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Abstract

In this paper, Dugdale-Barenblatt model has been modified to
evaluate load bearing capacity of an infinite isotropic elastic-
perfectly plastic plate damage by three straight collinear
quasi-static cracks. These cracks open in mode-l type
deformation when infinite boundary of the plate is subjected
to uniform tensile stresses acting perpendicular to the faces of
cracks. As a result, yield zones develop at each crack tip.
Sometimes, structure fails at stress which is well below the
yield stress of the material. Therefore, yield zones are assume
to be subjected by a quadratically varying yield stress
distribution applied perpendicular to the faces of the yield
zones to stop further opening of cracks. The problem is solved
using complex variable method and analytical expressions are
derived for stress intensity factors(SIF), crack tip-opening
displacement (CTOD) under small scale yielding. Numerical
results are obtained for yield zone length and crack tip-
opening displacement at each crack tip and reported
graphically. These numerical results are compared with the
results of two equal collinear straight cracks and/or a single
straight crack under same mechanical loading conditions.

Key wordsStress intensity factor, crack-tip-opening
displacement, Dugdale model, multiple cracks.
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1. Introduction

Failure of engineering material due to cracks or crack like
defects is a serious problem. Strength of the material reduces
in the presence of such defects [1]. Therefore, to know the
residual strength of the materials in the presence of cracks and
modelling such a situation is important for the safety and
durability of the structures. Dugdale model[2] was used
widely to evaluate residual strength of the material containing
crack(s). In most of the cases yield stress of the plate is
assume to be constant, but in few cases yield stress of the
plate be considered as linearly and quadratically varying.
Kanninen[3] modified the model for linearly varying stress
distribution, while Harrop[4] used Dugdale hypothesis to
determine crack tip opening displacement when plastic zones
are subjected to parabolic stress distribution. Theocaris et
al.[5] used Dugdale model to evaluate load-bearing capacity
of three different types of strain hardening materials and
mechanical loading conditions. Dual scale crack model was

discussed in [6], [7] for macro and microscopic cracks under
linearly varying stress distribution.

Dugdale model was not limited to just a single crack, but also
used to solve multiple crack problems for variety of materials,
different crack configurations and various mechanical loading
conditions. Theocaris[8] used Dugdale model to determine the
size of plastic zone at each crack tip of two collinear unequal
straight cracks and also discuss the case of plastic zone
coalescence at the internal tips of two cracks. A strip yield
model for two equal straight cracks was also discussed by
Collins et al.[9] to determine the length of yield zones and for
three equal straight cracks by Hasan et al.[10]. On increasing
stresses applied at the boundary of the plate yield zones
between closely, located cracks were coalesced. Feng et
al.[11] discussed the case of coalescence of plastic zones
between two collinear straight cracks in a quasi-brittle
material under plane stress distribution. Bhargava et al.[12]
used Dugdale model to study the load bearing capacity of an
infinite plate weakened by two straight collinear unequal
asymmetrically situated cracks under quadratically varying
stress distribution.

Although now it is easy to find out closed form solution for a
single Dugdale crack. But, still it is mathematically difficult to
solve multiple crack problems. Various approaches have been
used to simplify mathematical complexities for solving
multiple crack problems. Complex variable method was used
to determine crack-tip-opening displacement for two
asymmetrically situated cracks with coalesced yield zones in
[13], for four symmetrically situated cracks with coalesced
interior yield zones in[14], for finite and semi infinite cracks
[15], Weight function approach was used by Wu and Xu[16]
and there are so many examples.

The paper deals with a mathematically complex problem of
three collinear straight cracks weaken an infinite elastic
perfectly plastic plate. Cracks open in mode-l type
deformation and yield zones develop at each crack tip due to
stresses applied at the infinite boundary of the plate. It is
observed by Gdoutos[17] that some of the structure fails at a
stress which is well below the yield stress of the material,
therefore the developed vyield zones are assumed to be
subjected to a quadratically varying stress distribution to
arrest further opening of cracks. Closed form solution of the
problem is obtained using complex variable method.
Analytical expressions are obtained for SIF, components of
displacement and CTOD at each crack tip. Numerical results
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are obtained and analyzed for yield zone length, load required
ratio and CTOD at each cracks tip.

Nomenclature

D;(i=01223) constants of the problem.

E Young’s modulus.

F(9,k), E(6,k),incomplete elliptic integral of first, second

H(H,az,k) and third kind respectively.

L (i=1223) length of original cracks.

P,(2) polynomial of degree n.

o(x) crack tip-opening displacement at the
crack tip x.

+ay,tb; ¢, original crack tips.

+a,tb,+c extended crack tips.

p(t),q(t) applied stresses on the yield zones.

uv components of displacement.

Z=X+iy complex variable.

I —%(Nl—Nz)e‘Zi”’,Nl and N, are the
values of principal stresses at infinity, «
be the angle
between N, and the ox-axis

r(i=12...6) length of yield zones.

Q) = w (2) complex potential functions.

D(2)= ¢ (2)

4 Poisson’s ratio.

H shear modulus.

K _9°77

1oy for the plane-stress, =3—4y for
4
the plane-strain.

Xy, Yy, X, components of stress.

o remotely applied stress at theinfinite
boundary of the plate.

o yield stress of the plate.

ye

acting on the rims of the cracks, where superscript +, —
denote the upper and lower rim of the cracks. Egs.1 and 2 may
be expressed in terms of two problems of linear relationships
under the assumption |im y@'(t+iy) =0,

y—0
QT () + 2 (1) =Y, —iXy, 4)
O () + 27 () =Y, —iX,, (5)

onL, where L= LnJLi .

i=1
Closed form solution of the problems expressed in Egs.4 and
5 may be obtained using a detailed methodology given in [18]
as:

P.(2) 1+

D(2) = Dy (2) + = X(2) ZF, (6)
2) = () +-2 ((:)) +17 %
where
X" (t)P(t) q(t)
Po(2)= 27z1X(z) nj t—z nI dt' ®
Uy Uy
i=1 i=1
1 X" (t)p(t) Q(t)
Z(2)= 27X (2) nI t—z 27 nI to@)
ULi ULI
i=1 ) i=1
PO =21y +Yy1-21X; + X1
== [Yy Y, 1- ;[x+ X;1, (10)
X(z) = 1‘[,/2—&1k JZ-b, ,
k=1
P.(2) =Dyz" +Diz"* +..4D,. (11)

Constants D;(i =0,1,2,.., n) shown in Eqg.11 are evaluated

using loading condition at an infinite boundary of the plate
and single-valuedness condition of displacement around the
rims of the cracks or cuts,

L;

20x+1) l:(”—((tt))dt + KI{[QDJ (t)—@g (t)]dt+ [[25 (t)

Li

12)

2. Mathematical formulation
In two dimensional theory of elasticity, components of

stresses  X,,Yy, X, and displacements (u,v) may be

expressed in terms of two complex potential functions
D(z),£2(z) as given by Muskhelishvili[18]

Xy +Y, = 2[@(2) + 2(2)], (1)
Y, —iX, = D(2) + 22) + (- 2)@'(2), )
2u(U +1v) = k4(2) - 0(2) - (z - 2)D(2). 3)

where line over a function or a variable denotes its complex
conjugate and prime over the function denotes differentiation.
Consider an infinite isotropic elastic-perfectly plastic plate
occupy xy-plane containing n straight cuts L; (i=7,2,3,...,n)

- - i i . . -
lying along real axis. Let XY, be the stress distributions

-0y (t)]dt =0.
The mathematical formulation given above is taken from
Muskhelishvili[18] for making the paper self-sufficient.

3.Problem description

Consider a multi-site damage (MSD) problem of three equal
collinear straight cracks damage an infinite isotropic elastic-
perfectly plastic plate. The plate occupies the entire xy-plane.
The cracks are exist in the plate symmetrically along the real
axis, denoted by Ly,L,,L5 and occupy the intervals [-a;,—b;]

, [-¢,,¢,], [by,a,] respectively.
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Figure 1: Modified Dugdale model of three equal straight
cracks

Infinite boundary of the plate is subjected to a uniform stress
distribution Y, =0, . As a result, cracks are open in mode-I

(opening mode) type of deformation and yield zones
developed at each crack tip. These yield zones are denoted by
[;(=123...6) and occupy the intervals (—a,—a;],[-b;,~b),
(-c,—¢11.[c;,¢), (b, b 1.[a1,@) respectively on ox-axis. It is
mention in [17] that some of the structures fail at a stress,
which is well below the yield stress of the plate. Therefore, a

2

. T t L
parabolic stress distribution Y, = —-o ., which is below the
a

yield stress of the plate (say, o, ), is applied on the rims of the
yield zones to stop further opening of cracks, where t is any

point of the rims of the yield zones and o, is the yield stress

of the plate. Entire configuration of the problem is depicted in
Fig.1.

4.Solution of the problem
Solution of the main problem defined in Section-3 is obtained
by decomposing it into two sub-problems namely problem-A

(tensile case, Y, =o,) and problem-B (yield case,

t2 _
Yy :—zaye). These two sub-problems are solved using
a

methodology given in Section-2. Furthermore, the solution of
main problem is then obtained on superposing the solutions of
two sub-problems.

4.1 Sub-problem A: Tensile stress case

4.1.1 Problem and its solution

Development of yield zones at each crack tip due to remotely
applied stresses at the infinite boundary of the plate has been
discussed in this section. Consider a loaded infinite isotropic
elastic perfectly plastic plate containing three equal collinear

cracks. Normal tensile stresses, Y, = o, act at the infinite

boundary of the plate, causes the opening of cracks in mode-I
type deformation. Thus, yield zones are developed at each
crack tip. The cracks with corresponding yield zones are
denoted by R;(—a,—b), R,(-c,c) and Rs(b,a). The
complete geometrical configuration of the opening case is
given in Fig.2.

T T i T
.‘ 2
P b b < - of a ¢ b by a a ¥
3 —R—
b l [ U
o, O O [

Figure 2: Configuration of the sub-problem-A

Following are the boundary conditions for the opening case

Yy, =0,,X, =0,when y—+o0,—c0<X <0, (13)
3
Y, =X, =0,when yZO,XEiL_JlLi, (14)

Desired complex potential function @,(z) may be obtained

using methodology given in Section-2 and boundary
conditions given Egs.13 and 14. Hence, for the sub-problem-A

Dp(2) = "—;[ﬁ{f S2(et @A), (15)

2 2
where 22 = E() K2=2 —b

F(k) a2 _CZ
elliptical integrals of first and second kind respectively as
defined in [19].

and F(k),E(k) are complete

4.1.2 Stress intensity factor

Closed form solution for opening mode stress intensity factor

at the crack tip Z =t may be obtained using the formulae

givenin [9]

K, =2V27 limvz-t®(z). (16)
7>t

Therefore, analytical expressions for stress intensity factor at

each exterior crack tip a, b and ¢ may be written using Egs.

15 and 16 as,

2
(KDY = (=0, Y, 17)
2,2
KRy = b, (18)

kvl-k?
12
(Ko = (=
v1-k
Stress intensity factors at each crack tip given in Egs.17 - 19
are same as given by Tada[20].

Yo, 7c. (19)

4.1.3 Components of displacement
Analytical expressions for the displacement components

vi(x) at cracks tips +a,+b and +c due to stresses, Y, =0,
(acting at the infinite boundary of the plate) may be obtained
using Egs. 3 and 15 . Closed form expressions for v (x) may
be written as,
vE(say) = £ 27 a? ~ ¥ [E(g (@), k)

E (20)
- 22F(¢1(ag), k)],
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= ya® -c? [E(#, (by), k)

2 g (21)
— J2F (4, (by), k) - k“ sing, (b,) cosg, (bl)],
Vl_kz sin® ¢, (by)
= a? —c?[E(gs(c,), k)
(22)

E
— J*F(#5(cy), k) —tan g, (c)y1- k? sin?¢5(c,)].

4.2 Sub-Problem B: Yield stress case

4.2.1 Problem and its solution

Consider the case, when three collinear straight cracks with

yield zones (developed due to applied stresses at the infinite

boundary of the plate, as discussed in Section-4.1) exist in an

infinite elastic perfectly plastic plate. It is mention in [17] that

some of the structures fail at a stress, which is well below the

yield stress of the material. Therefore, a quadratically varying
2

yield stress distribution Y which is below the yield

y = ?O'ye'
stress of the plate, is applied on the rims of the yield zones in

order to seize the growth of cracks. The entire configuration
of the sub-problem B is given in Fig.3.

|
HH 1m *J'w anJ H‘

g,
<> L——<D> “fre— Iy —<» «fpre— Ly —><ly>

Figure 3: Configuration of the sub-problem-B

The problem is solved under the following boundary
conditions

Y, =0, X, =0when y-—>to0,—0<x<o. (23)
t? 6
Y, = a—zo-ye, Xy =0,when y—0xe ngfn' (24)

Using the boundary conditions given in Egs. 23 and 24 and
methodology shown in Section-2, desired complex potential
function @g(z) for the sub-problem B may be written as,

__ % t?X ()
Pa(2) = 27ia? X (2) e (25)

+ia%(Dyz2 + D,z + Dy)],

Where

L' = (-a,-a,] U[-b;,~b) U (-c.~¢;]
ule,c)ub,b]ulay,a)

In order to derive analytical expression for @g(z), the

integral shown on the right-hand side of the Eq.25 must be
evaluated using following relations,
when —-a<-b<-c<c<b<t<a,

X (1) = X (~t) = iva? —t2 12 —b2 Jt? -2,

and
when —-a<-b<-c<t<c<b<a
X (t) = X (—t) = —iva? —t2yb? —t2y/c2 —?
Hence, the integral
2 C
IttX(Zt)dt_2 ”t X(t)O|t It X(t)dt Jt X(t)dt]

L

2

2
= Jiza [—{43 E (o)}

(26)
- p2(2)}

3 _
+—{r; —C—Z(T4

T

é,i = Ii(E!klm)—i_ Ii(¢1(al)!klm)_ Ii(¢1(bl)!klm)v

Ty = M%:kz,mz)— i (¢ (c), ko, my),

|3(9:p’Q)=$((E——) +2p? +q2@2-3p?)x

2

1— _ 2
re.pa)- L T EG p)
p q
2 2 2
_1—p(q_4_3(1—2q))|:(§,p1)
8y1-q> P

1 2
_§(3+q—2—q2(3+2sin29))N(9, p.q)
p

10,00 = L 1107090

02
+ 1-q°
2

q*(1- p?)

2p?yJ1-q?

E(S p1) - F(, py)

q2
+?N(9! p!q)y

H(é.n, p,q) = niz[qu(e, p.q)

2 2 2 2 2 2

PR ) [en- Ly, (E R )
1-q° 1-q? 1-q
gsing
Y0, p.q) = tan pgcosésin )
\/1 p 3|n26’\/1 q° sin’
1_ 2
= 17(¢,p%, py),
1-q2
NG, p.) = sin@coséy1- p?sin0
V1-9°sin?0
2_ 2
p, = |2 2 , tan& =41-q? tané,
1-q
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p1(2) = H(# (a1),n(2),k,m) — H (¢ (b ),n(z),k, m)
+ H(%,n(z),k,m),

pa(2) = H(gnz(z),kz,mz)— H (¢ (c1), N2 (2),kp.my),

2 2 2 2
k2_C mz a—b mz_C
2 = 2~
b? a’ a?
~b? c
=L i =S
X
2 2 2

sin ¢1(X)— b2 ,sin ¢7(X)_

Constants Dl, D, and D, appear in Eq.26 are evaluated using

condition of single-valuedness of displacement around the
rims of the cracks. However, due to symmetrical loading on
the rims of yield zones, constants D, =0 and D;=0.

Furthermore, using Egs.12 and 25 one can evaluate

2m
D, === (@', —2°¢,}+T). 27)
where

2
1,0, p, q)——(7+ 7 ~9°(3+2sin?0))N(8, p,q)

6 - 2q2 q 2
= (= -2 +39%2-6)r(6,p,
24(q > p4+ q° -6)r(6, p.q)
_E, 1-p? ,7-392
( p)(l q )3/2 p ( q

39° 24\1-q> P’

J1-g? 5 1
+
24 q

7+ 7~ IEE P

2 13- 2 2
|2(9a p!q):q_zN(Hl p,Q)"‘_( g _q_4)r(01 p:q)
6p p p

6
6p°

~ L 1-q%sin?0)*2F (0, p) + E(& py)+

3q°

—4 2
- +%)F(§, py)

V,(6,p.0) = 252 —1)](-q2 e [p?E(6,0)

+(a% - p*)F(0,9) + (2p°q” +2p?
—8(0, D,Q)],

V3 (9! P, q) =

- p*-39°)17(6, p*.0)

[a°F(6.q)

1
41-p®)@® - p?)
2
4 )11(6,p%,q) +3(p*
p

S(0,p,q)
+39°)\V, (0, p,q) + —2 2 1
q°)V, (0, p,q) 1= p? 0

+2p?(1+q®-3 —2p2(q® +1)

2T11

(E(¢3(Cl) k) - lZF(¢3(Cl) k))+

_1_

2T14 +Tyo) + g(azTg +Ty0)l,

V1-a%sin?6

1- p?sin20

202

2 _ 1,22 .2 _ X -
ki =k“ky, sin ¢3(X)—m,

S0, p,q) = p*sindcoso

sinds (X) = =5 sin 3 (X),
2

After a long mathematical calculation the final complex
potential function @g(z) for closing case may be written

using Eqs 25 - 27 as

2 y m 2 b2
Py (z )' - {éVs ——— (G4 —p(D))}
m3 XZ(Z) 2 - (28)
c" -z
et S - a0

4.2.2 Stress intensity factor
Stress intensity factors at cracks tips t =+a,xb and +c are

expressed using the Egs.16 and 28 as
2k<7 \/_
(K.B)a——[—(:s ¢a)
m3 " 1 D (29)
M () (s — py @)+ —2
k2{3 ( mg)(4 P2(a))} 2a2]
(KB 2|(O'ye\/%[m3
1o = -, 63
m27Z' 1—k2 k (30)
3
m; 1 D,
+—{r3 - (1- =)z, — p,(O))}+—=%
o om0 ) O8]
2k?o e\/_
(KP)e Sanlall —{53
m?7zy1-k? (31)
1 a’m3 D
(1= e = PN+ = ~F ey + L]

4.2.3 Component of displacement
Rims of the yield zones are subjected to a quadratically
. T
varying stress distribution —-o, therefore, component of
a

displacement at the crack tips +a;,tb;,£c; may be written as

N _ 20'ye
vy (Fay) =F pr= [A(d1(a1)) + Ay (41 (a1))
_ D, F (¢ (a1).k)

va?-c?

(32)
1
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+ Zo-ye
vy (b)) =+ prs [B1 (¢, (by)) + B, (¢, (by)
(33)
By (b)) - 22 22100y
a - —c¢C
+ _ 2Gye
vy (tc) =+ = [Ci(g5(c1)) +Co(ds(cy))
(34)
+Calga(e) + 2 B0y
a  —cC

(See Appendix)

5 Applications and illustrations

5.1 Growth of yield zone and load bearing capacity
Singular terms vanish at each crack tip according to Dugdale’s
assumption that the stresses remain finite at each crack tip. It
may also be said that the stress intensity factor at each crack

tip x =+a+b+c must vanish i.e. K=(K), +(K?), =0.

As a result, three non-linear equations are obtained and
written as

2 3
L (D I LU A
k o T

o k
m; y 1 D, (%)
E{Ts -(1- n22(a))(r4 - p2(a)}+ ?] =0,
2 3
-k - 2oy, + 210,
k Oye T k (36)
m3 1 D
+ k—zz{fs -(1- %)(Q —po (D)} + ﬁ] =0,
2 3
M 222y, -2y,
k Oye 7k
1 m3 D 5
- (1——n2(c))(4“4 —pl(C))}+k—2T3 +ﬁ =0.
2

Yield zone length at each crack tip is then evaluated in terms
of applied stress and yield stress. All the numerical results
reported in this section have been obtained by using Egs.
35,36 and 37. Behaviour of yield zone at each crack tip has
been studied on increasing stresses act at the infinite boundary
of the plate.

5.1.1 Three equal collinear straight cracks
A case study is presented in this section for an infinite
isotropic plate under small scale yielding. Fig.4 shows the

L . . Iy
variation between normalized yield zone Iength,L—G, to
3

applied load ratio, G , at crack tip a;. Value of p= 2
Oye by+¢
denotes the ratio between half crack length of middle crack
and the distance of mid point of two neighbouring cracks from
the origin. It has been observed from the Fig.4 that the length
of yield zone increases as stresses applied at the boundary of
the plate increased. For a value of normalized yield zone

length (say 0.2), plate can bear more load when the cracks are
situated far away from each other (say p=0.1) and
comparatively less load when cracks are situated close to each
other (say p=0.9).

The numerical results are compared with the results of two
equal cracks having same position on real axis as two outer
cracks in Fig.1 and same mechanical loading conditions.

064 2¢

b+

—— Three equal cracks
= = = = Two equal cracks
s} T a—ay T 1
0 0.1 —_— 0.2 0.3
a—b

Figure 4: Normalized yield zone length % to applied
3

Oy

stress (

)a:

Uye

0.45 - 2¢,

b+

0.36

0.09 -

——— Three equal cracks
0.9 — = —= Two equal cracks
T 1

0 0.1 b —b 0.2 0.3
a;—b

. . . I .
Figure 5: Normalized yield zone length L—5 to applied
3

O,
stress (—=)p.
Oye
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It may be noted that the load ratio at the outer crack tip t = a,

when three cracks are situated far away from each other, is
same as the load ratio at outer crack tip of two equal cracks.
This means outer cracks are very less affected by internal
crack when p = 0.1 and highly affected when 0 =09.

0.033 7 ——— Three equal cracks
—— —= Single crack

2¢;

b +¢

0.011 ~

Figure 6: Normalized yield zone length % to applied
2

stress (o-—°°)c.

Oye
0.3 - C2¢
b1+C]
0.2
8(ay)E
Gye‘[3
0.1
yo)
—— Three equal cracks
0 = === Two equal cracks
0 0.09 0.18 027 Yo qg36 0.45
O ye
. o o(a,)E
Figure 7: (—=), to &
L
ye BO-ye

Same variation is plotted at the crack tip t =b, in Fig.5. As
far as behaviour of load ratio and yield zone length is concern
it is same but yield zone length 7 is bigger than the yield
zone length 73 as expected. Furthermore, when p=0.1
yield zone length at crack tip t =b; for three equal cracks and

two equal cracks are same but a significant difference in yield
zone length is seen when o =0.9. It happens because when
cracks situated closer to each other there is no crack between
two equal cracks but there is an internal crack in case of three
equal cracks.

Fig.6 shows the variation between normalized yield zone
length and applied load ratio at the crack tip t =c;. It may be

noted that the quadratically varying stress distribution,
t2 _ _ _ _

— Oyes (applied on the rims of the yield zone) is very low at
a

p =0.1 due to large value of a2. As a results length of yield
zone, |c—cy |, is very large. But when cracks are assume to be
located close to each other than due small value of a?

quadratically varying stress distribution is comparatively high,
hence length of yield zone, |c—c; |, is less in comparison to

the case of p =0.1.

The results so obtained are compared with the results of a
single crack of length 2c; under same mechanical loading
conditions. Length of yield zone 7, is comparatively less in
case of three equal cracks when p=0.7 and bigger when
p =0.1. This is because outer cracks suppress middle crack

when situated very close. Hence, yield zone length at the tips
of middle crack is small due to the presence of outer cracks. It
may be noted that the effect of outer cracks on the inner crack
can be measure when all cracks are situated close to each
other.

5.2 Crack-tip opening displacement
Using complex variable method, analytical expressions are
obtained for crack tip opening displacement &5(x) at each

crack tip, x = +a;,£h; ,+¢; using formulae given in [6], [11],
S(X) = [Von (%) +Vye (X)) = (Voo (X) +Vye (X)]- (38)
Thus the analytical expressions for CTOD at each inner crack
tip &, £by and +c;, be evaluated by putting the
corresponding values of V3 (x) and vi,(x) from Egs.20 - 22

and 32 - 34 into Eq. 38, one may found three non-linear
equations for crack tip opening displacement(CTOD) as:

4

8(ar) =~ [T (E(h (00). ) - F (4 (20). ) =

(Z=y, - L (A @) + A (4 (ar) (39)
Oye 7

_a_m F (4 (a1), k)1,
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4 ~ k? sing, (b;) cosg, (by)

VI-K? sin?, (b;)

= 2R (g, (0y) K2, - % (B1 (¢ (b1)) + By (¢, (by)) (40)

66) =~ 1 (€ (00).)

k

Oy
B0 0) 2 F, b))
4-0'ye m

5(e) =~ 1 CE@ e k) +

E
tan s (Y1 -k sin? s (¢;) + A2F (5 (1), KD (2Z),
Ty (42)
- % (C1(5(cy)) +Cy(p5(cy)) +Ca(ds(cy))

KB e el
am

5.2.1 Three equal collinear straight cracks
Consider three equal cracks weaken an isotropic infinite plate
as shown in fig.1. This section deals with the normalized

ctop, SE
io-ye
stresses at the boundary of the plate. Fig.7 shows the variation

, at each crack tip due to remotely applied

between applied load ratio 9= and normalized CTOD
Oye

d(ay)E

3O-ye

at the crack tip a;.

037  2g 0.2

b1+C]

—— Three equal cracks

- = === Two equal cracks
0 h T T T 1

0 0.1 02 %o 0.3 0.4

5(b)E

Figure 8: (G—m)b to
I-SGye

Uye

0.05 - 2(‘1 f £= 0.1
bl + r‘r
i
0.04
0.03 02
S(e)E
O-yeLZ . 0.3
0.02 04
' 0.5
0.6
0.01 ,
K
i
/
7 — Three equal cracks
— = — = Single crack
O T T T J T T 1
0 0.005 0.01 —° 0.015 0.02 0.025
a

ve

. E
Figure 9: (G—"")C to J(E
Uye ZGye

It has been observed that opening of cracks increases as
stresses applied at the boundary of the plate increase. Opening
of cracks at tip a, is larger when outer cracks are situated
close to the middle crack (o =0.9) in comparison to situation
when outer cracks are placed far away from middle crack (
p=01).

Same variation has been plotted for crack tip b,, shown in
fig.8, when p =0.1 insignificant difference is seen between
the results of three equal cracks and two equal cracks, means
opening of cracks at tip b, is almost same in case of outer
cracks placed away from the middle cracks but when p=0.9
the difference between the opening of cracks is significantly
different.

Opening of central crack is compared with the opening of an
equivalent single crack of length 2c; (fig.9) under same
mechanical loading conditions using relation given in [4].
Opening of central crack is larger in case of p=0.1 in
comparison to the case when p=0.7 under the influence of
outer cracks. When p = 0.1 single crack opens more than the
central crack of three equal cracks due to the existence of two
neighbouring cracks. Furthermore, almost same opening is
shown by central crack and equivalent single crack when
p =0.7 because entire configuration of three cracks behave
like as a single crack (since they are close to each other).

6.Validation of mathematical expressions
Mathematical expressions given in Eq.35 for remotely applied

stress and in EQ.39 for CTOD at the crack tip t=a, after
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putting b=b,, c=c, and b=c =0 agreed with the results 2ik X (a
g b=bi 6= A b B,(0) = 42) +T56,(0) + (2
obtained by Harrop[4] for a single crack of length 2a; when 3a%m 1(0 —ay)
yield zones are subjected to quadratically varying stress X (b,) X(c,)
distribution. - L )c*F(6.k)
by(c® -bf) caé(e)(c® —cf)
2 2y (a% -af) 2
7.Conclusion +(b"-c )(Wﬂ(é’,az (a;),k) -
Dugdale model has been modified for three equal collinear !
straight cracks for quadratically varying stress distribution. bd(a® —b?)
Closed form solution is obtained for stress intensity factor and X (by) (F(0.k) = 11(0, 3 (bl) k)
crack tip-opening displacement using complex variable
method. Load bearing capacity of an infinite plate is examined + cf(@® ~cf) 170,62 (cy), k)],
in the presence of three equal collinear straight cracks with X(cy)

respect to yield zone length. Numerical results are obtained 2a2m?
for applied load ratio, yield zone length and crack tip-opening B;(0) =
displacement. The results are compared with the results of two 3pk?
equal symmetrically situated cracks when yield zone are k?(1-k?) F(ds(C1), ki)
subjected to parabolic yield stress distribution. + 1-Kk2sin20 N(6.0, k) + F(k,) (G.(0)

(9)

F(k)[(1-k*)F(0,K) ~ (1 +k*)Gy1(0)

~(1-k?*)F(8.k) - )]+ﬂ2[(1 k?)F(6,k) -
Acknowledgement
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Govt. of India for providing BSR fellowship. (1+a +2b2)G 6) + (k2 kkz)N(fj )
a’ —K% sin
Appendix b —log| X(0) 1l
. . . 3a a'm
The quantities used in the above expressions are bf [(a® - bf)2 - ]
2ik aIX(al) k? k
A1(6’)——[ (F(6’ k) - 11(0, k) bkm2
0‘1(3-1) Cl(e)_zam F (o, k)(§3+(1——)§4 am? 73)
bl X (bl) b k Cl X (Cl) k 2
az—bl 170,01 (by), k) + a? _c? > 11(0,a af (6),K)], +_GZ(‘9)[-I—15+T16(m?éF((Z,)k)_T_z)]
2 ) ?
A, () = T )—aTe}—
29" 522 T , 2an’ Go(O)(Cs ) - 21 -KPIF (0,K)
k2F(0,k) ) 2
atm? e DTz + 2 (s +Taalh -2 KG0) - NOKOC ";)]
+a’°m2N(0,k0)(h, +ah,) 2|k
_afh log| X2 (a) 1 6.1)
2 7 af[@a*-af)’ -k*@*-c?)?’] b2c2+al(b2—c ) x(a,)
2 1
B,(0) = 226, (0)Tis - T (MR M 20 -a;)
G0k b%e? +b7(b7 ~c%) \
2 - 1
~2am RO + (- )+ ) by (0% ~by)
am . c*X(cy) JEO.K)
Zam Gl(e)(.,q—b—u) 111 (2(k2 ~1)F(6,k) cia5 (¢)(c* —¢f)
2 .2 al(a —312) 2
£ @-K)8,(0) + N0, kU IR PR I
1-k“sin“@ b3 (a? - b2)
1
—X(bl) 11(0,3 (b,), k)
3(a2 A2
—Cl(i(—cl)cl)n(e! 0522 (¢1),k)) = T17G, (9)],
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Co(0) = - Zgbli“ F (k[ k2)F (8,k)

k2
+(1+Kk2)G,(0) — N(0,k0) 4(9)

F(kl) 1-m?
2
il Z*—Zb)e (0) + (L-K2)F(0.K)
1 k2 c; X2(c,)
Nk - “Log| e

cfl(@® —cf)” -

By =T+ T —Tig + (-D0-20-3

6a’
[F (¢4 (a), kl) + F(g,(by), k1) — F(ds(c1), kp)l,
b2 a% —h?
K = 1<)-§2_X2;,
x? —b? k?
a3 (x) = EXZ _Czi a3 (X) = 200"

X2
Oy (X) = b2 — (X) as (X) = kz as (X)

2

ag(x) =

l =
bl .(x)

k?sin&cosd
V1-k? sin26

G, (0) = tandy1-k? sin?@ — E(6,k),

G,(6) = E(8,k) -

2.2
9(ri, ) = 1{2—>“2’)<H(¢4(a1>,a5(r),k1)

SRk + (D TG0,
+(=1) " 17 (g (Cl)'ai+2(—1)j (r).k.)),

2am

10k

W (#(ag), k,m) =Y (g (by), k,m)

2
+Y(—,k,m)+ak 2
2 bm

—F(a(by). k),
2;’”; T () kem) = T (5 k)
a’mk F (s (c). k)
k T\We\1) 1)
Pl e
T =32H(¢4(31) k3 ky),

2b2 2

T, = e ———[E(d4(a1), I‘1)+( _1)F(¢4(a1)7k1)

(F(ky) + F(d4(a1).ky)

Hy =

)}

@K —t—g)n(m(al),k%,kl) LAY
3 3

1

4.2 2
a*b?m? k?

Ty =- 2 L = 11(¢4(ay), k3 ki)
k k2

2

2k
+ (k¢ —k—;+1)v2 CACHAN'S)
3

+ (k2 ~1)(1- ';1 Wa (64 (20). ks, ko)l
3

T, =i (al) 4@ ey @) k)

2

-(1- ))H(¢4 (&), a4 $(39),ky)],

4(1

5 = DPIkZ F (42 (br), k) + (L= k3) 7T (o (By) K KT,

a b2 2
Te = [E(g,(by), k1)+(k2 -DF(4,(by). k)

+ @K kDT B0) K2 Je) - 220y

a’b*m?(k? -1
T, = 20 D) ez, 6,62 k)

+(k12 _2k22 +1)V, (4, (by), K, ky)
+ (k% =1)(1— k3 V(s (by). K, ko)1,
To = [(1- a2 (@) 7 (4, (0y), 2 (1), ky)
b® —aj
+ 0‘§ (a)F (4 (by), k1)1,
To =b?[F(d5(cy) k) + (k5 —1) 77 (¢ (c1). k3 k)],
21n2 A2
Tio = 22 1 (s (e k) — (1+ K2 (s (1), )
S(d5(cy). ks, ky)
2

2
[-k2F (45 (c1). ky)
+ (3K —k{ 1) 17 (¢ (C1). K3, ky)
+ (2! =3k? =k + 2V, (¢5(c1), ko, ky)
+ (k3 —D(L-k*V3(ds(c1). kp k)],
~ ek

- (kz —k? M1 (d5(cy), kz ky) - 1.

_a’b*m?(1-k2)
Ty=—7—

T12 = b2
+ (a§ (&) =117 (gs(cy), a52 (a1), kq)l,

b*k2
3 [E(#s (1) ky) + (21— kz)F(¢5 (c1).ky)

T13 = 2k2
+ (K2 + K2 —2) T (gs (c) K2  ky)
_ S(¢5(Cl)!k2'kl)]
k2 ’
2
2
Ty = lf’T[Ewﬁt—,(co,ko + (k2 ~1K2F (g (c1). ko)

+ (k3 —1)(1 - k)17 (s (cy). k3 ky)]
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Ti5 = F(ds(a1), k) — F gy (by), ky),
Tie = E(dy(ar), ki) — E(#4 (by), k) + E(#s (C1), ky),
T, = (a? _CZ)(x(al) ~X(b) X (Cl))

a by

a’-c?
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