
International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 18 (2015) pp 39030-39033

© Research India Publications. http://www.ripublication.com

39030

Construction of a Simplified Software Defined Networking (SDN) Test-Bed

Sanjeev Rao Palamand

Project Assistant Department of Electronics Systems Engineering

Indian Institute of Science, Bangalore Karnataka, India
sanjeev_palamand@rediffmail.com

Shakthipriya P

MTech Embedded Systems Technology Dept. of Electronics and Communication

SRM University, Kattankulathur Chennai, Tamil Nadu, India
shakthipriya@outlook.com

Abstract

Software Defined Networking (SDN) is an approach to

enhance the computer network performance by employing a

centralized controller that orchestrates the control of traffic in

the network by decoupling the network plane and the control
plane. The mechanism that governs this method of network

operations is called OpenFlow Protocol. This paper proposes

the construction of a simplified Test-Bed with a virtual SDN

switch using OpenFlow Protocol. It further explains one of the

preliminary applications tested on the Test-Bed, namely

“Frame level separation” of data load.

Keywords: Centralized controller, Frame level separation,

OpenFlow protocol, Software Defined Networking (SDN),

Virtual SDN switch.

Introduction

The term Software defined networking (SDN) has been the

outcome of the ever existing need for better network

operability. The concept behind SDN has been evolving since

a long time, driven by the desire to provide user controlled

management of forwarding in network nodes. SDN, as

described by the Open Networking Foundation is presented as

follows:

“In the SDN architecture the control and data planes are

decoupled, intelligence and state of the network are logically

centralized and the underlying network infrastructure is
abstracted from the applications.” [1].

SDN establishes the separation of control and data plane and

the node intelligence in the node is now available with a

centralized controller and this controller can be programmed

by external applications. Open interfaces exist between the

controller and the network elements.

Existing System

In the existing system of traditional networking, the control

and the data plane are combined in the network node. The

data plane is responsible for the processing and delivering of

packets based on the state of the routers and end points. The

control plane is responsible for configuration of the node and

programming the paths used for the data flows. Once these

paths have been determined, they are sent down to the data

plane. Forwarding data at the hardware level is based on this

control information.

In this approach of traditional networking, once the flow

management has been defined, the only way to make an

adjustment to the policy is via reconfiguration of the devices.
With increasing use of mobile devices, the scaling of

networks as per changing traffic demands is restricted by this

approach [1].

Software Defined Networking System

In Software Defined Networks (SDN), the control is moved

out of the individual network nodes and into the separate

centralized controller. The controller can hence, exploit

complete knowledge of the network to optimize flow

management and support user requirements. SDN is emerging

as an efficient way to support the dynamic nature of future

network functions and intelligent applications while lowering

operation costs through simplified hardware and software

[1][2][3][4].

Related Work

Many network Test-Bed providers and communications Test-

Beds for future internet analysis have introduced the support

for SDN paradigms and programmable network controllers.

PlanetLab Europe is a key Test-Bed with OneLab that

performs experiments on Futuristic Internet technologies.
OneLab is extending PlanetLab Europe into new

environments, beyond the classic wired internet. OneLab is

evolving PlanetLab Europe deeply by incorporating new

monitoring tools. OneLab is federating PlanetLab Europe,

both with other PlanetLabs worldwide and with other types of

Test-Beds.

The Software Defined Telecommunication Laboratory at

Monash University, Australia is experimenting using Open

Flow to simulate various network situations on physical

network hardware [5].

OpenFlow is a network protocol that provides users with

means to control the routing of data through a network switch.

This is accomplished by providing access to the user through

an API on the network switch which can be controlled by an

OpenFlow controller. The Open Flow controller can then

manage the traffic through each switch in the network based

mailto:sanjeev_palamand@rediffmail.com
mailto:shakthipriya@outlook.com

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 18 (2015) pp 39030-39033

© Research India Publications. http://www.ripublication.com

39031

on data and by adding and removing "flows" from the switch

[6].

The OpenFlow Test-Bed developed by theMonash University

consists of 32 Raspberry Pi's, 1 Server and 2 HP 3500-24

Network Switches. The Raspberry Pi's will be used to

generate network traffic as well as collect network statistics

while the Server will act as an OpenFlow Controller and

control the Raspberry Pi's. The Server is a standard desktop

PC. The HP 3500-24 is a 24 port Layer 3 capable networking

switch. OpenDaylight, which is a Software Defined

Networking (SDN) platform developed with major support

from industry, is installed on the Test-Bed.

Construction of the SDN Test-Bed

SDN enables the rapid innovation and optimization of routing

and switching equipment by decoupling the control and data

planes in network switches and routers. SDN greatly

simplifies network management by offering administrators

network-wide visibility and direct control over the underlying

switches from a centralized controller.

Routing Service is an intelligent application based on

Open Flow architecture. It takes an Open Flow-Based SDN

approach to create a logically centralized control plane that is

separated from the forwarding switches in order to focus on

the required routing decision process and routing control from

a large service provider‟s perspective.

Following are the components of the SDN Test-Bed

architecture:

Hardware:

 Two Linux machines

 Multiple USB to NIC card convertors

 Multiple Ethernet cables

Software:

 Open vSwitch

 POX (python based controller)

 Ostinato (packet crafting software)

 Wireshark (packet tracing software)

Figure1 shows the linear topology according to which the

network is connected.

Fig.1. Linear topology arrangement of the network

The arrangement is chosen for its simplicity to demonstrate

the working of SDN. The same can be extended to a bigger

network and other topologies as well.

In this setup, 2 hosts are connected by an SDN switch. While

host H1is connected to the switch by the link veth0-veth1,

host H2 is connected by2 separate links namely eth1-eth2 and

eth3-eth4, as seen in Fig.1. Having 2 separate links to a host

eases demonstration of frame level separation of data packets

using SDN which is the application developed on the Test-

Bed.

The topology is realized by making the switch S, a virtual

SDN switch. The two hosts H1 and H2 are laptops that have
Linux (Ubuntu) as the operating system. The physical set up

of the Test-Bed is as shown in Fig.2.

Setting up of the Test-Bed

Following are the steps for the setting up of the Test-Bed:

 The USB to NIC convertors are configured on each

of the two Linux machines.

 The links of the NIC cards identified by the Linux
machine are noted down to set up the port based

forwarding.

 The buildbridge.sh file that is exclusively shell
scripted for the Test-Bed is run to set up the virtual

switch with a virtual link called the virtual eth link

(veth).

 The controller (POX) is invoked in another new

terminal.

 Host H1 is configured to run Ostinato on it. Ostinato
crafts Ethernet packets of the user‟s wish and sends it

on the links as desired by the user.

 The flows for the Open vSwitch are added

dynamically and the behavior of the switch is

changed dynamically which are then developed into
applications according to the user‟s wish.

 Host H2 has the packet tracing software Wireshark

running on it. This enables tracing of the packets that

are sent by Host H1 through the Open vSwitch.

Fig.2. Physical set up of the SDN Test-Bed

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 18 (2015) pp 39030-39033

© Research India Publications. http://www.ripublication.com

39032

Architecture of the SDN Test-Bed

A. Open vSwitch

Open vSwitch, is an open source implementation of a virtual

switch that can be extended to work in multiple layers. In the

hardware virtualization environments, the Open vSwitch

provides the switching mechanism in a virtual way. It can be

made compatible to multiple protocols and standards in

networking. Open vSwitch can not only operate as a software

based switch running with the virtual machines (VMs) or

hypervisors but can also be ported to multiple virtualization

platforms and switching chipsets. Open vSwitch can be

created only in Linux environment.

B. POX Controller

POX is a Python-based open source development platform for

Software Defined Networking (SDN) control applications,

such as Open Flow SDN controllers. POX is used to create a

modern SDN controller that offers a Pythonic OpenFlow

interface, provides reusable components for path selection,

node discovery, topology discovery, etc.,

C. Ostinato

Ostinato is an open-source, cross-platform network packet

crafting software or traffic generator and analyzer with a

friendly GUI that can craft and send packets of several

streams with different protocols at different rate. Ostinato

supports most of the common standard protocols such as TCP,

UDP, ICMPv4, ICMPv6, IGMP and MLD. It allows a single

client to control and configure multiple ports on multiple

computers generating traffic. Exclusive control of a port to

prevent the OS from sending stray packets is devised and it

provides a controlled testing environment.

D. Wireshark

Wireshark is a freeware and open-source packet analyzer. It is
used for network analysis, troubleshooting, software and

communications protocol development. Wireshark, is released

under the terms of the GNU General Public License. It is very

similar to the command, tcpdump. It has a graphical front-end,

plus some integrated sorting and filtering options. Wireshark

allows the user to see all traffic visible on the network control

interfaces. Port mirroring or various network taps extend

capture to any point on the network. Wireshark can parse and

display the fields, along with their meanings as specified by

different networking protocols. Wireshark uses pcap to

capture packets, so it can only capture packets on the types of

networks that pcap supports.

E. Network Interface Controller (NIC) Cards

A Network Interface controller (NIC) also known as network

adapter is a computer hardware component that connects a

computer to a computer network. Early network interface

controllers were commonly implemented on expansion cards

that plugged into a computer bus. The low cost and ubiquity

of the Ethernet standard means that most new computers have

a network interface built into the motherboard.

The network controller implements the electronic circuitry

required to communicate using a specific physical layer and
also data link layer standard such as Ethernet, Wi-Fi or token

ring. This provides a base for the full network protocol stack,

allowing communication among small groups of computers on

the same LAN and large-scale network communication

through routable protocols, such as IP.

USB to NIC card convertors are used in the SDN Test-Bed

since Laptops come with only 1 in-built NIC card.

Experiments Conducted on the SDN Test-Bed and Results

A. Application developed on the SDN Test-Bed: Frame

level separation of data packets

Flow separation in Layer 2 is a very unique aspect of Software

Defined Networking. With the addition of dynamic flow rules
to the switch, different packets can be separated from the

stream and can be routed in a different link. It mainly helps in

avoiding congested links and routing secure data in different

links. For example in video streaming, re-routing only the

multimedia flows through a different link can make videos

jitter free. Another extension of this application of SDN can

be in providing encapsulation of data to only specific links.

This flow separation is done in the frame level using the POX

controller which is programmed to distinguish the packets that

hit the controlled switch by using network prototype numbers

as the parameter. The verification of the frame level flow

separation is done by testing the different links using

Wireshark.

B. Execution and Results of the experiment

 After setting up the Test-Bed with a fully functional
SDN switch, POX controller, Wireshark and

Ostinato, all the links should be made active using up

link command.

 Three packets namely TCP, UDP and IGMP are

crafted in Ostinato in the Laptop 1 so as to hit the

switch in an interleaved fashion.

 As a first step, the controller is added with the flow
rule „FLOOD‟ to check if all the crafted packets are

received properly on both the links to Laptop 2. This

verification is done by tracing the packets through

Wireshark on Laptop 2.

 Both the links to Laptop 2 receive the stream of
packets as expected to be received.

 Now the controller is added with Flow Rules to re-

route the packets based on their network prototype

numbers. We separate TCP packets from the

interleaved stream of three packets and route it only

to eth3. The remaining UDP and IGMP packets are
made to flow through only eth4 (Refer Fig.2 for

Test-Bed setup).

 This re-routing is successfully verified using

Wireshark, on Laptop 2. The link eth3 receives only

TCP packets while link eth4 receives the interleaved

stream of UDP and IGMP.

We have employed „Port-Based Forwarding‟ on the switch.

This can be further extended to IP based forwarding by

knowing the IP addresses of the systems that are connected in

the network.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 18 (2015) pp 39030-39033

© Research India Publications. http://www.ripublication.com

39033

Conclusion

The work undertaken and explained in the paper involves the

implementation of an SDN Test-Bed which is simple and well

suited for experimental purposes, using Port-Based

configuration which would work well for Local Area

Networks (LAN).

The scope for improvement on our work is stated as follows:

 Implementation for Wide Area Networks (WAN) by
interconnection of LANs can be ensured if Software

Defined Networking (SDN) is implemented using IP

based configuration.

 A mechanism to read the statistics of the controller to
monitor the system can be included to detect

possibilities of intrusion or other active attacks. The

DdoS attack by flooding of irrelevant packets of data

can be detected in the early stages using SDN.

 A programmable hardware SDN switch in place of a

virtual switch can be implemented. For deployments

that involve bigger networks, security and reliability,

a hardware programmable switch that is

manufactured by CISCO, IBM, JUNIPER and HP

can be purchased and used.

References

[1] Are we ready for SDN? Implementation challenges

for software-defined networks Sezer, S. ; Scott-

Hayward, S. ; Chouhan, P.K. ; Fraser, B. ; Lake, D. ;

Finnegan, J. ; Viljoen, N. ; Miller, M. ; Rao, N.

Communications Magazine, IEEE Volume: 51,

Issue: 7 Publication Year: 2013 , Page(s): 36- 43

[2] Improving network management with software

defined networking Hyojoon Kim ; Feamster, N.

communications Magazine, IEEE Volume:51, Issue:

2 Publication Year: 2013 , Page(s): 114- 119.

[3] Software-Defined Networking: A survey ,Computer

Networks, Volume 81, 22 April 2015, Pages 79-95

Hamid Farhady, HyunYong Lee, Akihiro Nakao

[4] A roadmap for traffic engineering in SDN-OpenFlow

networks, Original Research Article Computer

Networks, Volume 71, 4 October 2014, Pages 1-30

Ian F. Akyildiz, Ahyoung Lee, Pu Wang, Min Luo,

Wu Chou

[5] www.monash.edu

[6] www.opennetworking.org/sdn-resources
[7] Network Hypervisors: Enhancing SDN Infrastructure

Original Research Article Computer

Communications, Volume 46, 15 June 2014, Pages

87-96 Shufeng Huang, James Griffioen, Kenneth L.

Calvert

[8] Software-Defined Networking: Challenges and

research opportunities for Future Internet Computer

Networks, Volume 75, Part A, 24 December 2014,

Pages 453-471 Akram Hakiri, Aniruddha Gokhale,

Pascal Berthou, Douglas C. Schmidt, Thierry

Gayraud

[9] Software Defined Networking: Why we like it and

how we are building on it: White paper by CISCO.

[10] How SDN will Shape Networking - key note address

by Nick McKeown.

[11] Software Defined Networking using Open Flow by

Siamak Azodolmolky, PACKT publications.

[12] www.sdncentral.com

[13] www.openflowtutorial.com

[14] www.mininet.org
[15] www.criterionnetworks.com/academy

http://www.criterionnetworks.com/academy

