
International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 18 (2015) pp 38880-38884

© Research India Publications. http://www.ripublication.com

38880

CODED EKSTRAP Clustering Algorithm

Terence Johnson

PhD scholar (Information Technology), AMET University, Chennai, India

Assistant Professor, Dept. of Computer Engineering, Agnel Institute of Technology & Design, Goa, India

ykterence@rediffmail.com

Dr. Santosh Kumar Singh

Head, Dept. of Information Technology, Thakur College of Science and Commerce

Kandivali (E), Mumbai, India, sksingh14@gmail.com

Valerie Menezes

Assistant Professor, Dept. of Computer Engineering, Agnel Institute of Technology & Design, Goa, India

vmm@aitdgoa.edu.in

Abstract

In the COsine Distance and Euclidean Distance based

Enhanced K STRAnge Points (CODED EKSTRAP)

clustering algorithm, an incremental strategy for cluster

formation is put forward in which the minimum, maximum

and K equidistant strangest values of the input set are

calculated using the cosine distance measure. Once the

furthest values of the input set equal to the user defined

number of clusters K are found, the remaining values of the

input set are then assigned into clusters formed by the K

Strange input points using the Euclidean distance measure.

The CODED EKSTRAP clustering algorithm is an extension

of the Enhanced K Strange Points clustering algorithm and

can be used in applications requiring the use of multiple

distance measures based on the requirements of the operations

involved.

Keywords: Enhanced k-strange points clustering, Cosine

distance, Euclidean distance.

Introduction

The task of extracting knowledge from vast amounts of data is

handled in Data mining [1]. The clustering technique of data

mining separates data into groups such that members of a

group are unique in some way and differ from members of

other groups thereby forming clusters [2]. A cluster is thus, is

a set of values that are very similar to each other within their

own cluster and different from the values in other clusters [3].

A standard clustering algorithm will output clusters with a

reasonably high intra cluster similarity as well as reasonably

low inter cluster similarity [4]. The main goal of clustering is

to find sets of similar data items where items are modeled as

points in multidimensional space. The distance metrics are

used to determine the similarity and dissimilarity between

data items [5]. Clustering is applied to a wide variety of

domains such as survey of markets, customer segmentation,

business intelligence, decision making systems, genetics, bio-

medicine, geo-spatial informatics, environmental engineering

and much more [6]. Clustering is also used to reveal the

implicit groupings in a structure of the input set [7].

Enhanced K Strange Points Clustering

The Enhanced K Strange points clustering algorithm [8]

initially selects the first of the K strange values as the

minimum of the input set and then finds the next strange value

which is furthest from the minimum thus giving two values

from the dataset which are at maximum distance from each

other using the Euclidean distance measure. It then locates a

third value which is furthest from the minimum and maximum

such that the sum of the distances between these 3 values is

greater than any other combination. If required, the location of

the third value is corrected by placing it almost maximally and

equally spaced from the minimum and maximum. This

process is continued until K values equal to the number of

user defined clusters are found. It then outputs K clusters by

accumulating the remaining n-K values in the input set into

clusters formed by these K Strange values using the Euclidean

distance measure [9].

Cosine Distance and Euclidean Distance

It is necessary to have a distance measure for any clustering
process in order to determine the closeness of values within

clusters. In applications which involve a large number of

dimensions describing the input, we can use the cosine

similarity measure which is a space of random infinite

features with structure that generalizes two or three-

dimensional Euclidean space used to find the maximally

separated equidistant strange values. The cosine distance

specifies the angle between vectors of all dimensions as

shown in Fig. 1.

  = arc cos (x.y/|x||y|)

Fig.1. Geometric interpretation of inner product

The Cosine distance is given as:

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 18 (2015) pp 38880-38884

© Research India Publications. http://www.ripublication.com

38881

 



 


N

K

N

k

jkik

N

K

jkik

jic

TT

TT

TTd

1 1

22

1),(

The Euclidean distance [10] is used to put the remaining

points from the dataset into clusters formed by the maximally

separated equidistant k strange points. The Euclidean distance

between the points i(a1,b1 ,c1,d1) and j(a2,b2,c2,d2) is given by:

2

21

2

21

2

21

2

21
)()()()(),(ddccbbaajid 

CODED EKSTRAP – The Proposed Extension

The COsine Distance and Euclidean Distance based Enhanced

K STRAnge Points (CODED EKSTRAP) clustering

algorithm begins by finding the minimum of the dataset. Since

the cosine distance measure is being used for finding strange

points which are furthest apart from each other, we need to set

the value of the origin as (1,1) instead of (0,0) while searching
for the minimum of the dataset. This is because the value of

the cosine distance will yield a zero when finding the distance

of any prospective minimum point from the origin (0,0). To

avoid this scenario the value of the origin is set as (1,1) and

then a point which is at minimum distance from (1,1) is found.

This is denoted as the temporary minimum as seen in Fig. 2.

Fig. 2. Temp min of dataset.

Now the search for the actual minimum begins by looking for

any point in the dataset which is less than the temporary

minimum using dictionary sorting. In dictionary sorting the

first dimension of the temporary minimum is checked with the

first dimension of all points in the dataset to see if there is any
point whose first dimension value is less than that of the

temporary minimum.

Fig. 3. Actual min of dataset.

If there is any such point, then that point will be the actual

minimum. If the comparison shows that the values in the first
dimension of the prospective point and temporary minimum

are equal then the value in the next dimension is checked and

this process is repeated till the actual minimum is found as

shown in Fig. 3. The algorithm then finds a point which is at

maximum distance from the minimum. It then locates a third

point from the dataset which is maximally separated from the

two strange points located in the previous steps. It then corrects

the location of the third strange point by finding a central point

between the third strange point and the minimum or maximum

depending on which point the uncorrected third strange point is

closest to. If the clustering requirement is to find K=3 clusters

from the dataset then the similarity is found using the cosine

distance measure. The Euclidean distance is then used to

output the user defined K = 3 clusters using these 3 furthest

strange values as shown in Fig. 4.

Fig. 4. Formation of K=3 clusters.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 18 (2015) pp 38880-38884

© Research India Publications. http://www.ripublication.com

38882

For the user defined clustering requirement of K = M clusters,

the sequence of steps for finding the M Strange points from

each other is continued and then the remaining values in the

input set are grouped into clusters formed by these K = M

strange values based on the Euclidean distance measure.

The CODED EKSTRAP Clustering Algorithm

Input: The cluster requirement of K = M and a repository

having n data items D = {D1, D2, D3, D4,…………….. Dn}

Output: A group of K clusters.

Steps

 First the origin is set to 1 for the number of dimensions
and this value of the origin is used to find the temporary
minimum of the dataset using the cosine distance
formula.

 Then the actual minimum of the dataset is found using
dictionary sorting and designated as Kmin

 Next, a point which is farthest from Kmin is found by
using the cosine distance measure.

 After this we locate a third point s which is farthest
from Kmin and Kmax using the Cosine distance.

If s is equidistant to Kmin and Kmax, then s is the third
strange point

If s is closer to Kmin than to Kmax, then s is corrected
using the formula




























1

max

K

prevKstrnK
XprevKstrnKstrn

If s is closer to Kmax than to Kmin, then s is corrected
using the formula












































1

min

K

KprevKstrn
XprevKstnabsKstrn

where

K= number of clusters

X ranges from K=1,2,3,…..K-2

Kstrnprev = uncorrected value of s and Kstrn = corrected
value of s

 Repeat these steps until the K points equaling the
number of required clusters mentioned in the problem
are found.

 Accumulate the remaining values of the input set into
clusters formed by the K non collinear furthest strange
data items using the Euclidean distance measure.

 Output K=M clusters.

Implementation of the proposed algorithm

Consider a clustering requirement for 3 clusters of any

dataset.

Step I: Finding the temporary minimum of the dataset

For this the origin is initialized as follows.

double orig[][]=new double[1][4];

 for(int v=0; v<1; v++){

 for(int w=0; w<4; w++){

 orig[v][w]=1;

 }

}
Then the temporary minimum is found as shown below.

for (loop var <= SizeOfData){

 nrCosD = nrCosineDist (origin, data);

 drCosD = drCosineDist (origin, data);

 cosD = nrCosD / drCosD;

 ed[k] = cosD;

 if(ed[k]>tempMin)

 tempMin = ed[k];

 TKmin=tempMin;

}

Step II: Finding the actual minimum

Kmin = TKmin

for(loop var <= SizeOfData){

 if(data[0][0]<Kmin[0][0]){

 Kmin = data;}}

 else if(data[0][0]= =Kmin[0][0])){
 if(data[0][1]<Kmin[0][1]){

 Kmin = data;}}

 else if(data[0][1]= =Kmin[0][1])){

 if(data[0][2]<Kmin[0][2]){

 Kmin = data;}}

 else if(data[0][2]= =Kmin[0][2])){

 if(data[0][3]<Kmin[0][3]){

 Kmin = data;}

}

Step III: Finding the maximum Kmax from Kmin

for(loop var <= SizeOfData){

 nrCosD = nrCosineDist (Kmin, data);

 drCosD = drCosineDist (origin, data);

 cosD = nrCosD / drCosD;
 ed[k] = cosD;

 if(ed[k]<max){

 max = ed[k];}

 Kmax=max;

}

Step IV: Finding the third strange point

for(loop var <= SizeOfData){

 dist=max+cosDist(Kmin, data) +cosDist(data, Kmax);

 if(dist<finalMax){

 finalMax = dist;

 Kstr = data;}

}

The third strange point is now found corrected as shown

below.

f1= Math.abs(Kmin-s);

f2= Math.abs(Kmax-s);

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 18 (2015) pp 38880-38884

© Research India Publications. http://www.ripublication.com

38883

for (loop var < (K - 2)){

 if (f1= =f2)

 KStrfinal = Sprev;

 else if (f1<f2)

 KStrfinal = Sprev + X*(abs (Kmax- Sprev))/(K-1);

 else

 KStrfinal = abs(Sprev - X*(abs (Sprev - Kmin))/(K-1));}

where K = number of clusters and

X ranges from K=1,2,3,…..K-2.
Sprev = uncorrected value of s

KStrfinal = third strange point

As K=3 Strange points are found we stop searching for any

more strange points.

Step V: Assigning points to respective clusters

The assignment of the leftover n-K values in the input set into

is done using Euclidean distance measure.

for (loop var <= SizeOfData){

if((dist(kmin,p)<=dist(kmax,p))&(dist(kmin,p)<=dist(kstr,p)))

 Assign p to Cluster 1

else if((dist(kstr,p)<=dist(kmin,p))&((dist(kstr,p)<=dist (kmax,p)))

 Assign p to Cluster 2

else if((dist(kmax,p)<=dist(kmin,p))&(dist(kmax,p)<=dist(kstr,p)))

 Assign p to Cluster 3}

where

p = data point.

Step V: Output K clusters

Experimental Results

The algorithm is tested with a 2D array dataset of 100000

points each with 4 columns and executed to give the results

Fig. 5. Output of CODED EKSTRAP clustering.

Once the K Strange values are determined, the algorithm then

groups the remaining n-K values in the input set into clusters

formed by those K-Strange values after which the K clusters

are output as shown in Fig. 5.

Comparison with K-Means & Enhanced K Strange

In addition to Fig. 5 showing the results of the CODED

EKSTRAP clustering algorithm, the results of the K-Means

and Enhanced K-Strange points clustering algorithm are

shown below in Fig. 6 and Fig. 7 for comparison of the three

algorithms.

Fig. 6. Output of K-Means clustering.

Fig. 7. Output of Enhanced K Strange points clustering.

Table I shows the results of the K-Means, Enhanced K-Strange

points and the CODED EKSTRAP clustering algorithm for

random datasets of 1000, 10000, and 100000 data points each

with 4 dimensions for 3 clusters.

TABLE I. COMPARISON OF EXECUTION TIMES

Running time of algorithms (milliseconds) for growing

data size

Data

Points

K-Means

Clustering

Enhanced K

Strange

Clustering

CODED

EKSTRAP

[1000][4] 16 0 0
[10000][4] 187 31 31
[100000][4] 795 31 203

From the table it is clear that the CODED EKSTRAP

clustering algorithm proposed in this paper performs on par

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 18 (2015) pp 38880-38884

© Research India Publications. http://www.ripublication.com

38884

with the Enhanced K-Strange points clustering algorithm for

10000 data points. But it takes a little more time for 100000

data points. It however easily outperforms the K-Means

clustering algorithms for all sizes of inputs.

Conclusion

This paper is an extension to the Enhanced K Strange points

clustering algorithm where in the cosine distance and

Euclidean distance measures are used in the clustering

process. It is observed that the CODED EKSTRAP clustering

algorithm performs far better than the K Means clustering
algorithm and gives almost the same results as the Enhanced

K Strange Points clustering algorithm. The implementation

shows that clustering can be done in an easy way using this

method. The objective of this paper was to extend the

enhancement to the K Strange points clustering algorithm

using the Cosine and Euclidean distance measures.

References

[1] D. J. Hand, Heikki Mannila and Padhraic Smyth,

Principles of Data Mining, MIT Press, 2001.

[2] Terence Johnson and Jervin Zen Lobo, “Collinear

clustering algorithm in lower dimensions,” IOSR

Journal of Computer Engineering, ISSN: 2278-0661,

ISBN: 2278-8727, vol. 6, Issue 5, pp. 08-11, Nov-

Dec 2012.

[3] Sajid Nagi, Dhruba K. Bhattacharya and Jugal K.

Kalita, “A preview on subspace clustering of high

dimensional data,” International Journal of Computer

and Technology, ISSN: 22773061 vol. 6, no. 3, May
2013, pp. 441-448

[4] Santosh Kumar Singh and Terence Johnson,

“Improved collinear clustering algorithm in lower

dimensions,” Proceedings of Second International

Conference on Emerging Research in Computing,

Information, Communication and Applications,
ERCICA 2014, Elsevier publications, ISBN

9789351072638, Vol 3, pp 343-348.

[5] Terence Johnson, “Bisecting collinear clustering

algorithm,” International Journal of Computer

Science Engineering and Information Technology

Research, © TJPRC Pvt. Ltd, ISSN: 2249-6831, vol.

3, Issue 5, Dec. 2013, pp. 43-46

[6] Sunita Jahirabadkar and Parag Kulkarni, “SCAF-An

efficient approach to classify subspace clustering,”

International Journal of Data Mining and Knowledge

Management Process, vol. 3, no. 2, March 2013.

[7] Jiawei Han and Micheline Kamber, Data Mining –

Concepts and Techniques, Elsevier.

[8] Santosh Kumar Singh and Terence Johnson,
”Enhanced K Strange Points Clustering Algorithm”,

Proceedings of the „2nd International Research

Conference on Emerging Information Technology

and Engineering Solutions‟ EITES 2015, 978-1-

4799-1838-6/15, pp 32-37, IEEE Computer Society

Conference Publishing Services, © 2015 IEEE, DOI

10.1109/EITES.2015.14

[9] Santosh Kumar Singh and Terence Johnson, “K-

strange points clustering algorithm ,” Proceedings of

International Conference on Computational

Intelligence in Data Mining, 2014, Print ISBN 978-

81-322-2204-0, Online ISBN 978-81-322-2205-7,

Smart Innovation, Systems and Technologies, Vol

31, ISSN 2190-3018, Springer publications, pp 415-

425

[10] A. Alfakih, A. Khandani, and H. Wolkowicz,
“Solving, Euclidean distance matrix completion

problems”. Comput. Optim. Appl., 12(1999), pp.13-

30

