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Abstract

The paper presents derivation of equation for the
mathematical expectation of neutron flux distribution in a
nuclear reactor and describes the iterative algorithm for
solving the equation. The convergence criterion of the
iterative process is defined. Some results of numerical
evaluations are presented to illustrate main ideas of the paper.
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Introduction

Information about statistical characteristics of neutron flux
under random fluctuations of the reactor properties plays a
significant role for solving the problems related with control
of heat generation field and determination of the homogenized
constants [1-3]. Usually, the most attention is given to the
correlation function of neutron distribution. As to the
mathematical expectation, some researchers assume, as a rule,
that the mathematical expectation is very close to solution of
appropriate neutron transport equation on averaged constants
[4]. The paper demonstrates that, under certain conditions, this
assumption can be wrong. In contrast to Ref. 3, where
approximate equation for mean neutron flux was derived for
diffusion medium with the randomly fluctuating parameters,
the paper presents basic equation and iterative method for
solving the equation for the reactor model where material
parameter can be perturbed.

Method for determination of the mathematical expectation
of neutron flux distribution in a nuclear reactor Iterative
algorithm

If one-group diffusion

approximation with randomly

perturbed material parameter &y’ () is used to characterize
random distribution of neutron flux, then spatial profile of
random neutron flux submits to the following equation:

~
Ap(r) + € (1) + &(r) g(r) + Op(r) =0 @
¢|.=0;

where:

;(g (r) —local material parameter of the unperturbed reactor;

S(I’) — random perturbation of material parameter;

@ - parameter responsible for the reactor criticality
(homogeneous control).
Solution of equation (1) can be presented as a sum of the

mathematical expectation @ (I') and a random summand:

o(r) =@ (r) +5¢(r) @
We applied the following assumptions in respect to statistical
properties of random functions:

M) =0: M F)e(r) =k(r,r); @
M Pp=0:M b(r) =a(r) @)

where:
k(F, F')— the known correlation function of neutron noise,

~

M — operator of the mathematical expectation.
By using expression (2), equation (1) can take the form:

AD +ASp+0p +05p+ ylp

+ y0p+ep +e5p=0 5)
By applying operation of the mathematical expectation to
equation (5), the following equation can be obtained:

A+ i+ M ksp +M Psp =0.

By term-wise subtracting equation (6) from equation (5) with
neglecting the second-order terms, i. e. by assuming that

06¢p =0 and €6 =0, the following equation can be
derived for random deviations of neutron flux:

ASp+ yiop+(@+&)p -K, -K, =0. @)
where: M I‘§(p:= K, M P5(p:= K,
Equations (6), (7) constitute the set that can be iteratively

solved to determine the mathematical expectation and
deviations of neutron flux from the mathematical expectation:

AP+ yip+K, +K, =0,
ASp+ y 6p+(O@+¢e)p —K, —K, =0,

It is convenient to introduce differential operator L for
description of the iterative algorithm:

L=A+y2 )

where A is the Laplacian.
Then, the set (8) can be re-written as follows:

Lo =—(K, +K,)
ﬁé(pz(Kg +K,) - Q‘i‘&‘?p_

or

p=-L{K, +K,}
op= ﬁ’l{Kg +K, - (@+¢)p}

®)

(10)

(11)

43390



International Journal of Applied Engineering Research ISSN 0973-4562 VVolume 10, Number 23 (2015) pp 43390-43394
© Research India Publications. http://www.ripublication.com

A

where L™ - the inverse operator to L. It can be shown that

L operator exists as a single one.

The mathematical expectations of neutron flux at K-1 and K-
th steps of the iterative algorithm are related with each other.
This relationship can be derived by applying the following
mathematical operations.

Upon completion of K-1 steps it became known that

skt = Kg(k‘l) + Kék_l) and @ ™. By using the second

equation from the set (11), the following relationship can be
obtained:

Sp* =L — (e +0)p "} (12)

The correlation functions K: and K ; at K-th step can be
written in the following forms:

K: _ M [gé‘(ok] _ M[g[—l{s(k—l) _ (6 + e)a(k-n}] 13)

With accounting for linearity of Lt operator, expression (13)
can be re-written as follows:

K! =M1 {s" 3= M[el {(e + 0)p " )]
Since |\7| [8] =0, then

Ki=-M[L{(s +0)p“}] (14)
Similarly:

K = M[059*] =M s — (2 + 0)7 “H = M1 s 2}~ ML (e + 0)7 )]
T. €.

Kj =ML (s +0)p“ 3] (15)
By summing up expressions (15), (16), we can obtain:

s“ =K+ K} =-M[(e + )L {(s + O)p“}] (16)
According to the first equation from the set (11):

—k "1 k k

9" =-L{K; +K;}

or:

7% = [4M [t — (k-1)

¢ =L {Ml(e+0)L{(c+0)p" "}1} (17)
So, equation (18) links the mathematical expectations of
neutron flux obtained at K-1 and K-th steps of iterative
algorithm.

The iterative process of determining the mathematical
expectation of neutron flux can be organized, for example, by

such a way. The mathematical expectation (5 “is presented in
the form:

9 =Y By +¢ (18)
i=2

where {lﬂi} are the eigenfunctions of a boundary value
problem:

2
Ay, +yiw; =0
yls=0.
Then, the mathematical expectation ¢ *"can be written in
the form:

=g, + Z B}kil)\ljj (19)

=2
Let us consider the operation L™ {(¢ + )@ “}. By

definition of L™ operator, its action results in function y that
submits to the following equation:

Ay +7:y =(E+0)p" (20)
If solution of equation (20) is looked for in the

formy = z Ay, , then substitution of this expression into
1=2
equation (20) results in the following equation:

YA -1 =(E+0)p, +(+0)> By, (1)
1=2 j=2

The unknown coefficients A, can be determined by using the
following expression:

0

I(e +0)o,y,dr + Z B:-(_l .[(8 +0)y y,dr
Vv

A| Y j=2
2 2 2
(Ot = %) <wp >
Then, function y takes the form:

[(e+0)guydr+> B (e +0)y jydr
\Y j=2 vV

-2 (Xf _XI2)<WI2 >
As y(r) = LY () +0)p* P},  then
M[(e(r) + Q)L {(e(r) + )P "} can be

transformed as follows:

MI(e(r') +0)y(r)] (23)
With accounting for expression (22), expression (23) takes the
form:

(22)

Y

expression

N M[(e(r‘)+ﬂ)(.c(r)+())]q),1//‘dr+iB:‘ ML) +0)(e(r) + Oy g dr
M(e(r') +O)y(r)] = ). o
1=2

or

v
-2 <vi> ‘

. _“R(r,r')qy//‘dr+ZBT’1_“R(r, )y dr (24)
MI(e(r) + )L + 0)p Y=Y Y "

=2 (-2 <y >
where R(r,r') = M[(e(r") + 0)(e(r) +0)].
According to expression (17), the mathematical expectation

(/7k must satisfy the following equation:
AP* + 20" =MI((r) + OL{(s(n) +0)p "N (25)

As ¢F = ZBik\pi + @, , then:
i=2

. IR(I’, )y, dr + z B;(’l IR(r, )y y,dr
v

> Bik (12 - Ziz)‘//i = -
; ! ; (=2t <wi >

The expansion coefficients Bik can be determined with

application of the following formula:
L I RE W, (r).,/,(r')drdr'+ZB;"” R(E, ), (V) () (r)drdr (27)

= (7 = 200 = 28) <wi ><yi >

.. (26)

k2

B¥
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Then, the mathematical expectation of neutron flux at K-th
iteration is described by the following series:
[ REP WO O, (r')dmrwiar*ﬂ R (O O ) (28)

—k C vV vy
P =gt §
- (Zf’llz)(llz’llz) <y < '//\Z >

Vi

Results of numerical simulation

The formation of Axial profiles of neutron flux are presented
in Fig. 1. for the reactor with zero boundary conditions (bare
reactor) and for the reactor surrounded by “ideal” neutron
reflector. It can be seen that as far as the reactor height
increases, the difference between the mathematical
expectation of neutron flux in the perturbed reactor and the
mathematical expectation of neutron flux in the reactor with
“averaged” properties becomes larger too. Axial profiles of
neutron flux are presented in Fig. 2. for various perturbation
levels of the reactor properties.

It became evident that the mathematical expectations of
neutron flux in the reactor with random fluctuations of its
properties did not coincide at all with axial profile of neutron
flux in the reactor with “averaged” properties, and the larger
reactor size resulted in the larger differences. It should be
noted here that these differences depended on quality of the
neutron reflector, namely the difference effect in the reactor
surrounded by “ideal” neutron reflector is stronger that that in
the bare reactor.
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Fig. 1. Mathematical expectations of neutron flux in one-
dimensional plane reactor (a — bare reactor; b — reactor
with ”ideal” neutron reflector). The perturbation level =

1%. The correlation function K(r,r') =D_o(r —r").
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Fig. 2. Mathematical expectations of neutron flux in one-
dimensional plane reactor without neutron reflector for
various perturbation levels. The correlation function

K(r,r')=D,o(r—r") H/M =-35.

The following typical features of axial neutron distributions
should be marked out:

. Spatial symmetry of axial profiles.

. Depression of neutron flux in a central zone.

Probably, the second feature confirms once more the well-
known axial warping effect in the reactor halves for the
physically large cores. The stronger correlation link between
perturbations of the reactor properties and the larger
perturbation levels resulted in the higher differences between
the mathematical expectations of neutron flux and axial
profiles of neutron flux in the reactor with “averaged”
properties.

Convergence of the iterative algorithm
The following set of differential equations can be written for

the true mathematical expectation of neutron flux ¢ and the

mathematical expectation of neutron flux @ 'at i-th iteration:
Ly =—(K, +K,)
Lop=K, +K, - (¢ +0)p
Lp' =—~(K,' +K,)
Lép' =K, + K, ~ (s +0)p"™

where 0@, K., K, - the true deviations from the
mathematical expectation of neutron flux and the true

(29)

(30)

correlation functions while é'goi,K;, K; — the deviations

from the mathematical expectation of neutron flux and the
correlation functions at i-th iteration.
By subtracting the first equation of the set (29) from the first
equation of the set (30), we obtained:

Ldp' =dK! +dK} (31)
where:
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dK! =K! - K, =-M[ed5¢'] (32)

dK} =K} —K, = -M[&5¢'] (33)
By subtracting the second equation of the set (29) from the
second equation of the set (30), we obtained:

Ldsg' = —(dK™ +dK) ) — (s +0)dp "™ (34)
Equations (31), (34) can be united into the single set:
dp' = LY{dK! +dK}}

dsp' =-CYdK™ +dK I + (e +0)dp' 1}
The deviations of the correlation functions and should be
considered in more details. Taking expression for into
account, we obtained:
dK} =-M[eddp']= ML {dK ™ +dK ™ + (e +0)dp ™}

(35)

As [ and M are linear operators, then:
dK} =ML HdK L™ + dK 3+ ML (2 + 0)dp" 3]
The first summand equals zero because I:’l{dK;‘1 +dK, '}

is a non-random function that can be withdrawn from the
mathematical expectation, and M[£]=0.

Then:
dK! =M [ (s +0)dp" '} (36)
Similarly:

dK} =-M[ASp' 1= M[ALHdK ™ +dK ™ + (s +0)dp 3] =

= MK [ + dK 31+ ML (e +0)dp '}

dK ) =ML { (s +0)dp' "}

By summing up expressions (36) and (37), we obtained:
dK} +dK, = M[(z + )L {(z +0)dp''}]

By substituting this sum into the first equation of the set (35),
the following result can be obtained:

dg' = CYMI(s +O)L{(s +O)dp 11} (38)

The iterative process is a convergent one if:
2
|02

By using the well-known properties of norms of mathematical
operators and functions, the norm of expression (38) can be

evaluated:
Waw%ﬁ%mug+mtq@+emaﬂanﬁWWK5+mE%@+amaﬂmk

@37)

<1 (39)

<[+ ll o + oo
or

671 <] le + et

In accordance with the criterion (39), the following inequality
must be correct for convergence of the iterative process:

[ e +off <1 (40)

The convergence domain of the iterative process can be found
for the bare one-dimensional plane reactor (H — the reactor

2
. T .
height; ;(12 :(ﬁ) -material parameter of the reactor;
£(r) -random perturbation of material parameter).
. . . r. .
If dimensionless variable X = ﬁ is introduced, then operator

I: takes the form:

2
LZ(;:I—2+7Z'2,
X
@, =sin zx.

A

: ) 1 :
Norm of inverse operator L™ equals ——, where A_. isa
min

minimal non-zero eigenvalue of operator L.

A

In general,
eigenvalues of operator L can be calculated as
A=nm*(n*=1),n=12... Evidently, minimal non-zero

eigenvalue corresponds ton=2, i. e. :
~2 1
Aumin = 3%, and HL’lH = §n4 (41)

In accordance with the norm definition of a random function
in Hilbert space L, , the following norm can be evaluated:

. . ]gsinzzzxdx
le(r)+ 6] = H* [MI(2(x) + 0)°Jdx = H* [M[(2(x) - £ )2Idx

1
_[sinz axdx
0

Assuming that the perturbation parameter £(r) and the
correlation function K(x, x’) are known (for example,
K(x,x")=M[e(X)e(x")]=D,o(x—X") ), it is easy to
obtain the following norm:

|(¢+6)|° =05D,H* (42),

where D, — the perturbation dispersion.
The perturbation dispersion for material parameter can be

p, = DIK.]

presented  as , where M?=(L*+7)-

migration area, K — neutron multiplication factor.
K, =1, 03,
be evaluated as

neutron
multiplication DIK_ ]

~2121*10 pz, where P — the perturbation level of the
reactor macroscopic cross-sections in percents.

_ 2121*10 p®

Assuming that dispersion  of

factor can

So, D, = (L2 )2 , and expression (42) takes the
+7
form:
4
* -4 .2
2 \/ > +7

With accounting for expression (2. 3. 35), the convergence
criterion can be defined as follows:
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2121*107* ( H

4
2<1
2%9% 7" \/LZHJ g

or
H 107+/3

<
Je+r e
The convergence domain of the iterative process is shown in

Fig. 3. Dependence of maximal relative error in determination
of axial neutron distribution

J [@ ) - P )7 dx

(44)

on the number of

£ = max
X

7, 0odx

iterations is shown in Fig. 4.
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Fig. 3. Convergence domain of the iterative algorithm
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Fig. 4. Dependence of maximal relative error on the
number of iterations

As is seen, the smaller reactor height resulted in the quicker
convergence of the iterative algorithm. Numerical studies
revealed that the iterative search for the mathematical
expectation required substantially lower (by one order of
magnitude) number of operations than that of the statistical
experiment method.

Conclusion

In general, the following conclusions can be derived from the

performed numerical studies:

1. The mathematical expectation of neutron flux does
not coincide with the neutron distribution calculated
with application of averaged macroscopic cross-
sections.

2. The discrepancy increases when physical size of the
reactor core, the perturbation level and the
correlation level become larger.

3. The iterative algorithm for determination of the
mathematical expectation appeared substantially
quicker than the statistical experiment method. In
addition, the iterative algorithm allowed us to
evaluate the first-order correction to the linear model.
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