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Abstract 

Electrical impedance tomography (EIT) has shown significant 

results as a functional imaging tool. However, it is not yet 

fully suitable for anatomical imaging because of its poor 

spatial resolution. In this study, the anatomical information of 

the test object is obtained in the form of the boundary 

potentials using an EIT system. Then, the electrical 

conductivity/permittivity distribution within the test object is 

approached by the Laplacian difference equations and later 

solved by Liebmann’s method. Valid results are visible with 

an underlying assumption of the electrical potential at the 
center of the test object. This novel technique provides more 

accurate readings and also converges to a stable solution 

faster. Accuracy from 99.555% to 99.785% is obtained within 

six iterations as compared to the traditional technique where 

the accuracy range from 99.265% to 99.630% with eight 

iterations for εa ≤ 1%. This is first step towards better spatial 

resolution for the EIT systems. 
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Introduction 

Electrical impedance tomography (EIT) is a promising 

medical imaging technique. It comes with the advantages of 

safety, simplicity, economic efficiency and noninvasiveness 

as compared with the existing imaging techniques such as 

computed tomography (CT), magnetic resonance imaging 

(MRI) and X-rays. So far, EIT has shown significant results as 

a functional imaging tool such as in continuous monitoring of 

cardiac functioning, lung functioning etc. However, it is not 

fully suitable for anatomical imaging because of its poor 
spatial resolution [1]. Hardware developments including the 

electrode belts [2-3], current sources [4] and excitation 

methods along with the voltage measurement techniques [5] is 

visible to some extent to enhance the spatial resolution. 

Simultaneously, several improvements in the reconstruction 

algorithms can be found in the literature [6-12] to improve the 

spatial resolution of the EIT images. 

In this work, a novel approach of numerical analysis is 

suggested towards better spatial resolution of the EIT systems 

and hence would be suitable for anatomical studies. Elliptic 

partial differential equations (PDE) are typically used to 

characterize steady state, boundary value problems and with 
two spatial dimensions. These can be employed to determine 

the steady state distribution of an electric field in EIT 

applications. The distribution of an electric potential within a 

volume conductor through which a steady current flow is 

given by the solution of Poisson’s equation, which reduces to 

Laplace’s equation [13]. The Poisson’s equation for the 

electrostatic fields can be represented in two-dimensions  

and as in equation (1). 

 

 (1) 

 

where,  is the electrostatic potential,  is the volumetric 

charge density and  is the permittivity of the material. 

For the regions containing no free charge,  and hence 

equation (1) reduces to a Laplace equation (equation (2)). 

 

 (2) 

 

Equation (2) is a second order linear elliptic partial differential 

equation (PDE) with two independent variables ( , ) and 

one dependent variable,  

The numerical solution of the elliptic PDEs is based on 

treating the object as a grid of discrete points or nodes and 
transforming the PDE into an algebraic finite difference 

equations as shown in figure 1, where i = 0 to m+1; m = 

0,1,2,… and j = 0 to n+1; n = 0,1,2,…[14]. 

 

 
Fig 1. Grids used for the finite difference solution of 

elliptic PDEs with two independent variables x and y. 
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i. Numerical approach 

The central differences based on the grid scheme (figure 1) 

with  yields an equation (3). 

 

 +  +  + -   (3) 

 

Equation (3) holds good for all the interior nodes and is 

referred to as the Laplacian difference equation. The boundary 

conditions must be specified in order to obtain a unique 

solution. The simplest case is where the voltages at the 

boundary is set at a fixed value. This is called a Dirichlet 

boundary condition. There would be more linear algebraic 
equations depending on the number of interior nodes. 

However, there are maximum five (5) unknown terms for 

each line (equation). For a larger sized grids, this means that a 

significant number of terms will be zero. This could lead to 

wastage of computer memory in storing zero’s when full 

matrix elimination methods are used. Hence approximate 

methods are used for obtaining solutions for elliptical 

equations. 

 

ii. Numerical solution 

The most commonly used method is Gauss-Siedal method 
which when applied to partial differential equations is referred 

to as Liebmann’s method. In this method, equation (3) is re-

written as shown in equation (4). 

 

 (4) 

 

Equation (4) can be solved iteratively for j = 1 to n and i = 1 

to m. Because the matrix is diagonally dominant, this 

procedure will converge on a stable solution. The iterations 

are repeated until the absolute values of all the percentage 

relative errors (εa)i,j fall below a specified stopping criteria εs 

(usually 1%). These percentage relative errors are estimated 

by equation (5). 

 

ǀ  (εa)i,j ǀ  = ǀ × 100% (5) 

 

Assuming Vi,j’s as initially Zero, all εa’s for the first iteration 

will be 100%. The iterations are continued until this error is 

less than 1% [14]. 

 

 

Proposed System 

An EIT system visualizes the distribution of electrical 

conductivity/permittivity within a human body. The numerical 

methods discussed in the above section can be applied to EIT 

systems for anatomical studies and hence would possibly 
improve/increase the spatial resolution of the EIT images. 

This is done by measuring the anatomical information through 

the boundary voltages from the electrodes and further 

interpolating the voltages inside the test object using the 

numerical methods discussed under the introduction section. 

Under these conditions, the parameters of the anatomical 

details can be further determined by beamforming techniques 

[15]. (next stage of this research work) 

In general, consider an EIT test object with a circular 

boundary as shown in figure 2. Let the conductivity of the test 

object inside be uniform. The Laplace equation (equation (2)) 

for electrostatic fields can be extended in the polar coordinates 

 and   as in equation (6). 

 

 (6) 

 

where,  is the radius of the test object in cm and   is the 

angle between the electrodes in radians.  

Once again equation (6) is a second order linear elliptic partial 

differential equation (PDE) with two independent variables 

( , ) and one dependent variable,  

 

 
 

Fig 2: A circular object where the boundary voltages are 

held at constant voltage of 2V with uniform conductivity 

inside. 

 

 

i. Numerical example 
Let the surface diameter of the test object be 8 cm. Imagine 

the test object to be divided into 8 equal segments  through 

 at an angle of 45 degrees each. Let a uniform boundary 

voltage of 2V exist around the test object. Now consider an 

inner circle of diameter 4 cm with the interior nodal voltages 

from  through  w.r.t. . The arc length for the outer 

radius is 3.14 cm and that of the inner radius is 1.57 cm. 

Let  be the voltage at the center of the circle and is 

assumed as the average of the existing boundary voltages, 2V. 

The Laplacian difference equation for node ( ) follows as 

equation (7). 

 

 (7) 
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where,   

Simplifying equation (7),  

 -    -               (8)  
 

Equations similar to equation (8) for the remaining interior 

nodes result in nine simultaneous equations with eight 

unknowns as  is known (assumed as the average of 

the boundary voltages, 2V, for any other value(s) of , 

the electrostatic potential distribution would be misleading). 

This is represented in the matrix form as, 
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Liebmann’s method is used as a solution iteratively for j = 1 

to n and i = 1 to m. Once again the matrix is diagonally 

dominant and therefore converges on a stable solution. The 

iterations are repeated until the absolute values of all the 

percentage relative errors (εa)i,j fall below a specified stopping 

criteria εs (usually 1%). These percentage relative errors are 
estimated by equation (5). Starting with an assumption of 

Vi,j’s as zero, the iterations are performed and continued until 

the error is less than 1% as shown in table 1. 

 

Table 1: The interior nodal voltage values, V9 through V16 

after every iterations when subjected to a uniform 

boundary voltage of 2V. The inside of the test object is 

assumed to have a uniform conductivity. The stopping 

criteria is when all the percentage relative errors, εa ≤ 1%. 

 

Interior 

nodal 
voltages 

(V) 

Number of iterations (n) 

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 

 
0.8795 1.6055 1.8556 1.9456 1.9787 1.9911 

 
1.1257 1.6635 1.8709 1.9498 1.9799 1.9915 

 
1.1947 1.6851 1.8772 1.9517 1.9805 1.9921 

 
1.2140 1.6927 1.8797 1.9524 1.9822 1.9930 

 
1.2194 1.6952 1.8806 1.9582 1.9849 1.9939 

 
1.2209 1.6960 1.9002 1.9659 1.9874 1.9947 

 
1.2213 1.7652 1.9219 1.9722 1.9892 1.9953 

 
1.4676 1.8232 1.9371 1.9764 1.9905 1.9957 

εa max 100% 45% 13% 4.6% 1.6% 0.62% 

 

 

 

 

ii. Numerical analysis of the results 

The results obtained are more accurate compared to the 

traditional block approach as shown in figure 1. The least 

accurate iterated value is 1.9911 with the most accurate 

iterated value of 1.9957 after six iterations. While the 

traditional block approach method gives a value of 1.9853 as 
the least accurate value to the most accurate value of 1.9963 

with eight iterations. Hence the proposed method not only 

yields better results but also converges faster as shown in 

table 2. 

 

Table 2: The interior nodal voltage values, V9 through V16 

calculated assuming a uniform boundary voltage of 2V, 

for percentage relative errors, εa ≤ 1%. The inside of the 

test object is assumed to have a uniform conductivity. 

 

Interior 

Nodal 

Voltages (V) 

Total number of iterations (N) 

N = 6 N = 8 

NEW Approach Traditional Approach 

 
1.9911 1.9853 

 
1.9915 1.9852 

 
1.9921 1.9926 

 
1.9930 1.9852 

 
1.9939 1.9852 

 
1.9947 1.9926 

 
1.9953 1.9926 

 
1.9957 1.9926 

 
2 (assumed) 1.9963 (measured) 

εa max 0.62% 0.70% 

 

 

Further accurate results can be obtained by choosing εa less 

than 1%. The rate of convergence can also be accelerated 
using over relaxation methods [14] 

 

 

Conclusion 

Elliptic partial differential equations are used to characterize 

steady state, boundary value problems and with two spatial 

dimensions to improve the spatial resolution of the EIT 

systems. A circular test object with a uniform boundary 

potential is considered. The steady state distribution of this 

electrical potential is found by the Laplacian difference 

equation in the polar form with an assumption that the central 
electrical potential is equal to the average of the boundary 

potentials. The proof of concept is shown through a working 

example considering a uniform boundary voltage of 2V. The 

inside of the test object is assumed to have a uniform 

conductivity. The obtained results provide more accurate 

readings with faster convergence rate when compared with the 

traditional block approach method. Hence the proposed 

numerical technique is suitable for spatial studies in EIT 

applications. The next step is to apply beamforming 

techniques to validate the suitability of the proposed technique 

for anatomical imaging. 

 

 



International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 19 (2015) pp 40659-40662 

© Research India Publications.  http://www.ripublication.com 

40662 

References 

 

[1]. Aleksanyan et al., “Modern Trends in Development 

of Electrical Impedance Tomography in Medicine” 

Biosciences Biotechnology Research Asia, Vol. 

11(Spl. Edn. 1), pp. 85-91, 2014. 
[2]. Tong In Oh et.al, “Flexible electrode belt for EIT 

using nanofiber web dry electrodes” Physiol. Meas. 

33, IOP publishing, pp. 1603-1616, 2012. 

[3]. Matthew S. Campisi et.al, “Breast Cancer Detection 

Using High-Density Flexible Electrode Arrays and 

Electrical Impedance Tomography” IEEE, 2014. 

[4]. M Rafiei-Naeini and H McCann, “Low-noise current 

excitation sub-system for medical EIT” Physiol. 

Meas. 29, IOP Publishing, pp. S173-S184, 2008. 

[5]. Renee K. Y. Chin and Trevor A. York, “Improving 

Spatial Resolution for EIT Reconstructed Images 

through Measurement Strategies” IEEE International 
Conference on Signal and Image Processing 

Applications, 2013. 

[6]. Xiao-Ju Zhang et.al, “Modeling and simulation of 

open electrical impedance tomography” International 

Journal of Applied Electromagnetics and Mechanics 

33, IOS Press, pp. 713-720, 2010. 

[7]. Kirill Y Aristovich et.al, “A method for 

reconstructing tomographic images of evoked neural 

activity with electrical impedance tomography using 

intracranial planar arrays” Physiol. Meas. 35, IOP 

Publishing, pp. 1095-1109, 2014. 
[8]. J.L. Davidson et.al, “Fusion of images obtained from 

EIT and MRI” Electronics Letters, Volume 48, No 

11, Institution of Engineering & Technology, 2012. 

[9]. X.Y. Chen et.al, “Lung Ventilation Reconstruction 

by Electrical Impedance Tomography Based on 

Physical Information” Third International 

Conference on Measuring Technology and 

Mechatronics Automation, 2011. 

[10]. Qi Wang et.al, “Reconstruction of electrical 

impedance tomography (EIT) images based on the 

expectation maximum (EM) method” ISA 

Transactions 51, pp. 808-820, 2012. 
[11]. Cong Xu et.al, “Dual-modality Data Acquisition 

System based on CPCI Industrial Computer” IEEE, 

2012. 

[12]. Ashkan Javaherian et.al, “Reducing negative effects 

of quadratic norm regularization on image 

reconstruction in electrical impedance tomography” 

Applied Mathematical Modelling, Volume 37, Issue 

8, Pages 5637-5652, 2013. 

[13]. John S Lioumbas et.al, “Spatial considerations on 

electrical resistance tomography measurements” 

Meas. Sci. Technol. 25, doi:10.1088/0957-
0233/25/5/055303, IOP Publishing, 2014. 

[14]. Steven C. Chapra and Raymond P. Canale 

“Numerical Methods for Engineers” 7th edition, 

McGraw-Hill Publication, 2014. 

[15]. Barry D. Van Veen and Kevin M. Buckley, 

“Beamforming: a versatile approach to spatial 

filtering” IEEE ASSP Magazine, 1988. 


