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Abstract 

In the COsine Distance and Euclidean Distance based 

Enhanced K STRAnge Points (CODED EKSTRAP) 

clustering algorithm, an incremental strategy for cluster 

formation is put forward in which the minimum, maximum 

and K equidistant strangest values of the input set are 

calculated using the cosine distance measure. Once the 

furthest values of the input set equal to the user defined 

number of clusters K are found, the remaining values of the 

input set are then assigned into clusters formed by the K 

Strange input points using the Euclidean distance measure. 

The CODED EKSTRAP clustering algorithm is an extension 

of the Enhanced K Strange Points clustering algorithm and 

can be used in applications requiring the use of multiple 

distance measures based on the requirements of the operations 

involved. 

 

Keywords: Enhanced k-strange points clustering, Cosine 

distance, Euclidean distance. 

 

 
Introduction 

The task of extracting knowledge from vast amounts of data is 

handled in Data mining [1]. The clustering technique of data 

mining separates data into groups such that members of a 

group are unique in some way and differ from members of 

other groups thereby forming clusters [2]. A cluster is thus, is 

a set of values that are very similar to each other within their 

own cluster and different from the values in other clusters [3]. 

A standard clustering algorithm will output clusters with a 

reasonably high intra cluster similarity as well as reasonably 

low inter cluster similarity [4]. The main goal of clustering is 

to find sets of similar data items where items are modeled as 

points in multidimensional space. The distance metrics are 

used to determine the similarity and dissimilarity between 

data items [5]. Clustering is applied to a wide variety of 

domains such as survey of markets, customer segmentation, 

business intelligence, decision making systems, genetics, bio-

medicine, geo-spatial informatics, environmental engineering 

and much more [6]. Clustering is also used to reveal the 

implicit groupings in a structure of the input set [7]. 

 

 

Enhanced K Strange Points Clustering 

The Enhanced K Strange points clustering algorithm [8] 

initially selects the first of the K strange values as the 

minimum of the input set and then finds the next strange value 

which is furthest from the minimum thus giving two values 

from the dataset which are at maximum distance from each 

other using the Euclidean distance measure. It then locates a 

third value which is furthest from the minimum and maximum 

such that the sum of the distances between these 3 values is 

greater than any other combination. If required, the location of 

the third value is corrected by placing it almost maximally and 

equally spaced from the minimum and maximum. This 

process is continued until K values equal to the number of 

user defined clusters are found. It then outputs K clusters by 

accumulating the remaining n-K values in the input set into 

clusters formed by these K Strange values using the Euclidean 

distance measure [9]. 

 

 

Cosine Distance and Euclidean Distance 

It is necessary to have a distance measure for any clustering 
process in order to determine the closeness of values within 

clusters. In applications which involve a large number of 

dimensions describing the input, we can use the cosine 

similarity measure which is a space of random infinite 

features with structure that generalizes two or three-

dimensional Euclidean space used to find the maximally 

separated equidistant strange values. The cosine distance 

specifies the angle between vectors of all dimensions as 

shown in Fig. 1. 

 

         = arc cos (x.y/|x||y|)         

                       
 

Fig.1. Geometric interpretation of inner product 

 

 

The Cosine distance is given as: 
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The Euclidean distance [10] is used to put the remaining 

points from the dataset into clusters formed by the maximally 

separated equidistant k strange points. The Euclidean distance 

between the points i(a1,b1 ,c1,d1) and j(a2,b2,c2,d2) is given by: 
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CODED EKSTRAP – The Proposed Extension 

The COsine Distance and Euclidean Distance based Enhanced 

K STRAnge Points (CODED EKSTRAP)  clustering 

algorithm begins by finding the minimum of the dataset. Since 

the cosine distance measure is being used for finding strange 

points which are furthest apart from each other, we need to set 

the value of the origin as (1,1) instead of (0,0) while searching 
for the minimum of the  dataset. This is because the value of 

the cosine distance will yield a zero when finding the distance 

of any prospective minimum point from the origin (0,0). To 

avoid this scenario the value of the origin is set as (1,1) and 

then a point which is at minimum distance from (1,1) is found. 

This is denoted as the temporary minimum as seen in Fig. 2. 

 

 
 

Fig. 2. Temp min of dataset. 

 

 

Now the search for the actual minimum begins by looking for 

any point in the dataset which is less than the temporary 

minimum using dictionary sorting. In dictionary sorting the 

first dimension of the temporary minimum is checked with the 

first dimension of all points in the dataset to see if there is any 
point whose first dimension value is less than that of the 

temporary minimum. 

 

 
 

Fig. 3. Actual min of dataset. 

 

 

If there is any such point, then that point will be the actual 

minimum. If the comparison shows that the values in the first 
dimension of the prospective point and temporary minimum 

are equal then the value in the next dimension is checked and 

this process is repeated till the actual minimum is found as 

shown in Fig. 3. The algorithm then finds a point which is at 

maximum distance from the minimum. It then locates a third 

point from the dataset which is maximally separated from the 

two strange points located in the previous steps. It then corrects 

the location of the third strange point by finding a central point 

between the third strange point and the minimum or maximum 

depending on which point the uncorrected third strange point is 

closest to. If the clustering requirement is to find K=3 clusters 

from the dataset then the similarity is found using the cosine 

distance measure. The Euclidean distance is then used to 

output the user defined K = 3 clusters using these 3 furthest 

strange values as shown in Fig. 4. 

 

 
 

Fig. 4. Formation of K=3 clusters. 
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For the user defined clustering requirement of K = M clusters, 

the sequence of steps for finding the M Strange points from 

each other is continued and then the remaining values  in the 

input set are grouped into clusters formed by these K = M 

strange values based on the Euclidean distance measure. 

 

 

The CODED EKSTRAP Clustering Algorithm 

Input: The cluster requirement of K = M and a repository 

having n data items D = {D1, D2, D3, D4,…………….. Dn} 

Output: A group of K clusters. 
 

Steps 

 First the origin is set to 1 for the number of dimensions 
and this value of the origin is used to find the temporary 
minimum of the dataset using the cosine distance 
formula. 

 Then the actual minimum of the dataset is found using 
dictionary sorting and designated as Kmin  

 Next, a point which is farthest from Kmin is found by 
using the cosine distance measure.  

 After this we locate a third point s which is farthest 
from Kmin and Kmax using the Cosine distance.  

If s is equidistant to Kmin and Kmax, then s is the third 
strange point 

If s is closer to Kmin than to Kmax, then s is corrected 
using the formula 
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If s is closer to Kmax than to Kmin, then s is corrected 
using the formula 
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where  

K= number of clusters 

X ranges from K=1,2,3,…..K-2 

Kstrnprev = uncorrected value of s and Kstrn = corrected 
value of s 

 Repeat these steps until the K points equaling the 
number of required clusters mentioned in the problem 
are found. 

 Accumulate the remaining values of the input set into 
clusters formed by the K non collinear furthest strange 
data items using the Euclidean distance measure. 

 Output K=M clusters. 

 

 

Implementation of the proposed algorithm 

Consider a clustering requirement for 3 clusters of any 

dataset. 

Step I: Finding the temporary minimum of the dataset 

For this the origin is initialized as follows. 

double orig[][]=new double[1][4]; 

     for(int v=0; v<1; v++){ 

          for(int w=0; w<4; w++){ 

               orig[v][w]=1; 

          } 

} 
Then the temporary minimum is found as shown below. 

for (loop var <= SizeOfData){ 

          nrCosD = nrCosineDist (origin, data); 

          drCosD = drCosineDist (origin, data); 

          cosD = nrCosD / drCosD; 

          ed[k] = cosD; 

          if(ed[k]>tempMin) 

                tempMin = ed[k]; 

          TKmin=tempMin; 

} 

 

Step II: Finding the actual minimum 

Kmin = TKmin 

for(loop var <= SizeOfData){ 

          if(data[0][0]<Kmin[0][0]){ 

               Kmin = data;}} 

          else if(data[0][0]= =Kmin[0][0])){ 
               if(data[0][1]<Kmin[0][1]){ 

                    Kmin = data;}} 

          else if(data[0][1]= =Kmin[0][1])){ 

                if(data[0][2]<Kmin[0][2]){ 

                     Kmin = data;}} 

          else if(data[0][2]= =Kmin[0][2])){ 

                if(data[0][3]<Kmin[0][3]){ 

                     Kmin = data;} 

} 

 

Step III: Finding the maximum Kmax from Kmin 

for(loop var <= SizeOfData){ 

          nrCosD = nrCosineDist (Kmin, data); 

          drCosD = drCosineDist (origin, data); 

          cosD = nrCosD / drCosD; 
          ed[k] = cosD; 

          if(ed[k]<max){ 

               max = ed[k];} 

          Kmax=max; 

} 

 

Step IV: Finding the third strange point 

for(loop var <= SizeOfData){ 

          dist=max+cosDist(Kmin, data) +cosDist(data, Kmax); 

          if(dist<finalMax){ 

               finalMax = dist; 

               Kstr = data;} 

} 

The third strange point is now found corrected as shown 

below. 

f1= Math.abs(Kmin-s); 

f2= Math.abs(Kmax-s); 
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for (loop var < (K - 2)){ 

       if (f1= =f2) 

            KStrfinal = Sprev; 

       else if (f1<f2) 

            KStrfinal = Sprev + X*(abs (Kmax- Sprev))/(K-1); 

       else 

            KStrfinal = abs(Sprev - X*(abs (Sprev - Kmin))/(K-1));} 

where K = number of clusters and 

X ranges from K=1,2,3,…..K-2. 
Sprev = uncorrected value of s 

KStrfinal = third strange point 

As K=3 Strange points are found we stop searching for any 

more strange points. 

 

Step V: Assigning points to respective clusters 

The assignment of the leftover n-K values in the input set into 

is done using Euclidean distance measure. 

for (loop var <= SizeOfData){ 

if((dist(kmin,p)<=dist(kmax,p))&(dist(kmin,p)<=dist(kstr,p))) 

         Assign p to Cluster 1 

else if((dist(kstr,p)<=dist(kmin,p))&((dist(kstr,p)<=dist (kmax,p)))  

         Assign p to Cluster 2 

else if((dist(kmax,p)<=dist(kmin,p))&(dist(kmax,p)<=dist(kstr,p))) 

         Assign p to Cluster 3} 

where 

p = data point. 

 
Step V: Output K clusters 

 

 

Experimental Results 

The algorithm is tested with a 2D array dataset of 100000 

points each with 4 columns and executed to give the results 

 

 
 

Fig. 5.   Output of CODED EKSTRAP clustering. 

Once the K Strange values are determined, the algorithm then 

groups the remaining n-K values in the input set into clusters 

formed by those K-Strange values after which the K clusters 

are output as shown in Fig. 5. 

 

 

Comparison with K-Means & Enhanced K Strange 

In addition to Fig. 5 showing the results of the CODED 

EKSTRAP clustering algorithm, the results of the K-Means 

and Enhanced K-Strange points clustering algorithm are 

shown below in Fig. 6 and Fig. 7 for comparison of the three 

algorithms. 
 

 
 

Fig. 6. Output of K-Means clustering. 

 

 
 

Fig. 7. Output of Enhanced K Strange points clustering. 

 

 

Table I shows the results of the K-Means, Enhanced K-Strange 

points and the CODED EKSTRAP clustering algorithm for 

random datasets of 1000, 10000, and 100000 data points each 

with 4 dimensions for 3 clusters. 

 

TABLE I.  COMPARISON OF EXECUTION TIMES 
 

Running time of algorithms (milliseconds) for growing 

data size 

Data 

Points 

K-Means 

Clustering 

Enhanced K 

Strange 

Clustering 

CODED 

EKSTRAP 

[1000][4] 16 0 0 
[10000][4] 187 31 31 
[100000][4] 795 31 203 
 

 
From the table it is clear that the CODED EKSTRAP 

clustering algorithm proposed in this paper performs on par 
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with the Enhanced K-Strange points clustering algorithm for 

10000 data points. But it takes a little more time for 100000 

data points. It however easily outperforms the K-Means 

clustering algorithms for all sizes of inputs. 

 

 

Conclusion 

This paper is an extension to the Enhanced K Strange points 

clustering algorithm where in the cosine distance and 

Euclidean distance measures are used in the clustering 

process. It is observed that the CODED EKSTRAP clustering 

algorithm performs far better than the K Means clustering 
algorithm and gives almost the same results as the Enhanced 

K Strange Points clustering algorithm. The implementation 

shows that clustering can be done in an easy way using this 

method. The objective of this paper was to extend the 

enhancement to the K Strange points clustering algorithm 

using the Cosine and Euclidean distance measures. 
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