
International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 23 (2015) pp 43880-43884

© Research India Publications. http://www.ripublication.com

43880

An Efficient Low Power and Delay Optimized Floating Point Multiplier

using Modified Booth’s Algorithm

A. Sirisha

M. Tech Student, ECE (ES) Gudlavalleru Engineering College Gudlavalleru, Krishna Dist., AP, India-521356

e-mail: anne.sirishaecea@gmail.com

A. V. N. Tilak

Professor of ECE, Dean-P. G. Studies and R&D Gudlavalleru Engineering College Gudlavalleru, Krishna Dist.,
AP, India-521356

e-mail: avntilak@yahoo.com Telephone No.: 08674-273737, Fax No: 08674-273957

Abstract

This paper presents a design methodology for low power and

delay optimized single precision floating-point multiplier

based on Booth encoded parallel multiplier. For partial

product generation, a new modified Booth encoding (MBE)

scheme (Radix-8) is proposed to improve the performance of

traditional MBE schemes. Addition of partial products is
carried out using Modified Carry Select Adder (MCSA). This

design is implemented using Xilinx 14.7 ISE Simulator in

VHDL. Floating point multiplier is implemented using

modified Booth’s algorithm which reduced the power

consumption by 22% and delay by 34%.

Keywords: Modified Booth Encoder, Radix-8, Floating-Point

Multiplication, Partial products generation, Partial products

accumulation, VHDL.

I. Introduction
With the recent rapid advances in multimedia and

communication systems, real time signal processing like audio

signal processing, video/image processing, or large-capacity

data processing are increasingly being needed. The multiplier

and multiplier-and-accumulator (MAC) are the essential

elements of the digital signal processing such as filtering,

convolution, and inner products. Most digital signal

processing methods use non-linear functions such as discrete

cosine transform (DCT) or discrete wavelet transform (DWT)

[1]. Because they are basically accomplished by repetitive

application of multiplication and addition, the speed of the
multiplication and arithmetic determines the execution speed

and performance of the entire calculation. Because the

multiplier requires the longest delay among the basic

operational blocks in digital system, the critical path is

determined by the multiplier, in general.

Booth’s algorithm is a smart move for multiplying numbers.

For high-speed multiplication, radix-4 modified Booth’s

algorithm (MBA) [2] is commonly used. However, this cannot

completely solve the problem due to the long critical path for

multiplication. The most effective way to increase the speed

of a multiplier is to reduce the number of the partial products

because multiplication proceeds a series of additions for the

partial products. To reduce the number of calculation steps for

the partial products, radix-8 MBA has been applied.

II. Background

Booth's algorithm was invented by Andrew Donald Booth in

1950 while doing study on crystallography at Birbeck College
in Bloombury, London. Booth used reception desk calculators

that shift faster than adding and thus formed algorithm

increases the speed [3]. Booth's algorithm is important in the

study of computer architecture. Andrew Donald Booth was a

British electrical engineer, computer scientist and physist who

led the innovation of the magnetic drum memory for

computers and invented Booth's multiplication algorithm.

III. Proposed Work

The multiplication operation is present in many parts of a

digital system or digital computer, most notably in signal
processing, graphics and scientific computation. With

advances in technology, various techniques have been

proposed to design multipliers, which offer high speed, low

power consumption and lesser area, thus making them suitable

for various high speed, low power and compact VLSI

implementations. These three parameters i.e. power, area and

speed are always traded off. The present work is devoted for

the design and simulation of radix-8 Booth Encoder multiplier

for signed-unsigned numbers. The radix-8 Booth encoder

circuit generates n/3 partial products in parallel. By extending

sign bit of the operands and generating an additional partial
product the sign of unsigned radix-8 Booth encoder multiplier

is obtained. The modified carry select adder is used to speed

up the multiplier operation. Since signed and unsigned

multiplication operation are performed by the same multiplier

unit, the required hardware and the chip area reduces and this

in turn reduces power dissipation and cost of the system.

3.1 Floating Point Multiplier Block Diagram

The numbers on which the multiplication must be performed

are given as input to the floating point representation. Then

the numbers are represented in floating point format. Next the

recoding is performed according to the radix-8 MBA.
Generation of partial products and accumulation are important

mailto:anne.sirishaecea@gmail.com
mailto:avntilak@yahoo.com

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 23 (2015) pp 43880-43884

© Research India Publications. http://www.ripublication.com

43881

in multiplication process. For accumulation, modified carry

select adder is used. The floating point multiplier block

diagram is shown in figure 1.

Figure 1: Floating-point multiplier block diagram

3.1.1 Floating-Point Representation

Floating point is denoting a mode of representation of
numbers as two sequences of bits, one representing the digits

in number and the other an exponent which determines the

position of the radix point. The IEEE has standardized the

computer representation for binary floating point numbers.

Single-precision floating-point format is a format that

occupies 4 bytes (32 bits) in computer memory and represents

a wide dynamic range of values by using a floating point [3].

Representation of single precision binary format is shown in

figure 2, starting from MSB as one-bit sign (S), an 8-bit

exponent (E) and a twenty-three-bit fraction (M).

Figure 2: IEEE-754 single precision format

Z= (-1s) * 2 (E-Bias) * (1.M)

Sign= (31st bit of X) XOR (31st bit of Y)

Bias is 127 for single precision floating point format

Exponent = E1 + E2 – Bias
Multiplication = (1.M1 * 1.M2)

M1 is the mantissa of X

M2 is the mantissa of Y

3.1.2 Modified Booth Encoder

Modified Booth's algorithm is twice as fast as Booth's

algorithm. Modified Booth encoding algorithm is an efficient

way to reduce the number of partial products by grouping

consecutive bits in one of the two operands to form the signed

multiples. The operand that is Booth encoded is called the

multiplier and the other operand is called the multiplicand.

Radix-8 Booth recoding applies the same algorithm as that of
radix-4[5], but here quartets of bits are taken instead of triplets

as shown in the figure 3. Each quartet is codified as a signed

digit using Table 1. Radix-8 algorithm reduces the number of

partial products to n/3, where n is the number of multiplier

bits [6]. Thus it allows a time gain in the partial products

summation.

Figure 3: Grouping of bits in radix-8 method

Table 1: Recoding table of radix-8 MBA

3.1.3 Partial Products Generation
The algorithm and flowchart for partial products generation of

radix-8 modified Booth encoder are given below.

a) Algorithm for radix-8 modified Booth encoder

The number of subsequent calculation stages can be decreased

by enhancing the parallelism operation. So, one of the

solutions of realizing high speed multiplier is to enhance

parallelism operation. The radix-4 Booth multiplier is the

modified version of the conventional version of the Booth

algorithm (Radix-2), which has two drawbacks. They are:

(i) Inconvenient in designing parallel multipliers

because the number of add-subtract operations and
the number of shift operations becomes variable.

(ii) When there are isolated 1’s, the algorithm becomes

inefficient.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 23 (2015) pp 43880-43884

© Research India Publications. http://www.ripublication.com

43882

These problems can be overcome by using radix-8 modified

Booth's multiplier.

1) If n is even, then the sign bit 1 position is extended.

2) A 0 bit is appended to the right of the LSB of the

multiplier.

3) Each partial product will be 0, + X,-X, +2X,-2X,-3X,
+3X,-4X, +4X.

b) Flow Chart of radix-8 modified Booth’s algorithm

Here X is multiplicand, Y is multiplier, count is initialized to

n. Four bits are grouped and according to the corresponding

binary values, particular operation is performed as shown in

figure 4.A product formed by multiplying the multiplicand by

one digit of the multiplier is called the partial product. Partial

products are used as intermediate steps in calculating larger

products. Partial product generator is designed to produce the

product by multiplying the multiplicand with 0, 1,-1, 2,-2,-3,

4, 3, 4. For product generator, multiply by zero means the
multiplicand is multiplied by “0”. Multiply by “1” means the

product still remains the same as the multiplicand value.

Multiply by “-1” means that the product is the two’s

complement form of the number. Multiply by “-2” is to shift

left one bit the two’s complement of the multiplicand value

and multiply by “2” means just shift left the multiplicand by

one place. Multiply by “-4” is to shift left two bits the two’s

complement of the multiplicand value and multiply by “4”

means just shift left the multiplicand by two places.

Figure 4: Radix-8 flow chart

Here an odd multiple of the multiplicand exists, 3Y, which is

not immediately available. To generate it the previous

addition: 2Y+Y=3Y is to be performed. But the multiplier is

being designed for specific purpose and thereby the

multiplicand belongs to a previously known set of numbers

which are stored in a memory chip. One should take

advantage of this fact, to ease the bottleneck of the radix-8

architecture, that is, the generation of 3Y. In this manner a

better overall multiplication time can be attained, or at least

comparable to the time we could obtain using radix-4

architecture (with the additional advantage of using a less

number of transistors). To generate 3Y with 8-bit words we

only have to add 2Y+Y, that is to add the number with the

same number shifted one position to the left.

3.1.4 Adding Partial Products
Modified carry select adder is used for exponent addition of

the given two floating-point numbers. MCSA is as shown in

the figure 5. Modified Carry Select Adder (MCSA) is one of

the fastest adders used in many data processing processors to

perform fast arithmetic functions. The CSLA is used in

computational systems to alleviate the problem of carry

propagation delay by independently generating multiple

carries and then select a carry to generate the sum. Adding

two n-bit numbers with a carry select adder is done with two

adders (two ripple carry adders) in order to perform the

calculation twice, one time with the assumption of the carry

being 'zero'(Cin=0) and the other assuming 'one'(Cin=1). After
the two results are calculated, the correct sum, as well as the

correct carry, is then selected with the multiplexer once the

correct carry is known. Area consumed is more due to the use

of dual RCA's. To reduce the area and power consumption,

Modified CSA is used. BEC (Binary to Excess-1 Convertor) is

used instead of RCA with Cin =1.

The basic idea of this work is to use Binary to Excess-1

Converter (BEC) instead of RCA with Cin=1 in the regular

CSLA to achieve lower area and power consumption [8]. The

4-bit BEC is shown in figure 6. The main advantage of this

BEC logic comes from the lesser number of logic gates than
the n-bit Full Adder (FA) structure.

Figure 5: Modified carry select adder

Figure 6: 4-bit BEC

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 23 (2015) pp 43880-43884

© Research India Publications. http://www.ripublication.com

43883

Figure 7 illustrates how the basic function of the CSLA is

obtained by using the 4-bit BEC together with the MUX. One

input of the 8:4 MUX gets (B3, B2, B1, and B0) as one input

and BEC output as second input. This produces two possible

partial results in parallel and the MUX is used to select either

the BEC output or the direct inputs according to the control
signal Cin. The importance of the BEC logic stems from the

large silicon area reduction when the CSLA is designed with

large number of bits.

Figure 7: 4-bit BEC with 8:4 MUX

The Boolean expressions of the 4-bit BEC shown in figure 6

are listed as below (note the functional symbols ~ NOT, &

AND, ^XOR).
X0 = ~B0

X1 = B0^B1

X2 = B2^(B0&B1)

X3 = B3^(B0&B1&B2)

The truth table for BEC is shown in table 2.

Table 2: Truth table for BEC [8]

IV. Results
The simulation result of radix-8 MBA is shown in figure 8.

Inputs:

x = 00000000000000000010111010110101

y = 00000000000000001110001011101000

Output:

x y = 01000000100000010001000111101111

Figure 8: Simulation result of radix-8 modified Booth's

algorithm

Simulation is done with Xilinx 14.7 using VHDL. Here X, Y

are the 32-bit inputs, where X is the multiplicand and Y is the

multiplier. XY is the output. Three partial products p1, p2, p3

are generated.

Power Analysis

Power Analysis is done using Xilinx Power Analyzer. Power
is reduced by using modified Booth encoding scheme. For

Dadda multiplier the power consumption is 2.202W as shown

in figure 9. For radix-8 MBA the power consumption is

1.718W as shown in figure 10.

Figure 9: Power report of Dadda multiplier

Figure 10: Power report of radix-8 modified Booth's

algorithm

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 23 (2015) pp 43880-43884

© Research India Publications. http://www.ripublication.com

43884

Timing Analysis

Delay is reduced by using modified carry select adder. For

Dadda Multiplier with carry save adder, the time consumed is

5.473 ns. For radix-8 modified Booth algorithm with modified

carry select adder, the time consumed is 3.613 ns.

V. Conclusion

A new radix-8 modified booth multiplier architecture to

execute the multiplication-accumulation operation is

implemented, which is the key operation for digital signal

processing and multimedia information processing. By

removing the independent accumulation process that has the

largest delay and merging it to the compression process of the

partial products, a reduction in power consumption by 22 %

and delay by 34% is obtained.

VI. References

[1] C. S. Wallace, “A Suggestion for a Fast multiplier”,

IEEE Transactions Electronic Computers., vol. EC-

13, no.1, pp. 14-17, Feb. 1964.

[2] Shubhi Shrivastava, Pankaj Gulhane, “Optimized

Model of Radix-4 Booth Multiplier in VHDL”,

International Journal of Emerging Technology and

Advanced Engineering, vol. 4, issue 9, September

2014.

[3] Deepali Chandel, Gagan Kumawat, Pranay Lahoty,
Vidhi Vart Chandrodaya, Shailendra Sharma, “Booth

Multiplier: Ease of Multiplication”, International

Journal of Emerging Technology and Advanced

Engineering, vol. 3, issue 3, pp. 326-330, March

2013.

[4] Jeevan, Narender.S, Reddy. C.V. K & Sivani.K, “A

High Speed Binary Floating Point Multiplier using

Dadda Algorithm”, Proceedings of IEEE Conference

on computing, 2013, pp. 455-460, 2013

[5] Mr.Hemantkumar, H. Nikhare, Prof.Ashish

Singhadia, “A detailed review on architectures for 2-

DWT by using radix-4 Booth multiplier”,
International Journal of Innovative Research in

Electrical, Electronics, Instrumentation and Control

Engineering, vol. 3, issue 5, pp. 80-85, March 2015.

[6] Ruchi Sharma, “Analysis of Different Multiplier with

Digital Filters Using VHDL Language”,

International Journal of Engineering and Advanced

Technology (IJEAT) ISSN: 2249 – 8958, vol. 2,

issue-1, pp. 45-48, October 2012.

[7] A B. Pawar, “Radix-2 Vs Radix-4 High Speed

Multiplier” International Journal of Advanced

Research in Computer Science and Software
Engineering, vol. 5, issue 3, pp. 329-333, March

2015.

[8] Prof. Mary Joseph, Renji Narayanan, “16 Bit Carry

Select Adder with Low Power and Area”,

International Journal on Recent and Innovation

Trends in Computing and Communication, vol. 2,

issue 5, pp. 1223-1225, May 2014.

Biographical Sketch

A. Sirisha received B. Tech degree in Electronics and

Communication Engineering from Sri Sunflower College of

Engineering and Technology, Lankapalli, AP, India. She is

pursuing M. Tech (Embedded Systems) in Gudlavalleru

Engineering College, Gudlavalleru.

A.V. N. Tilak has obtained his B.E., M. Tech. and Ph.D. from

MIT Manipal, IIT Kanpur, and IIT Madras respectively. His

areas of interest are Microelectronics, Digital Design, and
Low Power VLSI Design. Dr. Tilak is a member of IEEE,

Fellow IETE, Fellow IE(I), and Life member of ISTE.

