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Abstract

In this paper, we attempt to clarify the effects of noisy
quantum system on the pattern classification. This
classification uses the Grover's search algorithm. To do so, we
first present the mixed state density matrix formalism for the
Grover's algorithm then attempt to show how noises affect the
probabilities of correct classification. In conclusion the results
for three and four qubits systems with some noises have been
presented.
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Introduction

Pattern classification or recognition is a subdivision of
artificial intelligence which deals with the classification of
patterns in to classes such as character recognition computer
aided diagnosis and mining for biomedical and DNA data
analyses [1-3].

It is possible to classify patterns using quantum Grover's
search algorithm in a quantum system [4]. In his study, the
author established the three approaches to quantum pattern
classification and presented simulation results. Grover's
search algorithm is a quantum search algorithm that runs
quadratic ally faster than any equivalent classical algorithm
[5]. Computational speed-up of a quantum algorithms over
classical ones for some important problems, such as database
search problem. Makes great interest in the quantum
computation area.

During the last decade the quantum pattern classification has
been presented and applied to real quantum systems. In [6],
the author proved that finding and identifying certain patterns
in an unstructured picture (data set), using the quantum
Fourier transform, can be accomplished efficiently by a
quantum computer with an exponential speed-up relative to its
classical counterpart. In [7], a model of quantum associative
memory which the binary patterns of n bits are stored in the
quantum superposition of n qubits is presented. That model
provides an exponentialimprovement in capacity but with a
probabilistic result. The accuracy of pattern recall can be
tuned by adjusting a parameter playing the role of an effective
temperature. In [8], the Hopfield model, which is realizable
using quantum holography, is applied for quantum associative

memory and pattern recognition. The authors propose that it is
possible to give the quantum interpretation for all the elements
of the Hopfield model, so that is experimentally
implementable in real quantum system. The author in [9],
have presented a quantum pattern recognition scheme. They
have combined the idea of a classic Hopfield neural network
with adiabatic quantum computation for this purpose. The
algorithm can return a quantum superposition of multiple
recognized patterns and for two qubits, the algorithm has been
given using a liquid state NMR quantum computer.

The main purpose of this paper is to investigate quantum
noise effects on a quantum pattern classification. To this end,
first we develop the Grover's algorithm to the mixed quantum
states, then we concentrate on the quantum noise on the
Grover's algorithm process. Finally we apply these methods
for quantum pattern classification. The structure of the article
is as follows.

The second section reviews the Grover's algorithm for a
guantum states and extend it for density matrix formulation of
mixed states. Section 3 shows that how quantum noises can
change the density matrix for n-qubits systems. In section 4,
we attempt to clarify the formulation. To do this, we present
two examples from three and four qubits systems with bit flip
and amplitude damping noises respectively. The final section
concludes with a discussion of consequences.

Mixed state pattern classification

In many of physical situations such as quantum computation,
if an experiment is repeated with the same conditions, the
outcome is observed with different values. This means that the
state of the system is not completely knownor the system is in
a mixed state. The conventional mathematical Formalism of
guantum mechanics, including bracket notation, cannot be
applied for mixed states. For such systems, the density
operator formalism provides a convenient way for describing
a mixed state system [10].

In this section, first we review the Grover's search algorithm
for a system described by a ket (so pure state), then we
generalize the Grover's algorithm for mixed states described
by a density matrix.

Review of the Grover's search algorithm
Grover's algorithm is a quantum algorithm for searching an
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unsorted database with N entries [11]. This algorithm provides
a quadratic speedup and has probabilistic nature and the
probability of finding desired state can be increased by

fN
repeating the algorithm% M times where K is the number

of matching entries.
Let |y) denote the uniform superposition over all quantum
states

1 N-1

| v :WZJ X)

x=0 (1)
Where N is the number of elements in database and | X) is the
index register. The oracle operator is defined as
O1x)=(-""|x) )
wheref(X) =1 if x is a solution to the search problem and
f(x)=0if x is not a solution to the search problem. The
Grover's unitary iteration operator is defined as

G=(|y)w|-NO @)
And the repeating the algorithm n times is denoted by
G"|y) (4)

Finally the probability amplitude of finding the desired ket,
| syafter n times iterations is equal with

<5|én [w) (5)

Density matrix formulation of pattern classification
Her we follow the quantum pattern classification in [4], but
with density matrix formulation and noisy patterns

improvements. Let B={0,1} and A ={(x;,y,)}
Be a set of m pairs of points X, in B" and labels y, inB.
We would like to construct a quantum classification system

that approximates the function f:B" — B from which the
set A was drawn based on the Grover's search algorithm.
Consider the set of m given patterns

A={A A, .. A}
Where A, is the first pattern and so on. We can represent each

of the labeled patterns not an A as a basis state in the
superposition with a nonzero coefficient

loy=——=—== D" IXy)

V2T m o (6)
Now we define the given patterns density matrix as
Po =l @)X )
Suppose A_be the desired pattern for classification. Define
the desired pattern density matrix as

ps :l As ><As | (8)
The probability of correct classification after n iteration by the

Grover's algoritm (5) is p,,= (G“)*psé“ where
a=(A,|G" | @) so
P(n) =(9]G"p,G" |0) )

If we define the n-times iterated patterns density matrix as
px,n = Gn pSGn
Then

px,n = Gn pan (11)
The pattern density matrix, (7), and the n-times iterated
patterns density matrix, (10), have trace equal to one and are

positive operators so they are density matrices. This allows us
to interpret the equation (11) as the ensemble average of the

observable p_, [10]
<ps> = Tr(px,npo) (12)

(10)

Noise in patterns classification

In real world, there is no closed system (i.e., a system with no
energy or particle exchange with the environment). In our
pattern classification problem, noise arises from random
exchange of energy between our system and its surrounding
environment.

Suppose that our desired pattern initially have a statistical
operator or density matrices. When the patterns system, called
environment [12]. In quantum mechanics any change in the
density matrix, such as interaction with environment,

p, = E(p,) is called state transformation and the final
density matrix can be written in the form

‘35 = 8(ps) = z EkpsEIL
k
Where the operator-sum, E, representation,, satisfy
> EEl =1
k (14)

And are called the operation elements of the state
transformation. For a single qubit these operatorsE, , can be
written as

3
E, =0l + a0,

i=1 (15)
Wherea,; ,a,;, are parameters, |, is 2x2 identity matrix,

(13)

6, =0, 0, =0, andc, =, are Pauli matrices.

For a n-qubits system local interactions of the qubits with
channels C,,...,C, can be described by operators, which are
constructed as tensor product of the single-qubitoperators
E,,.....E,, .Therefore, if this system is affected by local noise,

the pg,can be obtained from its initial state, p,, in the
following manner

po= 2 Ui P,

Where

U, =E ®.®F, an

is the noise operator of the n-qubits system.

(16)

4 Examples
As first example, for the purpose of comparing results with
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[4], here we investigate a three qubits system but here with
noses on three qubits of the desired pattern, i.e. on thep,. Let
us consider a database with 8 entries so
1
|y =—(
V8

First we use the exclusive method for learning the pattern
classification. In this method each pattern which is not in set
A, is included with a nonzero coefficient. This method is
implemented for a quantum associative memory in [13]. Let
us suppose the pattern set be
A={|000),|11D}
Where the desired pattern is |000) . Using the exclusive
method of [4], the exclusive superposition of database states is
equal with
1
o) =—=
J6
The desired pattern density matrix is
Ps =| A XA |=| 000)000 |
So the oracle operator becomes

(100L)+| 010%+ | 011)+ | 100)+|101)+|110})

%[m( 20,05 +1) + ps-1) +(1-p,)(1-p,)]

|OOO>+|001>+|010>+|011>+|100>+|101>+|110>+|irﬁ LE 1. Correct state classification probability for the

SiX iteration of the Grover's search algorithm. In the first
column, n, is the number of iteration. The bit flip noise is
present with the probability @ -p,)for the first and

(L - p,) for the second qubit.

n | Probability Maximum probability
L1 pip./6 1/6., for p, =1,p, =1
2 | 1/24 1/24 , for p,=0,p, =0
3 | 1/6 1/6, for p, =0,p, =0
4 2p1p2/3 2/3,forp1:0,p2:0
5 | (1+8p,p,)/24 3/8, for p, =1,p, =1
6 | (1-pp,)/6 1/6., for p, =0,p, =1/2

. - . 2
O = (] 000000 | + | 001)(00L[)+ | 010)010 | + | 011}(011[”"5 probability has a maximum valueg, for

+]100)100 | + | 101)(101 | + | 110110 | + | 111%111])

The bit flip channel flips the state of a qubitsfrom to (and vice
versa) with probability, 1-p. It has operation elements

EQN = /p,1, andEP = /1-p,c,and also for second and
third qubits but with probabilitiesp, andp, respectively
(clearly 0 < p,p,p; <1). So the noise operators is equal with
U .. =E ®E ®E

ip,ip,i3 iy ® i ® i3 (18)
Where the superscripts stands for the qubits index number.
For example the first two components of the noise operator
areUy,,=E, ®E, ®E; =/p,p,p; | ®I®Iland
Upor =E; ®E, ®E, =/p,p,(1-p;) I®I®0, . The

patterns density matrix after noise is

N — il
Ps = Uil,iz,iapsuil,iz,ia (19)

Which is a diagonal density matrix with diagonal elements
equal with

Ps1 = P1P,P;

Psz2 = PiP (1= Ps)

Pszs = P1(L—P2)Ps

5544 = pl(l_ pz)(l_ ps)

f5555 = (1_ pl)p2p3

Psss =1—p,)p,(1—ps)

Ps77 = - pl)(l_ pz)p3

Psgs = (1= p)(1—p,)A-p;) (20)
The probability of finding noisy desired pattern, (12), is
presented in Table 1. It is clear that the maximum probability

of finding noisy desired pattern occurs after four iteration
which is equal with

P, =P, =Pp; =1 (no error at all) and a minimum value 0 for
p, =p, =0,p, =1. Figure 1 shows the probability of correct

classification in terms ofp, andp,wherep,=1. The

probability is greater than% for two sets: {p, =%,p2 =1}

and{ % <p; 31,% <p,p,<1}. For these two sets, the

pattern is detectable (see table 2)

0.0

Fig 1. The probability of finding the correct state
classification after four iteration for pattern 1000) " with

the learning set 1000)111D} ' in the presence of bit flip
noise. The probability of the bit flip noise on the first and

second qubits are ¢ P:) and @~ P2) regpictively. The
third qubit is without noise.
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TABLE 2.incorrect state classification probability for the
six iteration of grover algorithm. In the first column, n, is
the number of iteration. The bit flip noise is presented

with the probability (1-—p,) for the first and for
(1 —p,) the second qubits.

n | Probability Maximum
probability
1 [1_p2+p1(5p2 _1)]/6 2/31f0r p,=1p,=1
2| [9-8p,+8p,(2p,-1)] /24 | 3/8, for
p,=0,p,=0
3 [p1+p2_2p1p2]/6 1/Gv for
p,=0,p, =1
[1-p, +p.(2p, -1)]/6 1/6, forp, =0,p, =0
[9-8p, +8p,(2p,—1)]/24 | 3/8, for
p,=0,p,=0
6 [p1+p2_p1p2]/6 1/6, for
p,=0,p, =1

In the second example, we consider the four qubits system
with amplitude damping noise. This noise cause energy
dissipation from system (here qubits). The operators for this
noise, for first qubit, can be represented as

1 0
EM = andE (" = 0 , wherey is the
° 0 Jy1-v, 0 O

probability of amplitude damping noise on first qubit. Let us
choose patterns set as

A ={] 0110),| 1000y, | 1010),] 1100y}

with the desired pattern. Now we have

p, = A, XA, |=] 1010)(1010 |

And

Ps1 =7V2V3

Psas =V2(1—73)

Psss =Ys(1—7,)

Perr =(L=7,)1~75) (22)
and a maximum probability of finding noisy desired pattern
occurs after iteration which is equal with

1
————[112225-112056( v, +v, +
196608[ (V2 +73 +7273)] 23)
and allover others elements equal with zero. As seen there is
no noise in the first and forth qubits. This probability is

plotted in Fig. 2. The maximum of this probability is 112225
196608

or 0.5708 wheny, =y, =0.

Fig 2.The probability of finding the correct state
classification after six iteration for pattern 10110 with

the learning set 1000|110} 'in the presence of amplitude
damping noise.

Conclusion

Our results highlight the potential of the Grover's algorithm
for the pattern classification of noisy mixed states. Particular
examples was directed towards three and four qubits systems
with bit flip noise and amplitude damping noise respectively.
As we have seen, this noises affect (generally decrease) the
classification probabilities. The quantum noise operation
technique used in this paper is quite general and can be
applied directly for similar problems. Specifically the method
is useful for the mixed state pattern classification problems
dealing with other quantum noises such as phase flip, bit-
phase flip, phase damping and depolarizing channel. Previous
studies showed that the quantum pattern classification could
be realized. Further studies in the pattern classification will
probe fundamental aspects of quantum advantages. Specially
instead of using the Grover's algorithm, other quantum
algorithms may improve the classification problems. In
conclusion, it may be said that quantum classification will be
one of the important techniques for practical recognition. Our
expectation is that quantum classification will provide
important improvement about neuroquant ology specially and
to answer how human brain classifies patterns.
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