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Abstract

Electrical impedance tomography (EIT) has shown significant
results as a functional imaging tool. However, it is not yet
fully suitable for anatomical imaging because of its poor
spatial resolution. In this study, the anatomical information of
the test object is obtained in the form of the boundary
potentials using an EIT system. Then, the electrical
conductivity/permittivity distribution within the test object is
approached by the Laplacian difference equations and later
solved by Liebmann’s method. Valid results are visible with
an underlying assumption of the electrical potential at the
center of the test object. This novel technique provides more
accurate readings and also converges to a stable solution
faster. Accuracy from 99.555% to 99.785% is obtained within
six iterations as compared to the traditional technique where
the accuracy range from 99.265% to 99.630% with eight
iterations for g, < 1%. This is first step towards better spatial
resolution for the EIT systems.
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Introduction

Electrical impedance tomography (EIT) is a promising
medical imaging technique. It comes with the advantages of
safety, simplicity, economic efficiency and noninvasiveness
as compared with the existing imaging techniques such as
computed tomography (CT), magnetic resonance imaging
(MRI) and X-rays. So far, EIT has shown significant results as
a functional imaging tool such as in continuous monitoring of
cardiac functioning, lung functioning etc. However, it is not
fully suitable for anatomical imaging because of its poor
spatial resolution [1]. Hardware developments including the
electrode belts [2-3], current sources [4] and excitation
methods along with the voltage measurement techniques [5] is
visible to some extent to enhance the spatial resolution.
Simultaneously, several improvements in the reconstruction
algorithms can be found in the literature [6-12] to improve the
spatial resolution of the EIT images.

In this work, a novel approach of numerical analysis is
suggested towards better spatial resolution of the EIT systems
and hence would be suitable for anatomical studies. Elliptic
partial differential equations (PDE) are typically used to
characterize steady state, boundary value problems and with
two spatial dimensions. These can be employed to determine

the steady state distribution of an electric field in EIT
applications. The distribution of an electric potential within a
volume conductor through which a steady current flow is
given by the solution of Poisson’s equation, which reduces to
Laplace’s equation [13]. The Poisson’s equation for the

electrostatic fields can be represented in two-dimensions x
and y as in equation (1).
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where, 17 is the electrostatic potential, o is the volumetric
charge density and £ is the permittivity of the material.

For the regions containing no free charge, o = 0 and hence
equation (1) reduces to a Laplace equation (equation (2)).
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Equation (2) is a second order linear elliptic partial differential
equation (PDE) with two independent variables (x, ) and

one dependent variable, 1.

The numerical solution of the elliptic PDEs is based on
treating the object as a grid of discrete points or nodes and
transforming the PDE into an algebraic finite difference
equations as shown in figure 1, where i = 0 to m+1; m =
0,1,2,...andj=0ton+1;n=0,1,2,...[14].
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Fig 1. Grids used for the finite difference solution of
elliptic PDEs with two independent variables x and y.
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i. Numerical approach
The central differences based on the grid scheme (figure 1)

with Ax = Ay yields an equation (3).
Vitrj *Vieaj + Vijaa + Vi jaa-4V; ;=0 (3)

Equation (3) holds good for all the interior nodes and is
referred to as the Laplacian difference equation. The boundary
conditions must be specified in order to obtain a unique
solution. The simplest case is where the voltages at the
boundary is set at a fixed value. This is called a Dirichlet
boundary condition. There would be more linear algebraic
equations depending on the number of interior nodes.
However, there are maximum five (5) unknown terms for
each line (equation). For a larger sized grids, this means that a
significant number of terms will be zero. This could lead to
wastage of computer memory in storing zero’s when full
matrix elimination methods are used. Hence approximate
methods are used for obtaining solutions for elliptical
equations.

ii. Numerical solution

The most commonly used method is Gauss-Siedal method
which when applied to partial differential equations is referred
to as Liebmann’s method. In this method, equation (3) is re-
written as shown in equation (4).

V0i+L ) +Vi—1) + ViLj+1) + Vij-1)
I"Fz',_;l' = 4 (4)

Equation (4) can be solved iteratively forj=1tonandi=1
to m. Because the matrix is diagonally dominant, this
procedure will converge on a stable solution. The iterations
are repeated until the absolute values of all the percentage
relative errors (ey)i; fall below a specified stopping criteria &,
(usually 1%). These percentage relative errors are estimated
by equation (5).

Vij (new)—Vijiold)

Vi,j (new)

| (ga)i,j| =| | x 100% (5)

Assuming Vij’s as initially Zero, all &,’s for the first iteration
will be 100%. The iterations are continued until this error is
less than 1% [14].

Proposed System

An EIT system visualizes the distribution of electrical
conductivity/permittivity within a human body. The numerical
methods discussed in the above section can be applied to EIT
systems for anatomical studies and hence would possibly
improve/increase the spatial resolution of the EIT images.
This is done by measuring the anatomical information through
the boundary voltages from the electrodes and further
interpolating the voltages inside the test object using the
numerical methods discussed under the introduction section.
Under these conditions, the parameters of the anatomical
details can be further determined by beamforming techniques
[15]. (next stage of this research work)

In general, consider an EIT test object with a circular
boundary as shown in figure 2. Let the conductivity of the test
object inside be uniform. The Laplace equation (equation (2))
for electrostatic fields can be extended in the polar coordinates

rand @ as in equation (6).
T2t 0 (6)

where, r is the radius of the test object in cm and & is the

angle between the electrodes in radians.
Once again equation (6) is a second order linear elliptic partial
differential equation (PDE) with two independent variables

(r, &) and one dependent variable, V.

2V

Fig 2: A circular object where the boundary voltages are
held at constant voltage of 2V with uniform conductivity
inside.

i. Numerical example
Let the surface diameter of the test object be 8 cm. Imagine

the test object to be divided into 8 equal segments I through

I; at an angle of 45 degrees each. Let a uniform boundary

voltage of 2V exist around the test object. Now consider an
inner circle of diameter 4 cm with the interior nodal voltages
from V5 through V5. w.r.t. 1. The arc length for the outer
radius is 3.14 cm and that of the inner radius is 1.57 cm.

Let V..o D€ the voltage at the center of the circle and is
assumed as the average of the existing boundary voltages, 2V.
The Laplacian difference equation for node (1) follows as

equation (7).

':"re: Vi + Vo— Vcenter_l_ Vo—Vig Vo—Vip

2 2 157 1.57 =0 (7)
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where, ¥} = Vignper = 2V
Simplifying equation (7),
Vg. - G.ESG -, VlEh - G.ESG - Vll} = G.SSG (8)

Equations similar to equation (8) for the remaining interior
nodes result in nine simultaneous equations with eight

unknowns as V__. ... is known (assumed as the average of

the boundary voltages, 2V, for any other value(s) of V___ .,
the electrostatic potential distribution would be misleading).
This is represented in the matrix form as,

1 -028 0 0 0 0 0 0 -028][ V9 T [0.88]
-028 1 -028 0 0 0 0 0 0 V10 |_|0.88
0 -028 1 -028 0 0 0 0 0 V11 0.88
0 0 -028 1 -028 0 0 0 0 V12 0.88
0 0 0 -028 1 -028 0 0 0 V13 0.88
0 0 0 0 -028 1 -028 0 0 V14 0.88
0 0 0 0 0 -028 1 -028 0 V15 0.88
0 0 0 0 0 0 -028 1 -028|| V16 0.88
-028 0 0 0 0 0 0 -028 1 ||Vcenter| |0.88]

Liebmann’s method is used as a solution iteratively for j = 1
tonand i =1 to m. Once again the matrix is diagonally
dominant and therefore converges on a stable solution. The
iterations are repeated until the absolute values of all the
percentage relative errors (g,)i; fall below a specified stopping
criteria g5 (usually 1%). These percentage relative errors are
estimated by equation (5). Starting with an assumption of
Vij’s as zero, the iterations are performed and continued until
the error is less than 1% as shown in table 1.

Table 1: The interior nodal voltage values, Vg through Vg
after every iterations when subjected to a uniform
boundary voltage of 2V. The inside of the test object is
assumed to have a uniform conductivity. The stopping
criteria is when all the percentage relative errors, g, < 1%.

Interior Number of iterations (n)
nodal [n=1|{n=2|n=3|n=4|{n=5|n=6
voltages
V)
I; ]0.8795|1.6055(1.8556|1.9456|1.9787|1.9911
e |1.1257|1.6635(1.8709|1.9498|1.9799|1.9915
15, [1.1947|1.6851|1.8772/1.9517|1.9805|1.9921
15, |1.2140(1.6927|1.8797|1.9524/1.9822/1.9930
115 |1.2194/1.6952(1.8806|1.9582|1.9849|1.9939
154 |1.2209(1.6960|1.9002|1.9659|1.9874|1.9947
s |1.2213|1.7652(1.9219|1.9722|1.9892|1.9953
s |1.4676(1.8232(1.9371|1.9764|1.9905|1.9957
€amax | 100% | 45% | 13% | 4.6% | 1.6% [0.62%

ii. Numerical analysis of the results

The results obtained are more accurate compared to the
traditional block approach as shown in figure 1. The least
accurate iterated value is 1.9911 with the most accurate
iterated value of 1.9957 after six iterations. While the
traditional block approach method gives a value of 1.9853 as
the least accurate value to the most accurate value of 1.9963
with eight iterations. Hence the proposed method not only
yields better results but also converges faster as shown in
table 2.

Table 2: The interior nodal voltage values, Vg through Vg
calculated assuming a uniform boundary voltage of 2V,
for percentage relative errors, g, < 1%. The inside of the
test object is assumed to have a uniform conductivity.

Interior Total number of iterations (N)
Nodal N=6 N=8
Voltages (V) | NEW Approach | Traditional Approach
s 1.9911 1.9853
Via 1.9915 1.9852
Wy 1.9921 1.9926
Wiz 1.9930 1.9852
| 1.9939 1.9852
Vs 1.9947 1.9926
Vis 1.9953 1.9926
Ve 1.9957 1.9926
Veoncer 2 (assumed) 1.9963 (measured)
€a max 0.62% 0.70%

Further accurate results can be obtained by choosing ¢, less
than 1%. The rate of convergence can also be accelerated
using over relaxation methods [14]

Conclusion

Elliptic partial differential equations are used to characterize
steady state, boundary value problems and with two spatial
dimensions to improve the spatial resolution of the EIT
systems. A circular test object with a uniform boundary
potential is considered. The steady state distribution of this
electrical potential is found by the Laplacian difference
equation in the polar form with an assumption that the central
electrical potential is equal to the average of the boundary
potentials. The proof of concept is shown through a working
example considering a uniform boundary voltage of 2V. The
inside of the test object is assumed to have a uniform
conductivity. The obtained results provide more accurate
readings with faster convergence rate when compared with the
traditional block approach method. Hence the proposed
numerical technique is suitable for spatial studies in EIT
applications. The next step is to apply beamforming
techniques to validate the suitability of the proposed technique
for anatomical imaging.
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