Operators induced by fuzzy stack on a fuzzy topological space

Rashmi Singh

Assistant Professor Amity Institute of Applied Sciences Amity University Uttar Pardesh, India rsingh7@amity.edu

Sonal Mittal

Research Scholar Amity Institute of Applied Sciences Amity University Uttar Pardesh, India mittalsonal316@yahoo.com

Abstract -

In the present paper we introduce operators \emptyset_s , ψ_s induced by given fuzzy stack S and fuzzy topology τ . With the help of operators and the collection τ^s , a new fuzzy topology τ^{S^*} is obtained. It is shown that $\tau \subseteq \tau^s \subseteq \tau^{S^*}$. We have also shown various relations between the fuzzy stack oriented collections and given fuzzy topology. A suitability condition is applied on fuzzy stack, which makes the fuzzy topology better defined.

Key words - Fuzzy grill, \emptyset_S - operator, ψ_S - operator

1.INTRODUCTION

Choquet [2] introduced the notion of grills in general topology. In fuzzy setting, the notion of fuzzy grill and fuzzy stack was introduced by K.K. Azad[1]. Since then fuzzy grills and fuzzy stacks are studied by many authors in topological proximity and nearness spaces [4, 5, 8, 10, 12]. In 2007, Roy and Mukherjee [5] introduced an operator defined by a grill on a topological space. Das & Mukherjee [4] introduced an operator by fuzzy grill on fuzzy topological space and showed that it satisfy Kuratowski closure axioms. In 2012, Min and Kim [11] studied operators induced by stacks on a topological space. In the present paper, we introduced operators with the help of fuzzy stack on a given fuzzy topology. It is obviously a generalized notion of operator defined by fuzzy grill on a fuzzy topological space in [4]. In section 3, the operator \emptyset_s is defined with the help of a fuzzy stack S and fuzzy topology τ and some of the basic properties are studied. Further the operator ψ_s is defined by operator \emptyset_s . The collection τ^s of fuzzy sets induced by operator ψ_s are studied. In particular, we show that collection of fuzzy sets τ^s induced by ψ_s is a super collection of given fuzzytopology τ . In section 4, we applied some suitability condition on fuzzy stack. If S is a fuzzy stack on I^X and τ is a fuzzy topology on I^X then, for $V \in \tau$, $B \notin S \Rightarrow V - B \in \tau^s$, it is shown with the help of suitability condition that $\tau^s = \{V - B : V \in \tau, B \notin S\}$ where $V, B \in I^X$.

2.PRELIMINARIES

A fuzzy set *A* in a set *X* is a function on *X* in to the closed unit interval [0,1] of the real line. Support of $A = \{x \in X: A(x) > 0\}$ is denoted by Supp *A*. The fuzzy sets in *X* taking on the constant values 0 and 1 are denoted by O_X and I_X respectively. For $A, B \in I^X$, $A \leq B$ if $A(x) \leq B(x)$ for each $x \in X$. By AqB, we mean that *A* is quasi - coincident with

Bi.e.AqB implies A(x) + B(x) > 1 for some $x \in X$. The negations of these statements are denoted by $A\overline{q}B$. A fuzzy singleton or a fuzzy point with support X and value $p(0 is denoted by <math>x_p$. The collection of all open q - nbds of any fuzzy point x_p is denoted by $Q(x_p)$. A subfamily β of the fuzzy topology τ of an fts (X,τ) is a base for τ iff for each fuzzy singleton x_p in (X,τ) and for each open q - nbd U of x_p , x_pqB for some $B \in \beta$ with $B \le U$. A fuzzy point x_p is called an adherence point of fuzzy set A if every open q - nbd of x_p is a quasi - coincident with A and Cl(A) is the union of all adherence points of A.M(A) is set of molecules of I^X in $A.VM(\downarrow A) = A$, for $A \in I^X$ where $\downarrow A = \{b \in P: \exists a \in A s.t.b \le a\}$, P is a Poset.

3 COLLECTION τ^s INDUCED BY FUZZY STACK S

Definition 3.1 - Let (I^X, τ) be a fuzzy topological space and S be a fuzzy stack on I^X . For $A \in I^X$, a mapping $\emptyset_S : I^X \to I^X$ denoted by $\emptyset_S(A) = \bigvee \{x_p : A * U \in S \text{ for all } U \in Q(x_p)\}$ is called operator associated with fuzzy stack S and fuzzy topology on I^X .

Remarks 3.2 - For $A \in I^{Y}$, $x_p \nleq \emptyset_{S}(A)$ iff $\exists U \in Q(x_p)$ such that $U * A \notin S$.

Proposition 3.3 - Let (I^{Y}, τ) be a fuzzy topological space and S be a fuzzy stack on I^{X} .

- (i) For $A, B \in I^X$, $A \le B \Rightarrow \emptyset_S(A) \le \emptyset_S(B)$.
- (ii) If S_1 and S_2 are two fuzzy stack on I^X with $S_1 \subseteq S_2$, then $\emptyset_{S_1}(A) \le \emptyset_{S_2}(A)$ for $A \in I^X$.
- (iii) For any fuzzy stack Son I^X and $A \in I^X$, if $A \notin S$, then $\emptyset_S(A) = 0_X$.

Proof -

- (i) Let $x_p \le \emptyset_S(A)$, then for all $U \in Q(x_p)$, $A * U \in S$. Since $A \le B \Rightarrow A * U \le B * U$; but S is fuzzy stack so $B * U \in S$ for all $U \in Q(x_p)$, this implies $x_p \le \emptyset_S(B)$.
- (ii) Suppose $x_p \le \emptyset_{S_1}(A)$, this implies that for all $U \in Q(x_p)$, $A * U \in S_1 \subseteq S_2$, then $x_p \le \emptyset_{S_2}(A)$.
- (iii) Let $x_p \le \emptyset_S(A) \& A \notin S \Rightarrow$ for all $U \in Q(x_p)$, $A * U \in S$, so we arrive at a contradiction. Thus $\emptyset_S(A) = \theta_X$ if $A \notin S$.

Remark 3.3.1 - $\emptyset_S(\theta_X) = \theta_X$

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 19 (2015) pp 39979-39982 © Research India Publications. http://www.ripublication.com

Example 3.3.2 - $\emptyset_{S}(1_{X}) \neq 1_{X}$

We will prove $\exists \ a \ x_p$ such that $x_p \not< \emptyset_S(I_X)$ but $x_p \le I_X$. Let $X = \{a, b\}$, $\tau = \{c, 0_X, I_X\}$ where c(a) = 0.2, c(b) = 0.3. Let $S = \{1_X all \ fuzzy \ sets \ T \ s.t. \ 0.3 \le T(a) \le 1, 0.4 \le T(b) \le 1\}$, here, S is a fuzzy stack and τ is a fuzzy topology.

Proposition 3.4 - Let (I^X, τ) be a fuzzy topological space and S be a fuzzy stack on I^X . Then, for $A \in I^X$.

- (i) $\emptyset_{S}(A) \leq cl(A)$
- (ii) $cl(\emptyset_S(A)) \leq \emptyset_S(A)$

Proof -

- (i) Suppose that $x_p \le cl(A)$, then there exist an open $q nbd\ U$ of x_p in X s.t. $U\overline{q}A$, that is, $A(y) + U(y) \le 1$ for each $y \in X$ and hence $A*U = O_X \notin S$, then $x_p \le \emptyset_S(A)$.
- (ii) Let $x_p \le cl$ ($\mathscr{O}_S(A)$ and $U \in Q$ (x_p), then $\mathscr{O}_S(A)qU$ that is, there exist $y \in X$ such that $\mathscr{O}_S(A)(y) + U(y) > 1$, let $\mathscr{O}_S(A)(y) = t$, this implies $y_t \le \mathscr{O}_S$ (A) and $U \in Q$ (y_t) $\Rightarrow A*U \in S \Rightarrow x_p \le \mathscr{O}_S(A)$.

Corollary 3.4.1 - For a fuzzy topological space (I^X, τ) , $\emptyset_{S}(\emptyset_{S}(A)) \leq \emptyset_{S}(A)$ where $A \in I^X$.

Proof - By 3.4 (i) $\mathcal{O}_{S}(\mathcal{O}_{S}(A)) \leq cl(\mathcal{O}_{S}(A))$ and by 3.4 (ii) $cl(\mathcal{O}_{S}(A)) \leq \mathcal{O}_{S}(A)$, this implies $\mathcal{O}_{S}(\mathcal{O}_{S}(A)) \leq \mathcal{O}_{S}(A)$.

Proposition 3.5 - For fuzzy topological space (I^X, τ) , \emptyset_S is closed for $A \in I^X$.

Proof - By 3.4 (ii), $cl(\mathscr{O}_S(A)) \leq \mathscr{O}_S(A)$ and by definition of closure, $\mathscr{O}_S(A) \leq cl(\mathscr{O}_S(A))$. Then $cl(\mathscr{O}_S(A)) = \mathscr{O}_S(A)$. This shows that $\mathscr{O}_S(A)$ is closed for $A \in I^X$.

Definition 3.6 - Let S be a fuzzy stack on fuzzy topological space (I^X, τ) . We define $\psi_S : I^X \to I^X$ by $\psi_S(A) = A \lor \mathcal{O}_S(A)$ where $A \in I^X$.

Proposition 3.7 - The above defined operator ψ_S satisfy the following conditions

- (i) $\psi_S(\theta_X) = \theta_X$
- (ii) $A \le \psi_{S}(A)$ for $A \in I^{X}$
- (iii) For $A, B \in I^X, A \le B \Rightarrow \psi_S(A) \le \psi_S(B)$
- (iv) For $A, B \in I^X$, $\psi_S(A \wedge B) \le \psi_S(A) \wedge \psi_S(B)$

Proof - (i) & (ii) Follows from definition

- (iii) For $A, B \in I^X$, $\psi_S(A) = A \lor \emptyset_S(A) \le B \lor \emptyset_S(B) = \psi_S(B)$, so $A \le B$ implies $\psi_S(A) \le \psi_S(B)$.
- (iv) For A, $B \in I^Y$, $A \wedge B \leq A$, B. Using proposition 3.7, $\psi_S(A \wedge B) \leq \psi_S(A)$, $\psi_S(B)$, which gives $\psi_S(A \wedge B) \leq \psi_S(A) \wedge \psi_S(B)$.

Example 3.7.1 - Let (I^X, τ) be a fuzzy topological space where $X = \{a, b\}$, $\tau = \{c, \theta_X, I_X\}$, c(a) = 0.5, c(b) = 0.2 S be a fuzzy stack containing I_X and all fuzzy set S s.t. S(a) > 0.1, S(b) > 0.2, we will prove that $\psi_S(A \land B) \neq \psi_S(A) \land \psi_S(B)$, $A, B \in I^X$ s.t. Let A(a) = 0.1, A(b) = 0.5, B(a) = 0.3, B(b) = 0.3. Here $A \notin S$ so $\emptyset_S(A) = \theta_X$, thus $\psi_S(A) = A \lor \emptyset_S(A) = A$. $A \land B \lor B \lor B$ so $\emptyset_S(A) \land B \lor B$

B) = θ_X , thus $\psi_S(A \wedge B) = (A \wedge B)$, B(a) = 0.3, B(b) = 0.3; $\emptyset_S(B) = a_{p_1} \vee b_{p_2}$ where $p_1 \leq 0.5$, $p_2 \leq 0.8$, $\psi_S(B)(a) = (B \vee \emptyset_S(B))(a) = 0.5$, $\psi_S(B)(b) = 0.8$, $\psi_S(A \wedge B) \neq \psi_S(A) \wedge \psi_S(B)$.

Example 3.7.2 - Let(I^X , τ) be a fuzzy topological space where $X = \{a, b\}$, $\tau = \{c, \theta_X, 1_X\}$, c(a) = 0.5, c(b) = 0.2. Let S be a fuzzy stack containing I_X and all fuzzy set S such that S(a) > 0.1, S(b) > 0.2. We will prove that $\psi_S(A \vee B) \neq \psi_S(A) \vee \psi_S(B)$, $A, B \in I^X$ such that Let A(a) = 0.1, A(b) = 0.3, B(a) = 0.3, $B(b) = 0.1 \cdot \psi_S(A) = A \vee \emptyset_S(A) = A \vee \theta_X = A$, similarly $\psi_S(B) = B \vee \emptyset_S(B) = B(\because B \notin S)$. But $(A \vee B)(a) = 0.3$, $(A \vee B)(b) = 0.3$, $(A \vee B)(b)$, $(A \vee B)(b)$, (A

Definition 3.8 - Let (I^X, τ) be a fuzzy topological space and S be fuzzy stack on I^X , then $\tau^S = \{U \in I^X : \psi_S(I_X - U) = (I_X - U)\}$

Proposition 3.9.1 - Let (I^X, τ) be fuzzy topological space and S be a fuzzy stack on I^X . Then

- (i) $\theta_{X}, 1_{X} \in \tau^{S}$
- (ii) If $U_p \in \tau^S$ for $p \in J$, then $V_p \in \tau^S$

Proof -

- (i) Since $\psi_S(\theta_X) = \theta_X$ and $\psi_S(\theta_X) = \theta_X \Rightarrow \theta_X, \ \theta_X \in \tau^S$.
- (ii) Suppose $U_p \in \tau^S$ for all $\propto \in J$. Let $U_p \in \tau^S$, then $\psi_S(1_X U_p) = 1_X U_p$ and so $(1_X U_p) \vee \emptyset_S(1_X U_p) = (1_X U_p)$. So $\emptyset_S(1_X U_p) \leq I_X U_p$. This shows $\emptyset_S(1_X \vee U_p) \leq \emptyset_S(1_X U_p) \leq I_X U_p$, which gives $\emptyset_S(1_X \vee U_p) \leq \wedge (1_X U_p) = (1_X \vee U_p \cdot \text{So}\psi_S(1_X \vee U_p)) = (1_X \vee U_p \cdot \text{So}\psi_S(1_X \vee U_p))$. Hence $\vee U_p \in \tau^S$.

Remark 3.9.2 - Let (I^X, τ) be a fuzzy topological space and S be a fuzzy stack on I^X , elements of τ^S are said to be $\tau^S - open$. If the complement of a fuzzy set is $\tau^S - open$, then fuzzy set is called $\tau^S - closed$.

Theorem 3.10 - Let(I^X , τ) be a fuzzy topological space and S be a fuzzy stack on I^X . Then for $V \in \tau$ and $A \notin S$, $V - A \in \tau^S$.

Proof - Suppose that U = V - A s.t. $V \in \tau$ and $A \notin S$. We show that $\emptyset_S(I_X - U) \le I_X - U$. Let there exists a fuzzy point x_p such that $x_p \le \emptyset_S(I_X - U)$, but $x_p \le I_X - U$, which implies that for each $W \in Q(x_p)$, $W + (I_X - U) - I \in S$. Since $W + I - U - I = W - U \in S$, $W - (V - A) \in S$, but $x_p \le I_X - U \Rightarrow p > (I_X - U)(x) = I - (V - A)(x) \Rightarrow p + V(x) > I + A(x) \ge I$. In fact $V(x) \le A(x)$ is not possible since in that $\cos(V - A)(x)$.

[In fact $V(x) \le A(x)$ is not possible since in that case(V - A)(x) = 0, this implies I - (V - A)(x) = 1 - 0 < p. Thus V(x) > A(x) and (V - A)(x) = V(x) - A(x). Then $P > I - (V - A)(x) = I - V(x) + A(x) \Rightarrow p + V(x) > I + A(x) \ge I$.]

Hence $V \in Q(x_p)$. As $V - (V - A) \in S$ but $V - (V - A) \le A \Rightarrow A \in S$, contradiction to $A \notin S$. Then $\emptyset(1_X - U) \le 1_X - U$. Thus $V - A \in \tau^S$.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 19 (2015) pp 39979-39982 © Research India Publications. http://www.ripublication.com

Corollary 3.10.1 - Let S be a fuzzy stack on (I^X, τ) , then $\tau \subseteq \tau^{S}$

Definition3.11 -

we define $i_{\tau S}: I^X \to I^X, c_{\tau S}: I^X \to I^X$, $A \in I^X$ such that $i_{\tau S}(A) = V\{U \in I: U \leq A \text{ and } U \tau^S\}, \quad c_{\tau S}(A) = \Lambda$ ${F \in I^X : A \leq F \text{ and } I_X - F \in \tau^S}.$

Remark 3.11.1 - Let(I^X , τ) be a fuzzy topological space and Sbe a fuzzy stack on I^X . For $A \in I^X$, $x_p \leq i_{\tau^S}(A)$ if and only if there exists a τ^S —open set U such that $x_n \le U$ and $U \le A$.

Corollary 3.11.2 - Let (I^X, τ) be a fuzzy topological space and S be a fuzzy stack on I^X . If for $A \in I^X$, $x_p \le i_r s(A)$, then there exist $W \in Q(x_n)$ such that $(I_X - A) * W \notin S$.

Proof- Let $x_n \le i_{\tau^S}(A)$ then there exists a τ^S -open set U such that $x_p \le U$ and $U \le A$. Then $I_X - A \le I_X - U =$ $\psi_S(I_X - U)$. But $x_p \le \emptyset_S(I_X - U) \le (1_X - U)$. So, there exists $W \in Q(x_p)$ such that $(1_X - U) * W \notin S \Rightarrow (1_X - A) * W$

Theorem 3.12 - Let (I^X, τ) be a fuzzy topological space and S be a fuzzy stack on I^X . For $A, B \in I^X$

- $i_{\tau}s(0_X) = 0_X, i_{\tau}s(1_X) = 1_X$ (i)
- (ii) $i_{-S}(A) \leq A$
- if $A \leq B$, then $i_{\mathcal{S}}(A) \leq i_{\mathcal{S}}(B)$ (iii)
- (iv) $i_{\tau S}(i_{\tau S}(A)) = i_{\tau S}(A)$
- (v) $i_{\tau}s(A \wedge B) = i_{\tau}s(A) \wedge i_{\tau}s(B)$

Theorem 3.13 - Let (I^X, τ) be a fuzzy topological space and Sbe a fuzzy stack on I^X . For $A, B \in I^X$,

- (i) $c_{\tau}s(1_X) = 1_X$, $c_{\tau}s(0_X) = 0_X$
- $A \leq c_{\tau} s(A)$ (ii)
- If $A \leq B \Rightarrow c_{\tau}s(A) \leq c_{\tau}s(B)$ (iii)
- $c_{\tau}s(c_{\tau}s(A)) = c_{\tau}s(A)$ (iv)
- $c_{\tau S}(A \lor B) = c_{\tau S}(A) \lor c_{\tau S}(B)$ (v)

Remark 3.13.1 - c_rs is a Kuratowski closure operator

Theorem 3.14 - Let (I^X, τ) be a fuzzy topological space and Sbe a fuzzy stack on I^X . For $A, B \in I^X$, A is τ^S -closed iff $\psi_{\varsigma}(A) = A$

Proof - For $A \in I^X$, A is τ^S -closed iff $I_X - A$ is τ^S -open $\inf \psi_{S}(1_{X} - (1_{X} - A)) = (1_{X} - (1_{X} - A)) \text{ iff } \psi_{S}(A) = A$

Theorem 3.15 - Let (I^X, τ) be a fuzzy topological space and S be a fuzzy stack on I^X . For $A \in I^X$,

- $A \notin S \Rightarrow I_X A \in \tau^S$ $\emptyset_S(A) \text{ is } \tau^S closed$ (i)
- (ii)
- $\psi_S(A) \le c_{\tau^S}(A)$ (iii)

Proof -

Let $A \notin S$, then $\mathscr{O}_S(A) = \mathscr{O}_X$, $\psi_S(I_X - (I_X - A)) = \psi_S(A) = A$ (i) $\vee \mathscr{O}_{S}(A) = A = I_{X} - (I_{X} - A)$, this implies $I_{X} - A \in \tau^{S}$.

- (ii) Since $\psi_{S}(\emptyset_{S}(A)) = \emptyset_{S}(A) \vee \emptyset_{S}(\emptyset_{S}(A)) = \emptyset_{S}(A)$, which gives $\mathscr{O}_{S}(A)$ is τ^{S} - closed.
- (iii) Since $\psi_S(A) \leq \psi_S(c_{\tau^S}(A)),$ $\text{have}\psi_{\varsigma}(A) \leq$ $\psi_{S}(c_{\tau}s(A)) = c_{\tau}s(A)$

Definition 3.16 - Define $\tau^{S^*} = \{A \in I^X : c_{\tau^S}(I_X - A) = (I_X - A)\}$ A)} also τ^{S^*} is a fuzzy topology on I^X , where $c_{\tau S}$ is a Kurotowski closure operator.

Note 3.16.1 - $\tau \subseteq \tau^{S^*} \subseteq \tau^S$

Example 3.16.2 - In an fuzzy topological space (I^X, τ) , the trivial fuzzy stack is $I^{Y}/\{\theta_{Y}\}$. If we take $S=I^{Y}/\{\theta_{Y}\}$, this implies for $A \in I^X$, $\emptyset_S(A) = \psi_S(A) = cl(A) = c_{rS}(A)$, In this $case \tau = \tau^{S^*} = \tau^S$.

Proposition3.17 - Let (I^X, τ) be a fuzzy topological space and S_1 and S_2 be fuzzy stack on I^X . For $A \in I^X$,

- If $S_1 \subseteq S_2$, then $\tau^{S_2} \subseteq \tau^{S_1}$
- If $S_1 \subseteq S_2$, then $c_{\tau S_1}(A) \le c_{\tau S_2}(A)$ (ii)
- $\tau^{S_2}^* \subseteq \tau^{S_1}^*$, where $\tau^{S^*} = \{A : c_* S(1_X A) = (1_X A)\}$ (iii)

Proof -

- Since $\tau^S = \{A: \psi_S(1_X A) = (1_X A)\}$. Let $U \in \tau^{S_2}$, (i) this implies $\psi_{S_1}(I_{X^-} U) = (I_{X^-} U) \Rightarrow \emptyset_{S_2}(I_{X^-} U)$ $U) \le (1_X - U) \text{but} S_1 \subseteq S_2$, so $\emptyset_{S_1} (1_X - U) \le \emptyset_{S_2} (1_X - U)$ $U) \leq (1_X - U) \Rightarrow \psi_{S_I}(1_X - U) = (1_X - U) \Rightarrow U \in \tau^{S_I}$
- Follows from definition. (ii)
- (iii) Let $U \in \tau^{S_2}^*$, then $c_{\tau^{S_2}}(1_X - U) = (1_X - U)$ So, $c_{\tau^{S_1}}(1_X - U)$ $U \le c_r s_2(1_X - U) = (1_X - U)$, which gives $c_r s_1(1_X - U)$ $U) \le (l_X - U) \text{but}(l_X - U) \le c_{\tau} s_1(l_X - U) \Rightarrow c_{\tau} s_1(l_X - U)$ $= (1_X - U) \Rightarrow U \in \tau^{S_I}^*$

4. FUZZY TOPOLOGY SUITABLE FOR FUZZY **STACK**

In this section, fuzzy stack satisfying a certain condition are considered. We applied some suitable condition on fuzzy stack S which makes collection τ^{S} suitable and compatible. Under this suitability condition, imposed on concerned stack, the collection τ^S will become $\{V - \beta : V \in \tau, B \notin S\}$.

Definition 4.1 - Let S be a fuzzy stack on fuzzy on fuzzy topological space (I^{Y}, τ) . Then the fuzzy topology τ is suitable for fuzzy stack S, if corresponding to each $x_{\alpha} \leq A$, there exit $U \in Q(x_n)$ such that $A * U \notin S$, then $A \notin S$, for $A \in I^X$.

Definition 4.2 - For every fuzzy set A in X, we define fuzzy set \widetilde{A} by $\widetilde{A} = \{x_{\alpha} \le A / x_{\alpha} \le \emptyset_{S}(A)\}.$

Remark 4.2.1 - $\widetilde{A} \wedge \mathscr{O}_{S}(A) = \mathcal{O}_{X}$, for $A \in I^{X}$.

Remark 4.2.2 - $\widetilde{A} \wedge \mathscr{O}_{S}(\widetilde{A}) = 0_{X}$, for $A \in I^{X}$.

Proposition 4.3 - For any fuzzy set $A, A = \widetilde{A} \lor (A \land \emptyset_S(A))$.

Proposition 4.4 - Let S be a fuzzy stack on fuzzy topological

 (I^X, τ) . Then τ is suitable for fuzzy stack S iff $A \wedge \emptyset_S(A) = \theta_X$, implies $\emptyset_S(A) = \theta_X$.

Proof - Since τ is suitable for fuzzy stack S. Let $A \land \mathscr{O}_S(A) = \mathscr{O}_X$, so for each $x_\alpha \leq A$, we have $x_\alpha \not\leq \mathscr{O}_S(A)$. Hence there exist $U \in Q$ (x_α) such that $A * U \notin S$. Since τ is suitable for S, $A \notin S \Rightarrow \mathscr{O}_S(A) = \mathscr{O}_X$. Converselyif $A \land \mathscr{O}_S(A) = \mathscr{O}_X \Rightarrow A \notin S$. So τ is suitable for S. This completes the proof.

Proposition 4.5 - If $A \wedge \mathscr{O}_S(A) = \mathscr{O}_X$, then $\mathscr{O}_S(\widetilde{A}) = \mathscr{O}_X$.

Remark 4.5.1 - If τ is suitable for S, then $\mathscr{Q}_S(\widetilde{A}) = \theta_X$.

Proposition 4.6 - For $A \in I^X$, if $\mathscr{O}_S(A \wedge \mathscr{O}_S(A)) = \mathscr{O}_S(A)$, Then if $A \wedge \mathscr{O}_S(A) = \mathcal{O}_X \Rightarrow \mathscr{O}_S(A) = \mathcal{O}_X$.

Proof - Let $A \wedge \mathscr{O}_S(A) = \mathscr{O}_X$. By given $\mathscr{O}_S(A) = \mathscr{O}_S(A \wedge \mathscr{O}_S(A)) = \mathscr{O}_S(\mathscr{O}_X)$.

Proposition 4.7 - For every set *A* in *X*, if *A* contains no non empty set *B* with $B \leq \emptyset_S(B) \Rightarrow A \notin S$. Then $\widetilde{A} \notin S$ for $A \in I^X$.

Proof - For $A \in I^X$, $\widetilde{A} = \{x_\alpha \le A : x_\alpha \not\le \emptyset_S(A)\}$. We claim that \widetilde{A} does not contain any non empty fuzzy set B s.t. $B \le \emptyset_S(B)$. Then, $\widetilde{A} \notin S$, if possible, let B be non empty fuzzy set contained in \widetilde{A} such that $B \le \emptyset_S(B)$. Let $x_\alpha \le B$, then $x_\alpha \le \widetilde{A}$. But $B \le \widetilde{A}$ and $\sup_{\alpha \le S} \sup_{\alpha \le S} \sup$

Theorem 4.8 - Let (I^X, τ) be a fuzzy topological space and S be a fuzzy stack on I^X such that τ is suitable of S, then τ^S -closed fuzzy set can be expressed as a join of fuzzy set which is closed in (I^X, τ) and a fuzzy set which is not in fuzzy stack S.

Proof - Suppose A is a τ^S —closed set, then $A = A \vee \mathscr{O}_S(A)$, this implies $\mathscr{O}_S(A) \leq A$. Using proposition 4.3, $A = \widetilde{A} \vee \mathscr{O}_S(A)$, but $\widetilde{A} \notin S$.

Theorem 4.9 - Let (I^X, τ) be a fuzzy topological space and S be a fuzzy stack on I^X such that τ is suitable for S. Let $\sigma = \{0_X, I_X\}$ denote fuzzy indiscrete topology on I^X , then $\tau^S = \sigma^S \mathbf{U} \tau$.

Proof - Since $\sigma = \{ \theta_X, I_X \}$ is fuzzy indiscrete topology on I^X . So I_X is only σ - qnbd of every fuzzy point x_α in X. Then for $A \in I^X$, $x_\alpha \leq \emptyset_S(A) \Leftrightarrow A * I_X \in S \Leftrightarrow A \in S$. Thus for every $A \in S$, $\emptyset_S(A) = I_X$ and for every fuzzy set $A \notin S$, $\emptyset_S(A) = \theta_X$. This implies $\psi_S(A) = A$ if $A \notin S$. $\sigma^S = \{ U : I_X - U \notin S \}$, clearly $\sigma^S \subseteq \tau^S$ since for $V \in \tau^S$. Since $\tau \subseteq \tau^S$, $\sigma^S \subseteq \tau^S \Rightarrow \tau \cup \sigma^S \subseteq \tau^S$. Conversely, let $U \in \tau^S$, so $I - U = F \lor B$ where F is τ -closed and $B \notin S$ (using theorem 4.8). This gives, $U = (I_X - F) \land (I_X - B)$ where $I_X - F$ is τ -open and $I_X - B$ is σ^S -open so $U \in \tau \cup T$.

Theorem 4.10 - Let *S* be fuzzy stack on (I^X, τ) with τ is suitable for *S* then $\tau^S = \{V - B : V \in \tau, B \notin S\}$.

Proof Let A be τ^S - closed fuzzy set then τ^S - cl(A) = A = A $V \not O_S(A) \Rightarrow \not O_S(A) \leq A$. Since $A = \widetilde{A} \lor (A \land O_S(A))$, we have $A = \widetilde{A} \lor (A \land O_S(A))$. Using definition of \widetilde{A} , $\not O_S(A) \land \widetilde{A} = O_X$. Since τ is suitable for $S \Rightarrow \widetilde{A} \notin S.A = \widetilde{A} \lor O_S(A)$ where $O_S(A)$ is τ - closed and $\widetilde{A} \notin S.$ We can write $A = O_S(A) + \widetilde{A}.I_X - A = I_X - [O_S(A) + \widetilde{A}] = \{[I_X - O_S(A)] - \widetilde{A}\}$, here $I_X - O_S(A) \in \tau$ and $\widetilde{A} \notin S$.

References

- [1] K.K. Azad "Fuzzy grills and a characterization of fuzzy proximity" J. Math. Anal. Appl.79 (1981), 13 17.
- [2] G. Choquet, C.R. Acad "Sur les notions de felters et de grille" Sci. Paris 224 (1947), 171 173.
- [3] C. L. Chang "Fuzzy topological space" J. Math. Anal. Appl. 24 (1968), 182 190.
- [4] M. N. Mukherjee, Sumita Das"Fuzzy Grills and induced fuzzy topology"МАТЕМАТИ4КИ ВЕСНИК, 62, 4 (2010), 285 297.
- [5] B. Roy, M. N. Mukherjee"On a typical topology induced by grill" Soochow J. Math. 33 (4) 2007), 771 786.
- [6] L.A. Zadeh"Fuzzy sets, Inform"Control 8 (1965), 338 353.
- [7] P. Srivastava, R. L. Gupta "Fuzzy proximity structures and fuzzy ultra filters" J. Math. Anal. Appl. 94 (2)(1983), 297 311.
- [8] M. Khare, R Singh "L guilds and binary L merotopies" Novi Sad J. Math., 36(2), 2006, 57–64.
- [9] M. Khare, R Singh"L contiguities and their order structure" Fuzzy Sets and Systems, 158(4), 2007, 399–408.
- [10] M. Khare, R Singh "Complete ξ grills and (L, n) merotopies" Fuzzy Sets and Systems, 159(5), 2008, 620–628.
- [11] W.k.Min, Y.K.Kim "Operators induced by stack on a topological space" International journal of pure & Applied mathematics, 78 (2012,), 887 894.
- [12] R Singh, S Mittal"fuzzy grill m space and induced fuzzy topology" International journal of research in information technology, volume 2, issue 6, June 2014, Pg 7 14.