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Abstract 

In this paper, we attempt to clarify the effects of noisy 

quantum system on the pattern classification. This 

classification uses the Grover's search algorithm. To do so, we 

first present the mixed state density matrix formalism for the 

Grover's algorithm then attempt to show how noises affect the 

probabilities of correct classification. In conclusion the results 

for three and four qubits systems with some noises have been 

presented. 
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Introduction 

Pattern classification or recognition is a subdivision of 

artificial intelligence which deals with the classification of 

patterns in to classes such as character recognition computer 

aided diagnosis and mining for biomedical and DNA data 

analyses [1-3]. 

It is possible to classify patterns using quantum Grover's 

search algorithm in a quantum system [4]. In his study, the 
author established the three approaches to quantum pattern 

classification and presented simulation results. Grover's 

search algorithm is a quantum search algorithm that runs 

quadratic ally faster than any equivalent classical algorithm 

[5]. Computational speed-up of a quantum algorithms over 

classical ones for some important problems, such as database 

search problem. Makes great interest in the quantum 

computation area. 

During the last decade the quantum pattern classification has 

been presented and applied to real quantum systems. In [6], 

the author proved that finding and identifying certain patterns 
in an unstructured picture (data set), using the quantum 

Fourier transform, can be accomplished efficiently by a 

quantum computer with an exponential speed-up relative to its 

classical counterpart. In [7], a model of quantum associative 

memory which the binary patterns of n bits are stored in the 

quantum superposition of n qubits is presented. That model 

provides an exponentialimprovement in capacity but with a 

probabilistic result. The accuracy of pattern recall can be 

tuned by adjusting a parameter playing the role of an effective 

temperature. In [8], the Hopfield model, which is realizable 

using quantum holography, is applied for quantum associative 

memory and pattern recognition. The authors propose that it is 

possible to give the quantum interpretation for all the elements 

of the Hopfield model, so that is experimentally 

implementable in real quantum system. The author in [9], 

have presented a quantum pattern recognition scheme. They 

have combined the idea of a classic Hopfield neural network 

with adiabatic quantum computation for this purpose. The 

algorithm can return a quantum superposition of multiple 

recognized patterns and for two qubits, the algorithm has been 

given using a liquid state NMR quantum computer. 

The main purpose of this paper is to investigate quantum 
noise effects on a quantum pattern classification. To this end, 

first we develop the Grover's algorithm to the mixed quantum 

states, then we concentrate on the quantum noise on the 

Grover's algorithm process. Finally we apply these methods 

for quantum pattern classification. The structure of the article 

is as follows. 

The second section reviews the Grover's algorithm for a 

quantum states and extend it for density matrix formulation of 

mixed states. Section 3 shows that how quantum noises can 

change the density matrix for n-qubits systems. In section 4, 

we attempt to clarify the formulation. To do this, we present 

two examples from three and four qubits systems with bit flip 
and amplitude damping noises respectively. The final section 

concludes with a discussion of consequences. 

 

 

Mixed state pattern classification 

In many of physical situations such as quantum computation, 

if an experiment is repeated with the same conditions, the 

outcome is observed with different values. This means that the 

state of the system is not completely knownor the system is in 

a mixed state. The conventional mathematical Formalism of 

quantum mechanics, including bracket notation, cannot be 
applied for mixed states. For such systems, the density 

operator formalism provides a convenient way for describing 

a mixed state system [10]. 

In this section, first we review the Grover's search algorithm 

for a system described by a ket (so pure state), then we 

generalize the Grover's algorithm for mixed states described 

by a density matrix. 

 

 

Review of the Grover's search algorithm 

Grover's algorithm is a quantum algorithm for searching an 
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unsorted database with N entries [11]. This algorithm provides 

a quadratic speedup and has probabilistic nature and the 

probability of finding desired state can be increased by 

repeating the algorithm
N

4 k
 times where K is the number 

of matching entries. 

Let |  denote the uniform superposition over all quantum 

states 
N 1

x 0

1
x

N
| |

 (1)

 

Where N is the number of elements in database and | x is the 

index register. The oracle operator is defined as 
f (x)Ô | x ( 1) | x

 (2)
 

where f (x) 1  if x is a solution to the search problem and 

f (x) 0 if x is not a solution to the search problem. The 

Grover's unitary iteration operator is defined as 

ˆ ˆG (2 | | I)O
 (3)

 

And the repeating the algorithm n times is denoted by 
nĜ |

  (4)
 

Finally the probability amplitude of finding the desired ket, 

| s after n times iterations is equal with 

nˆs | G |
 (5)

 

 

 

Density matrix formulation of pattern classification 
Her we follow the quantum pattern classification in [4], but 

with density matrix formulation and noisy patterns 

improvements. Let B {0,1}  and i iA {(x , y )}  

Be a set of m pairs of points ix  in 
nB  and labels iy  in B . 

We would like to construct a quantum classification system 

that approximates the function 
nf :B B  from which the 

set A was drawn based on the Grover's search algorithm. 

Consider the set of m given patterns 

1 2 mA {A ,A ,..,A }  

Where 1A is the first pattern and so on. We can represent each 

of the labeled patterns not an A as a basis state in the 

superposition with a nonzero coefficient 

i i

i i
n

(x ,y )

1
| | x y

2 m  (6)

 

Now we define the given patterns density matrix as 

0 | |
 (7)

 

Suppose sA be the desired pattern for classification. Define 

the desired pattern density matrix as 

s s s| A A |
 (8)

 

The probability of correct classification after n iteration by the 

Grover's algorithm (5) is 
n † n

x,n s
ˆ ˆ(G ) G  where 

n

sA | G |  so 

n n

s
ˆ ˆP(n) | G G |

 (9)
 

If we define the n-times iterated patterns density matrix as 
n n

x,n s
ˆ ˆG G

 (10)
 

Then 
n n

x,n s
ˆ ˆG G

 (11)
 

The pattern density matrix, (7), and the n-times iterated 

patterns density matrix, (10), have trace equal to one and are 

positive operators so they are density matrices. This allows us 

to interpret the equation (11) as the ensemble average of the 

observable
s
, [10] 

s x,n 0Tr( )
 (12)

 

 

 

Noise in patterns classification 

In real world, there is no closed system (i.e., a system with no 

energy or particle exchange with the environment). In our 

pattern classification problem, noise arises from random 

exchange of energy between our system and its surrounding 

environment. 

Suppose that our desired pattern initially have a statistical 

operator or density matrices. When the patterns system, called 

environment [12]. In quantum mechanics any change in the 
density matrix, such as interaction with environment, 

s sE( )  is called state transformation and the final 

density matrix can be written in the form 
†

s s k s k

k

( ) E E
 (13)

 

Where the operator-sum, kE representation,, satisfy 

†

k k

k

E E 1

 (14)

 

And are called the operation elements of the state 

transformation. For a single qubit these operators kE , can be 

written as 
3

k k 2 ki k

i 1

E I a

 (15)

 

Where i kia, , are parameters, 2I  is 2 2  identity matrix, 

1 x , 2 y  and 3 z  are Pauli matrices. 

For a n-qubits system local interactions of the qubits with 

channels 1 nC C,..., can be described by operators, which are 

constructed as tensor product of the single-qubitoperators

i1 inE E,..., .Therefore, if this system is affected by local noise, 

the fin can be obtained from its initial state, ini  in the 

following manner 

1... n 1... n

1 n

†

s i i s i i

i ...i

U U

 (16)

 

Where 

1 n 1 ni ...i i iU E ... E
 (17)

 

is the noise operator of the n-qubits system. 

 

 

4 Examples 

As first example, for the purpose of comparing results with 
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[4], here we investigate a three qubits system but here with 

noses on three qubits of the desired pattern, i.e. on the
s
. Let 

us consider a database with 8 entries so 

1
| (| 000 | 001 | 010 | 011 |100 |101 |110 |111 )

8
 

First we use the exclusive method for learning the pattern 

classification. In this method each pattern which is not in set 

A, is included with a nonzero coefficient. This method is 

implemented for a quantum associative memory in [13]. Let 
us suppose the pattern set be 

A {| 000 ,|111 } 

Where the desired pattern is | 000 . Using the exclusive 

method of [4], the exclusive superposition of database states is 

equal with 

1
| (| 001 | 010 | 011 |100 |101 |110 )

6
 

The desired pattern density matrix is 

s s s 000 000| A A | | |  

So the oracle operator becomes 

O 000 000 001 001 010 010 011 011

100 100 101 101 110 110 111 111

ˆ (| | | |) | | | |

| | | | | | | |)

 

The bit flip channel flips the state of a qubitsfrom to (and vice 

versa) with probability, 1-p. It has operation elements
1

0 1 2E p I( )  and 1

1 1 1E 1 p( ) and also for second and 

third qubits but with probabilities 2p  and 3p  respectively 

(clearly 1 2 30 p p p 1). So the noise operators is equal with 

1 2 3 1 2i ,i ,i i i i3U E E E
 (18)

 

Where the superscripts stands for the qubits index number. 

For example the first two components of the noise operator 

are
0 0 0 0 0 0 1 2 3U E E E p p p I I I, ,

and 

0 0 1 0 0 1 1 2 3 1U E E E p p 1 p I I, , ( ) . The 

patterns density matrix after noise is 

1 2 3 1 2 3

†

s i ,i ,i s i ,i ,iU U
 (19)

 

Which is a diagonal density matrix with diagonal elements 

equal with 

s11 1 2 3

s22 1 2 3

s33 1 2 3

s44 1 2 3

s55 1 2 3

s66 1 2 3

s77 1 2 3

s88 1 2 3

p p p

p p (1 p )

p (1 p )p

p (1 p )(1 p )

(1 p )p p

(1 p )p (1 p )

(1 p )(1 p )p

(1 p )(1 p )(1 p )
















 (20)

 

The probability of finding noisy desired pattern, (12), is 

presented in Table 1. It is clear that the maximum probability 

of finding noisy desired pattern occurs after four iteration 
which is equal with 

1 2 3 3 2 3

1
2 1 1 1 1

6
[p ( p (p ) p ) ( p )( p )]

 (21)
 

 

TABLE 1. Correct state classification probability for the 

six iteration of the Grover's search algorithm. In the first 

column, n, is the number of iteration. The bit flip noise is 

present with the probability ( )11 p for the first and 

( )21 p for the second qubit. 

 
n Probability Maximum probability 

1 
1 2p p 6  1 6 , for 1 2p 1 p 1,  

2 1 24  1 24 , for 1 2p 0 p 0,  

3 1 6  1 6 , for 1 2p 0 p 0,  

4 
1 22p p 3  2 3 , for 1 2p 0 p 0,  

5 
1 21 8p p 24( )  3 8 , for 1 2p 1 p 1,  

6 
1 21 p p 6( )  1 6 , for 1 2p 0 p 1 2,  

 

 

This probability has a maximum value
2

3
, for

1 2 3p p p 1  (no error at all) and a minimum value 0 for

1 2 3p p 0 p 1, . Figure 1 shows the probability of correct 

classification in terms of 1p  and 2p where 3p 1 . The 

probability is greater than
1

2
 for two sets: 1 2

3
1

4
{p , p }

and 1 1 2

3 3
1 1

4 4
{ p , p p } . For these two sets, the 

pattern is detectable (see table 2) 
 

 
 

Fig 1. The probability of finding the correct state 

classification after four iteration for pattern | 000 , with 

the learning set {| 000 ,|111 } , in the presence of bit flip 

noise. The probability of the bit flip noise on the first and 

second qubits are 
( )11 p

 and 
( )21 p

respictively. The 

third qubit is without noise. 
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TABLE 2.incorrect state classification probability for the 

six iteration of grover algorithm. In the first column, n, is 

the number of iteration. The bit flip noise is presented 

with the probability ( )11 p  for the first and for 

( )21 p  the second qubits. 

 
n Probability Maximum 

probability 

1 
2 1 21 p p 5p 1 6[ ( )]  2 3 , for 1 2p 1 p 1,  

2 
2 1 29 8p 8p 2p 1 24[ ( )]  3 8 , for 

1 2p 0 p 0,  

3 
1 2 1 2p p 2p p 6[ ]  1 6 , for 

1 2p 0 p 1,  

4 
2 1 21 p p 2p 1 6[ ( )]  1 6 , for 1 2p 0 p 0,  

5 
2 1 29 8p 8p 2p 1 24[ ( )]  3 8 , for 

1 2p 0 p 0,  

6 
1 2 1 2p p p p 6[ ]  1 6 , for 

1 2p 0 p 1,  

 

 

In the second example, we consider the four qubits system 

with amplitude damping noise. This noise cause energy 

dissipation from system (here qubits). The operators for this 

noise, for first qubit, can be represented as

0

1

1

1 0

0 1

( )E and
1

1

0

0 0

( )E , where  is the 

probability of amplitude damping noise on first qubit. Let us 

choose patterns set as 

A 0110 1000 1010 1100{| ,| , | , | }  

with the desired pattern. Now we have 

s s s 1010 1010| A A | | |  

And 

s11 2 3

s33 2 3

s55 3 2

s77 2 3

(1 )

(1 )

(1 )(1 )








 (22)

 

and a maximum probability of finding noisy desired pattern 
occurs after iteration which is equal with 

2 3 2 3

1
112225 112056

196608
[ ( )]

 (23)
 

and allover others elements equal with zero. As seen there is 

no noise in the first and forth qubits. This probability is 

plotted in Fig. 2. The maximum of this probability is
112225

196608
 

or 0.5708 when 2 3 0 . 

 

 
 

Fig 2.The probability of finding the correct state 

classification after six iteration for pattern | 0110 , with 

the learning set {| 000 ,|111 } , in the presence of amplitude 

damping noise. 

 

 

Conclusion 
Our results highlight the potential of the Grover's algorithm 

for the pattern classification of noisy mixed states. Particular 

examples was directed towards three and four qubits systems 

with bit flip noise and amplitude damping noise respectively. 

As we have seen, this noises affect (generally decrease) the 

classification probabilities. The quantum noise operation 

technique used in this paper is quite general and can be 

applied directly for similar problems. Specifically the method 

is useful for the mixed state pattern classification problems 

dealing with other quantum noises such as phase flip, bit-

phase flip, phase damping and depolarizing channel. Previous 

studies showed that the quantum pattern classification could 
be realized. Further studies in the pattern classification will 

probe fundamental aspects of quantum advantages. Specially 

instead of using the Grover's algorithm, other quantum 

algorithms may improve the classification problems. In 

conclusion, it may be said that quantum classification will be 

one of the important techniques for practical recognition. Our 

expectation is that quantum classification will provide 

important improvement about neuroquant ology specially and 

to answer how human brain classifies patterns. 
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