n = 0, 8. 

 

 
а) А = 10

-10
 

 
б) А = 10

-9
 

 

Fig. 4. Elastic curve for strut with n = 1, 0. 

 

 
а) А = 10

-10
 

 
б) А = 10

-9
 

 
Fig. 5. Elastic curve for strut with n = 1, 5. 
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Analysis of the results shows that a small initial curvature of 

the strut, corresponding to the multiplier A = 10-10 practically 

does not affect the strain state of a strut of any of the 

considered cross sections. The difference between the curves 

in Fig. 3 disappears from Δx = 10
-5

. The initial curvature of 

the rod, corresponding to the multiplier A = 10
-9

 affects the 

deformed state of the rod up to Δx = 10
-3

. It should be 

mentioned, that when a compressive force exceeds a critical 

value the difference between the curves corresponding to 

different initial curvatures becomes almost not 

distinguishable. 

It should also be noted that with the increase of the width of 

the cross section (increasing the value of n) there is an 

increase in scatter of the values of displacement at a fixed 

value of the load. It is testimony to the fact that with the 

increase of the parameter n the stiffness of the strut also 

increases, and thus the sensitivity to any imperfections. 

To determine the optimal values of the scaling coefficient we 

have conducted experimental studies of post-critical 

deformation of struts with different cross-sections. Fig. 6 

presents the experimental setup with the sample for testing. 

 

 
 

Fig. 6. Experimental set-up 

 

 

The test sample was clamped in the grippers of the press and 

controlled by its axial displacement when the load increases, 

as well as lateral movement in the mid and quarter span. Fig. 

7 presents the comparison between the average values of the 

calculation results corresponding to different scaling factors, 

with the averaged experimental data of the axial load of steel 

struts of constant cross section on the press. 

 

 
 

Fig. 7. Comparison of numerical and experimental data. 

 

 

Analysis of the results of Fig. 7 show that the best correlation 

with experimental data have averaged curves for the initial 

curvature with multiplier A = 10
-9

. The observed spread of 

values is associated with a small number of trials of the strut, 

when increasing the number of trials up to 100, it is greatly 

reduced. For any value of the scaling coefficient of the elastic 

curves of the compressed strut coincide when P > Pcrit where 

Pcrit-critical Euler force. This is because when exceeding the 

critical Euler force encountered displacements becomes large 

(comparable to the cross-sectional dimensions) [3]. 

Thus, we can conclude that for large displacements of post-

critically compressed struts initial imperfections will have no 

effect on theirs stress-strain state. However, this is not true for 

small displacements. From the results of the comparison with 

experimental data it is found that the best convergence have 

averaged elastic curves for the initial curvature with multiplier 

A = 10
-9

 and a large number of tests. 
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