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Abstract 

In this paper, Dugdale-Barenblatt model has been modified to 

evaluate load bearing capacity of an infinite isotropic elastic-

perfectly plastic plate damage by three straight collinear 

quasi-static cracks. These cracks open in mode-I type 

deformation when infinite boundary of the plate is subjected 

to uniform tensile stresses acting perpendicular to the faces of 

cracks. As a result, yield zones develop at each crack tip. 

Sometimes, structure fails at stress which is well below the 

yield stress of the material. Therefore, yield zones are assume 

to be subjected by a quadratically varying yield stress 

distribution applied perpendicular to the faces of the yield 

zones to stop further opening of cracks. The problem is solved 

using complex variable method and analytical expressions are 

derived for stress intensity factors(SIF), crack tip-opening 

displacement (CTOD) under small scale yielding. Numerical 

results are obtained for yield zone length and crack tip-

opening displacement at each crack tip and reported 

graphically. These numerical results are compared with the 

results of two equal collinear straight cracks and/or a single 

straight crack under same mechanical loading conditions. 

 

Key wordsStress intensity factor, crack-tip-opening 

displacement, Dugdale model, multiple cracks. 
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1. Introduction 

Failure of engineering material due to cracks or crack like 

defects is a serious problem. Strength of the material reduces 

in the presence of such defects [1]. Therefore, to know the 

residual strength of the materials in the presence of cracks and 

modelling such a situation is important for the safety and 

durability of the structures. Dugdale model[2] was used 

widely to evaluate residual strength of the material containing 

crack(s). In most of the cases yield stress of the plate is 

assume to be constant, but in few cases yield stress of the 

plate be considered as linearly and quadratically varying. 

Kanninen[3] modified the model for linearly varying stress 

distribution, while Harrop[4] used Dugdale hypothesis to 

determine crack tip opening displacement when plastic zones 

are subjected to parabolic stress distribution. Theocaris et 

al.[5] used Dugdale model to evaluate load-bearing capacity 

of three different types of strain hardening materials and 

mechanical loading conditions. Dual scale crack model was 

discussed in [6], [7] for macro and microscopic cracks under 

linearly varying stress distribution. 

Dugdale model was not limited to just a single crack, but also 

used to solve multiple crack problems for variety of materials, 

different crack configurations and various mechanical loading 

conditions. Theocaris[8] used Dugdale model to determine the 

size of plastic zone at each crack tip of two collinear unequal 

straight cracks and also discuss the case of plastic zone 

coalescence at the internal tips of two cracks. A strip yield 

model for two equal straight cracks was also discussed by 

Collins et al.[9] to determine the length of yield zones and for 

three equal straight cracks by Hasan et al.[10]. On increasing 

stresses applied at the boundary of the plate yield zones 

between closely, located cracks were coalesced. Feng et 

al.[11] discussed the case of coalescence of plastic zones 

between two collinear straight cracks in a quasi-brittle 

material under plane stress distribution. Bhargava et al.[12] 

used Dugdale model to study the load bearing capacity of an 

infinite plate weakened by two straight collinear unequal 

asymmetrically situated cracks under quadratically varying 

stress distribution. 

Although now it is easy to find out closed form solution for a 

single Dugdale crack. But, still it is mathematically difficult to 

solve multiple crack problems. Various approaches have been 

used to simplify mathematical complexities for solving 

multiple crack problems. Complex variable method was used 

to determine crack-tip-opening displacement for two 

asymmetrically situated cracks with coalesced yield zones in 

[13], for four symmetrically situated cracks with coalesced 

interior yield zones in[14], for finite and semi infinite cracks 

[15], Weight function approach was used by Wu and Xu[16] 

and there are so many examples. 

The paper deals with a mathematically complex problem of 

three collinear straight cracks weaken an infinite elastic 

perfectly plastic plate. Cracks open in mode-I type 

deformation and yield zones develop at each crack tip due to 

stresses applied at the infinite boundary of the plate. It is 

observed by Gdoutos[17] that some of the structure fails at a 

stress which is well below the yield stress of the material, 

therefore the developed yield zones are assumed to be 

subjected to a quadratically varying stress distribution to 

arrest further opening of cracks. Closed form solution of the 

problem is obtained using complex variable method. 

Analytical expressions are obtained for SIF, components of 

displacement and CTOD at each crack tip. Numerical results 
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are obtained and analyzed for yield zone length, load required 

ratio and CTOD at each cracks tip. 

 

 

Nomenclature 

0,1,2,3)=(iDi  constants of the problem. 

E  Young’s modulus. 

),( kF  , ),( kE  , 

),,( 2 k  

incomplete elliptic integral of first, second 

and third kind respectively. 

1,2,3)=(iLi  length of original cracks. 

)(zPn  polynomial of degree n. 

)(x  crack tip-opening displacement at the 

crack tip x. 

111 ,, cba   original crack tips. 

cba  ,,  extended crack tips. 

)(),( tqtp  applied stresses on the yield zones. 

vu,  components of displacement. 
iyxz =  complex variable. 

'  
1

2
21 ,)(

2

1
NeNN i  and 2N

 
are the 

values of principal stresses at infinity,   

be the angle 

between 1N  and the ox-axis 

1,2,...,6)=(ii  length of yield zones. 

)(=)(

),(=)(

zz

zz

'

'


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complex potential functions. 

  Poisson’s ratio. 
  shear modulus. 

  









1

3
=  for the plane-stress, 43=  for 

the plane-strain. 

yyx XYX ,,  components of stress. 

  remotely applied stress at theinfinite 

boundary of the plate. 

ye  yield stress of the plate. 

 

 

2. Mathematical formulation 

In two dimensional theory of elasticity, components of 

stresses yyx XYX ,,  and displacements ( vu, ) may be 

expressed in terms of two complex potential functions 

)(),( zz   as given by Muskhelishvili[18] 

],)()(2[= zzYX yx  
 

(1) 

,)()()()(= zzzzziXY yy  
 

(2) 

.)()()()(=)(2 zzzzzivu  
 

(3) 

where line over a function or a variable denotes its complex 

conjugate and prime over the function denotes differentiation. 

Consider an infinite isotropic elastic-perfectly plastic plate 

occupy xy-plane containing n straight cuts iL  (i=1,2,3,…,n) 

lying along real axis. Let 
yy YX ,  be the stress distributions 

acting on the rims of the cracks, where superscript  ,   

denote the upper and lower rim of the cracks. Eqs.1 and 2 may 

be expressed in terms of two problems of linear relationships 

under the assumption 0=)(
0

iytylim
y




 , 

,=)()(   yy iXYtt 
 

(4) 

  yy iXYtt =)()(  ,   (5) 

on L, where i

n

i

LL 
1=

= . 

Closed form solution of the problems expressed in Eqs.4 and 

5 may be obtained using a detailed methodology given in [18] 

as: 
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(11) 

Constants )0,1,2,..,=( niDi  shown in Eq.11 are evaluated 

using loading condition at an infinite boundary of the plate 

and single-valuedness condition of displacement around the 

rims of the cracks or cuts, 

0.=)](
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(12) 

The mathematical formulation given above is taken from 

Muskhelishvili[18] for making the paper self-sufficient. 

 

 

3.Problem description 

Consider a multi-site damage (MSD) problem of three equal 

collinear straight cracks damage an infinite isotropic elastic-

perfectly plastic plate. The plate occupies the entire xy-plane. 

The cracks are exist in the plate symmetrically along the real 

axis, denoted by 321 ,, LLL  and occupy the intervals ],[ 11 ba 

, ],[ 11 cc , ],[ 11 ab  respectively. 
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Figure 1: Modified Dugdale model of three equal straight 

cracks 

 

 

Infinite boundary of the plate is subjected to a uniform stress 

distribution =yY . As a result, cracks are open in mode-I 

(opening mode) type of deformation and yield zones 

developed at each crack tip. These yield zones are denoted by 

1,2,3...6)=(ii  and occupy the intervals ),[],,( 11 bbaa  , 

),[],,(),,[],,( 1111 aabbcccc   respectively on ox-axis. It is 

mention in [17] that some of the structures fail at a stress, 

which is well below the yield stress of the plate. Therefore, a 

parabolic stress distribution yey
a

t
Y 

2

2

= , which is below the 

yield stress of the plate (say, a ), is applied on the rims of the 

yield zones to stop further opening of cracks, where t  is any 

point of the rims of the yield zones and ye  is the yield stress 

of the plate. Entire configuration of the problem is depicted in 

Fig.1. 

 

 

4.Solution of the problem 

Solution of the main problem defined in Section-3 is obtained 

by decomposing it into two sub-problems namely problem-A 

(tensile case, =yY ) and problem-B (yield case, 

yey
a

t
Y 

2

2

= ). These two sub-problems are solved using 

methodology given in Section-2. Furthermore, the solution of 

main problem is then obtained on superposing the solutions of 

two sub-problems. 

 

4.1 Sub-problem A: Tensile stress case 

4.1.1 Problem and its solution 

Development of yield zones at each crack tip due to remotely 

applied stresses at the infinite boundary of the plate has been 

discussed in this section. Consider a loaded infinite isotropic 

elastic perfectly plastic plate containing three equal collinear 

cracks. Normal tensile stresses, =yY , act at the infinite 

boundary of the plate, causes the opening of cracks in mode-I 

type deformation. Thus, yield zones are developed at each 

crack tip. The cracks with corresponding yield zones are 

denoted by ),(1 baR  , ),(2 ccR   and ),(3 abR . The 

complete geometrical configuration of the opening case is 

given in Fig.2. 

 
 

Figure 2: Configuration of the sub-problem-A 

 

 

Following are the boundary conditions for the opening case 

 <<,0,=,= xywhenXY yy  ,  (13) 

i
i

yy LxywhenXY 
3

1=

0,=0,==  ,  (14) 

Desired complex potential function )(zA  may be obtained 

using methodology given in Section-2 and boundary 

conditions given Eqs.13 and 14. Hence, for the sub-problem-A 

]
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)})(({

)(

1
[

2
=)( 22223  
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where 
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22 =,
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=

ca

ba
k

kF

kE




  and )(),( kEkF  are complete 

elliptical integrals of first and second kind respectively as 

defined in [19]. 

 

4.1.2 Stress intensity factor 

Closed form solution for opening mode stress intensity factor 

at the crack tip tz =  may be obtained using the formulae 

given in [9] 

).(22= ztzlimK
tz

I  
  

(16) 

Therefore, analytical expressions for stress intensity factor at 

each exterior crack tip a, b and c may be written using Eqs. 

15  and 16  as, 
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(19) 

Stress intensity factors at each crack tip given in Eqs.17 - 19 

are same as given by Tada[20]. 

 

4.1.3 Components of displacement 

Analytical expressions for the displacement components 

)(xv  at cracks tips ba  ,  and c  due to stresses, =yY , 

(acting at the infinite boundary of the plate) may be obtained 

using Eqs. 3  and 15 . Closed form expressions for )(xv  may 

be written as, 
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4.2 Sub-Problem B: Yield stress case 

4.2.1 Problem and its solution 

Consider the case, when three collinear straight cracks with 

yield zones (developed due to applied stresses at the infinite 

boundary of the plate, as discussed in Section-4.1) exist in an 

infinite elastic perfectly plastic plate. It is mention in [17] that 

some of the structures fail at a stress, which is well below the 

yield stress of the material. Therefore, a quadratically varying 

yield stress distribution yey
a

t
Y 

2

2

= , which is below the yield 

stress of the plate, is applied on the rims of the yield zones in 

order to seize the growth of cracks. The entire configuration 

of the sub-problem B is given in Fig.3. 

 

 
 

Figure 3: Configuration of the sub-problem-B 

 

 

The problem is solved under the following boundary 

conditions 

.<<,0,=0,=  xywhenXY yy  
(23) 
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Using the boundary conditions given in Eqs. 23  and 24  and 

methodology shown in Section-2, desired complex potential 

function )(zB  for the sub-problem B may be written as, 
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In order to derive analytical expression for )(zB , the 

integral shown on the right-hand side of the Eq.25 must be 
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Constants 21,DD  and 3D  appear in Eq.26 are evaluated using 

condition of single-valuedness of displacement around the 

rims of the cracks. However, due to symmetrical loading on 

the rims of yield zones, constants 0=1D  and 0=3D . 

Furthermore, using Eqs.12 and 25 one can evaluate 
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After a long mathematical calculation the final complex 

potential function )(zB  for closing case may be written 

using Eqs.25 - 27 as 
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4.2.2 Stress intensity factor 

Stress intensity factors at cracks tips bat  ,=  and c  are 

expressed using the Eqs.16 and 28 as
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4.2.3 Component of displacement 

Rims of the yield zones are subjected to a quadratically 

varying stress distribution ye
a

t


2

2

, therefore, component of 

displacement at the crack tips 111 ,, cba   may be written as  
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(See Appendix) 

 

 

5 Applications and illustrations 

5.1 Growth of yield zone and load bearing capacity 

Singular terms vanish at each crack tip according to Dugdale’s 

assumption that the stresses remain finite at each crack tip. It 

may also be said that the stress intensity factor at each crack 

tip cbax  ,,=  must vanish i.e. 0=)()( x
B
Ix

A
I KKK  . 

As a result, three non-linear equations are obtained and 

written as 
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Yield zone length at each crack tip is then evaluated in terms 

of applied stress and yield stress. All the numerical results 

reported in this section have been obtained by using Eqs. 

35,36 and 37. Behaviour of yield zone at each crack tip has 

been studied on increasing stresses act at the infinite boundary 

of the plate. 

 

5.1.1 Three equal collinear straight cracks 

A case study is presented in this section for an infinite 

isotropic plate under small scale yielding. Fig.4 shows the 

variation between normalized yield zone length,
3

6

L


, to 

applied load ratio, 
ye

 , at crack tip 1a . Value of 
11

12
=

cb

c


  

denotes the ratio between half crack length of middle crack 

and the distance of mid point of two neighbouring cracks from 

the origin. It has been observed from the Fig.4 that the length 

of yield zone increases as stresses applied at the boundary of 

the plate increased. For a value of normalized yield zone 

length (say 0.2), plate can bear more load when the cracks are 

situated far away from each other (say 0.1= ) and 

comparatively less load when cracks are situated close to each 

other (say 0.9= ). 

The numerical results are compared with the results of two 

equal cracks having same position on real axis as two outer 

cracks in Fig.1 and same mechanical loading conditions. 

 

 
 

Figure 4: Normalized yield zone length 
3
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
 to applied 

stress .)( a
ye
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Figure 5: Normalized yield zone length 
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 to applied 
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It may be noted that the load ratio at the outer crack tip 1= at , 

when three cracks are situated far away from each other, is 

same as the load ratio at outer crack tip of two equal cracks. 

This means outer cracks are very less affected by internal 

crack when 0.1=  and highly affected when 0.9= . 

 

 
 

Figure 6: Normalized yield zone length 
2

4
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
 to applied 

stress .)( c
ye

  

 

 
 

Figure 7: a
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
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Ea





3

1)(
 

Same variation is plotted at the crack tip 1= bt  in Fig.5. As 

far as behaviour of load ratio and yield zone length is concern 

it is same but yield zone length 5  is bigger than the yield 

zone length 6  as expected. Furthermore, when 0.1=  

yield zone length at crack tip 1= bt  for three equal cracks and 

two equal cracks are same but a significant difference in yield 

zone length is seen when 0.9= . It happens because when 

cracks situated closer to each other there is no crack between 

two equal cracks but there is an internal crack in case of three 

equal cracks. 

Fig.6 shows the variation between normalized yield zone 

length and applied load ratio at the crack tip 1= ct . It may be 

noted that the quadratically varying stress distribution, 

ye
a

t


2

2

, (applied on the rims of the yield zone) is very low at 

0.1=  due to large value of 2a . As a results length of yield 

zone, || 1cc , is very large. But when cracks are assume to be 

located close to each other than due small value of 2a  

quadratically varying stress distribution is comparatively high, 

hence length of yield zone, || 1cc , is less in comparison to 

the case of 0.1= . 

The results so obtained are compared with the results of a 

single crack of length 12c  under same mechanical loading 

conditions. Length of yield zone 4  is comparatively less in 

case of three equal cracks when 0.7=  and bigger when 

0.1= . This is because outer cracks suppress middle crack 

when situated very close. Hence, yield zone length at the tips 

of middle crack is small due to the presence of outer cracks. It 

may be noted that the effect of outer cracks on the inner crack 

can be measure when all cracks are situated close to each 

other. 

 

5.2 Crack-tip opening displacement 

Using complex variable method, analytical expressions are 

obtained for crack tip opening displacement )(x  at each 

crack tip, 111 ,,= cbax   using formulae given in [6], [11], 
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(38) 

Thus the analytical expressions for CTOD at each inner crack 

tip 1a , 1b  and 1c  be evaluated by putting the 

corresponding values of )(xv  and )(xvye


 from Eqs.20 - 22 

and 32 - 34 into Eq. 38, one may found three non-linear 

equations for crack tip opening displacement(CTOD) as: 
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5.2.1 Three equal collinear straight cracks 

Consider three equal cracks weaken an isotropic infinite plate 

as shown in fig.1. This section deals with the normalized 

CTOD, 
yeiL

Ex



 )(
, at each crack tip due to remotely applied 

stresses at the boundary of the plate. Fig.7 shows the variation 

between applied load ratio 
ye

  and normalized CTOD 

yeL

Ea





3

1)(
 at the crack tip 1a . 
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It has been observed that opening of cracks increases as 

stresses applied at the boundary of the plate increase. Opening 

of cracks at tip 1a  is larger when outer cracks are situated 

close to the middle crack ( 0.9= ) in comparison to situation 

when outer cracks are placed far away from middle crack (

0.1= ). 

Same variation has been plotted for crack tip 1b , shown in 

fig.8, when 0.1=  insignificant difference is seen between 

the results of three equal cracks and two equal cracks, means 

opening of cracks at tip 1b  is almost same in case of outer 

cracks placed away from the middle cracks but when 0.9=  

the difference between the opening of cracks is significantly 

different. 

Opening of central crack is compared with the opening of an 

equivalent single crack of length 12c  (fig.9) under same 

mechanical loading conditions using relation given in [4]. 

Opening of central crack is larger in case of 0.1=  in 

comparison to the case when 0.7=  under the influence of 

outer cracks. When 0.1=  single crack opens more than the 

central crack of three equal cracks due to the existence of two 

neighbouring cracks. Furthermore, almost same opening is 

shown by central crack and equivalent single crack when 

0.7=  because entire configuration of three cracks behave 

like as a single crack (since they are close to each other). 

 

 

6.Validation of mathematical expressions 

Mathematical expressions given in Eq.35 for remotely applied 

stress and in Eq.39 for CTOD at the crack tip 1= at  after 
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putting 1= bb , 1= cc  and 0== cb  agreed with the results 

obtained by Harrop[4] for a single crack of length 12a  when 

yield zones are subjected to quadratically varying stress 

distribution. 

 

 

7.Conclusion 

Dugdale model has been modified for three equal collinear 

straight cracks for quadratically varying stress distribution. 

Closed form solution is obtained for stress intensity factor and 

crack tip-opening displacement using complex variable 

method. Load bearing capacity of an infinite plate is examined 

in the presence of three equal collinear straight cracks with 

respect to yield zone length. Numerical results are obtained 

for applied load ratio, yield zone length and crack tip-opening 

displacement. The results are compared with the results of two 

equal symmetrically situated cracks when yield zone are 

subjected to parabolic yield stress distribution. 
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Appendix 

The quantities used in the above expressions are 
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