
International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 18 (2015) pp 39841-39848

© Research India Publications. http://www.ripublication.com

39841

Test Suite Reduction Mechanisms: A Survey

A.D.Shrivathsan

Assistant Professor Deparment of Computer Applications School of Computing SASTRA Univeristy

Thanjavaur-613401 Tamilnadu India a.d.shrivathsan@gmail.com

K.S.Ravichandran

Associate Dean Department of ICT School of Computing SASTRA University Thanjavur-613401 Tamilnadu India

raviks@it.sastra.edu

K.R.Sekar

Assistant Professor Department of CSE School of Computing SASTRA University Thanjavur-613401 Tamilnadu India

sekar_kr@cse.sastra.edu

Abstract
Software testing is playing a paramount role in software

development, release and maintenance. Test suite length

reduction without compromising on detecting faults improves

efficiency. To achieve this, few test cases of the test suite

needs to be eliminated. And, it is called as Test Suite

Reduction. This scenario occurs mainly due to redundancy in

coverage of requirements as well as code. And the elimination

of such redundancies is called as reduction mechanisms. This

is a breakthrough in software testing activities, as it reduces

the time and effort consumption. This is an attempt to achieve

software test optimization, which improves efficiency in

testing without compromising on efficaciousness. There are

other mechanisms available to achieve optimum amount of

test cases. Such mechanisms are Test Case Prioritization and

Test Case Selection. The need to strive for optimization is the

time restriction in delivery of software product. This paper

focuses and reviews the research articles pertaining to the Test

Suite Reduction mechanisms. The objective of this study is to

scrutinize what kind of techniques employed in test suite

reduction. We searched the following electronic databases:

Science Direct, Springer, and IEEE Explore. This paper

attempts to make a literature survey of test suite reduction

mechanisms attempted by various researchers.

Key terms Test suite Reduction, Test suite minimization, Test

Case, Test Suite, Bug detection

1. Introduction

Software systems verification and validation activities

aremeant to achieve quality. Testing is one among the activity.

Meanwhile, the testing has no stopping point. Hence, the test

manager decides to freeze the testing process at one stage.

This decision ispurely subjective and is based on the resources

availability and especially the time. The time is a crucial

factor in the testing process. Removing the test cases, which

are focusing on the already covered bugs is mandatory for

efficiency increase. Also, eliminating a test case, when it is

repeated in some other test suites will improve test efficiency.

The two aforesaid activities are called as reduction or
minimization in test suite.

Bug identification with less time and less effortwithout

compromising on quality is a noteworthy aspect. Hence, this

aspect is taken for consideration by researchers, subsequently

contributing to theimprovement in testing process. The

reduction approaches are based on various factors such as

Requirements specification, Source code, Fault coverage,

Design models, Execution profiles, and so on. This reduction

is carried out in system integration test as well as in regression

test. And, at both stages, reduction is very much necessary to

optimize the testing efficiency.

This paper makes a literature survey on various research

articles focusing on test suite reduction. Section 2 describes

the rationale behind software testing, its various types and the

need for test suite reduction. Section 3 describes the research

articles proposed by various researchers having various

methodologies in test suite minimization. Techniques such as

genetic algorithm, clustering, heuristics, set theory,

evolutionary algorithms, fuzzy techniques and so on are

covered. The conclusion is made available in Section 4.

2. Background
Software testing happens prior to the release of product. It is

to ensure that the system functions as expected by the

customer. The requirements are mapped with system and

defects if any are identified. Without testing, quality cannot be

ascertained. Testing will not remove faults, rather it detects it.

These defects or failures should be fixed.

The system built is thoroughly checked for bugs against

requirements. This activity is called System test. Some are

calling this as system integration test. When bugs are arising,

it is handed over to the development team to fix them. This

process is known as Debugging. Figure 1 shows various

layers in software testing.

mailto:a.d.shrivathsan@gmail.com
mailto:raviks@it.sastra.edu
mailto:sekar_kr@cse.sastra.edu

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 18 (2015) pp 39841-39848

© Research India Publications. http://www.ripublication.com

39842

Fig 1- Testing Layers

Debugging leads to modifications made in any or all of the

following: Requirement, Design, and Code. Hence, it becomes

mandatory to test the modified areas of the system in

subsequent testing cycles.Certain other parts of the system

would have been impacted because of the changes made.

Also, added or modified code needs to undergo testing.

Therefore, some of the previously exercised test cases and

newly generated test cases have to be exercised to identify

further bugs. This process is known as Regression testing. At

every iteration of regression test, new set of errors identified,

and thus goes into vicious cycle. To stop this regression

testing process at one stage, time and resources are used as

criterion.

Another issue to be focused is, the efficiency of testing. There
is always a thrust to identify high amount of defects with less

amount of test cases to save time and energy. To achieve this

optimality, three major techniques proposed by researchers

are: a) Test Case Prioritization b) Test Suite Reduction and c)

Test Case Selection

This paper does literature survey on Test Suite Reduction

based research articles.

Definition:

The Test Suite Reduction problem may be stated as:

Given :

Test suite TS having test cases , (i=1, 2, …, n), having
given set of system requirements Rconsisting of requirements

, (j=1, 2, …, m), every rj be satisfied by at least one t i.

Problem:

} and find such

that satisfies all and

Objective:

To find a subset of TS, signifya representative set RS, to

satisfying all requirements.

3. Test Suite Reduction Mechanisms

3.1 Condition based reduction

James A. jones, Mary Jean Harrold[1] have done reduction of

test suite and prioritization in test cases based on the

conditions modified and Decisions being covered. The test

cases that cover all the truth and false vectors as well as their

contributions to find number of decisions covered, are

considered in this approach.They have devised break down

algorithm and build up algorithm for reduction, and number of

entities covered determined prioritization.

3.2 Greedy and heuristic based reduction
Chu-Ti Lin, Kai-Wei Tang, Gregory M. Kapfhammer [2]

devised two algorithms namely, Greedy Redundant algorithm

and Greedy Redundant Essential algorithm. The approach in

this is purely black box. i.e., they assessed the coverage of

requirements by test cases. Accordingly test suite reductions

are done. They formulated metrics, Irreplaceability and

Extended Irreplaceability based on cost factor in test cases.

These were used in reduction methodology.

HaoZhong, Lu Zhang, and Hong Mei [3] compared four test

suite reduction techniques in terms of scalability with respect

to complexity of test cases, representative set sizes and

common subset amongst them. The first technique by harrold

et al., is heuristic approach towards covering requirements by

inputs.Chen and Lau applied Greedy Redundant Essential

algorithm, which works based on requirements mapped by test

case to reduce test cases.Mansour, El-Fakin employed hybrid

geneticalgorithm to achieve reduction in suite size.The Black

et al., ‟sapproach uses IntegerLinear programming models.

One of the model is to minimize amount of test cases. In the

other model, two objectives are considered, which balances

between minimal representative set and prominent test cases

error revealing capacity.

Jun-Wei Lin, Chin-Yu Huang [4] developed Reduction with
Tie Breaking approach. In this, when tie occurs between test

cases in terms of coverage, then the test case containing most

definition use pairs is selected.And, this approach was

integrated with GRE and HGSalgorithms to improve efficacy

in test case reduction.

T.Y. Chen, M.F. Lau [5] presented a heuristic GRE based on

strategies like Greedy, Redundancy, and Essentials.

The essentials strategy is applied in the beginning.Essential

strategy is finding test cases based on its ability to satisfy

requirements. This process is repeated with each set of

requirements until all essential test cases are identified.

Essential strategy is to select only the indispensable test cases

for covering requirement and is represented by and,

.Unless
all requirements are covered by essential test cases, the

sufficiency does not lie with this strategy alone.

In Greedy approach, selecting all test cases which are

essential in every set is made.This may end up in

redundancy.So, an enhanced version called GE strategy

established, in which the indispensable test cases are selected

in first step and as a next step heuristic named greedy is

applied.1-1 redundancy strategy aims only at satisfiability

relation reduction and incorporated with other strategies.The

strategy named Redundancy removes one-to-one redundant

Explora
tory

End-to-
End

Component

Integration

Unit

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 18 (2015) pp 39841-39848

© Research India Publications. http://www.ripublication.com

39843

test cases one at a time, repeatedly until no one-to-one

redundant test cases are left with. After this strategy,

also, a 1-
to-1 redundant test case not handling high amount of

requirements is not picked by greedy strategy. Moreover, if a

1-to-1 redundant test case satisfies a set of requirements, the

same set of requirements might have been satisfied by another

test case, say t2. In this case, the test cases belonging toS(T, R)

and by applying greedy are one and the

same.One to one redundancy strategy aims to reduce the

satisfiability relation and need to be incorporated with other
strategies.

The Greedy strategy reduces satisfiability relation between

requirements and test cases, ignoring 1-to-1 redundancy in test

cases on the go.So, one to one redundancy strategy need not

be combined with greedy strategy. Hence, heuristic GRE

works as follows: As a first step, the essential strategy is

applied and then the one to one redundancy strategy is applied

repeatedly, removing one test case at a time. Finally the

greedy is put into force, when the above two strategies cannot

be used. And gives an optimal representative set of test cases.

TsongYueh Chen, and Man Fai Lau [6] developed a dividing

strategy based on essentiality and redundancy of test cases

towards coverage of requirements. In this approach, they

decomposed the problem into smaller sub problems.

Optimality in test suite is found in each sub problem and

reconstructed it for the original problem.

The given problem is divided into k sub problems. To

reconstruct the optimal solution from the decomposed sub

problem, the test cases set T is divided into k () mutually
disjoint sub sets T1, T2, …, Tkin such a way that all

requirements be satisfied by Ti(i=1, 2,..., k), and these are

mutually disjoint.

The strategy called essential dividing makes divided

into and Where, E is the

essential set of test cases T with respect to

The one to one redundancy dividing

strategy, divides into and where, t

is one-to-one redundant test case, , .

Applying anyone of the above strategies on gives the

following satisfiability relations:

.In every transition of the above

sequence, one among the following occurs: 1)during the

application of essential dividingstrategy,

2)When the one-to-one

redundancy strategy is used,

. From these optimal representative sets is

reconstructed in a guaranteed way.

T.Y.Chen, M.F. Lau [7] conducted simulation study overfour

different heuristics called as, Greedy, Greedy Essentials,

Greedy Redundancy Essentials, and Heuristic based on

overlapping of requirements:

In Greedy (G) approach, the test cases are selected repeatedly

which are satisfying the maximum amount of unsatisfied

requirements. And, only one of the test cases is selected at a

point in time. Also, this the selected one satisfying at least one

of the unsatisfied requirement.

In heuristic (H) approach, requirements are grouped according

to number of satisfiablity to test cases. Those which are

satisfying lesser number of requirements are having more

essentialness. The heuristic selects test cases with more

essentialness first. And, subsequently lesser essential test

cases which satisfies unsatisfied requirements are selected

during successive steps.

In the heuristic Greedy Essentials method, the essentials

strategy is applied in first step, and in the next step greedy

strategy is used, wherein the test case is selected at every step

so as to satisfy maximum number of unsatisfied requirements.

Heuristic GRE is comprising the following: greedy, 1-to-1

redundant and essential strategies. One-to-one redundancy in

test cases are removed as early as possible. Then strategy
called essentials is applied. After which sometest cases may

evolve as one-to-one extra. So, one-to-one redundant strategy

and essentials strategy are both applied alternately. The

greedy is applied only if other two strategies are not used.

And if the greedy strategy is not used at all, then it is

ascertained that the representative set arrived is the optimum

set.

The authors have done simulation study on these approaches,

with the assumption of equal overhead with respect to every

test case. The performance among these heuristics is measured

using ratio of overlap which is defined to be , where n

represents total requirements, represents average number of

requirements satisfied, and „m‟representing total test

cases.Based on this value, appropriate heuristic is suggested.

Wan Youngbing, Xu Zhongwei, Yu Gang, Zhu YuJun [21],

developed an algorithm to partition the test cases based on

requirement coverage. Then another algorithm, which

combines greedy algorithm and linear search does the test

suite reduction significantly.

Sara Sprenkle, SreedeviSampath, Amie Soter [22] developed

test suite reduction mechanism for web application with an
eye on user sessions. Every user session is denoted as user

request in the URL form and its associated name value. A test

case takes the form of HTTP requests pertaining to user

sessions.

Three techniques based on requirement to URL coverage is

analyzed in terms of Random, Greedy, and HGS. Also, three

variations of concept analysis in terms of reduced suite size,

coverage of program, bug detection effectiveness, time and

storage constraints with a base in random, Greedy, and HGS

heuristics. And, they concluded that concept clustering

achieved better coverage with less cost while reducing test

suite size.

3.3 Fault based reduction

Gong Dandan, Wang Tiantian, Su Xiaohong, and Ma Peijun

[8] devised test suite reduction with an eye on localizing the

fault. They considered coverage vector and path vector. The

coverage matrix is fine-tuned by removing the pass yielded

test cases, whose relevancies are week in the fault localization

requirements, and is called coverage matrix based

reduction.This approach is complemented as detailed: When

the coverage vectors are identical for the test cases, then the

redundancy in terms of identical path vectors are found and
deleted.

Execution path of every test case t, PATH (t) in program P to

be sequence of

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 18 (2015) pp 39841-39848

© Research India Publications. http://www.ripublication.com

39844

statements .In the path found, a statement

ccuring several times if found inside looping structure.

Coverage vector is given as, ,
where „n‟ is the number of statements of program P. This

vector contains binary values based on statement coverage as:

Test suitehaving , „m‟ be amount of test cases for

program P. The coverage matrix of statements is

The weekly relevant statements need not be considered for

fault localization.A weakly relevant statement Skof Program P

for the test suite T, if and only if for all pairs of i and j (1 ≤ i ≤

m ; 1 ≤ j ≤ m ; i ≠ j), Cover (ti – sk) = = Cover (tj – sk)

Suspiciousness score of every statement is found to be

difference between numberstest cases which succeeds and

fails. The suspiciousness score for every weakly relevant

statement is found to be relatively small. Weakly relevant

statements and their corresponding test cases are not

considered in coverage matrix, and is called as remaining

coverage matrix RCOV(T).
The Fault Localization Requirements Vector FLreqis

calculated as:The failed test suite for program P be

. To localize a single fault, the statement which
failed in test execution should be considered. And all the test

cases which failed its execution should be involved.

. To localize
multiple faults,

, as one buggy statement need to be executed by

one or more test cases failing it, and one test case which failed

may not be executing all buggy statements.The vector

remaining in the coverage vector with respect toFLReq is

Rcov(FLReq).

For the fault localization in reqirements, coverage matrix is

formed by joining the coverage matrix of successful inputs
with vector on fault localization

requirementsFLReq.Remaining coverage matrix Rcov(T) is

formed after ignoring weekly relevant statements. The test

cases passed and also weakly relevant to fault localization

requirement are removed.For test cases t1 and t2, the inference

that t1 is weakly relevant to t2 if

Path vector based reductionis stated as:

For every pair of and

.Where, is the

amount of statements in . and are

identical paths denoted as == , if

1. = =
2.

The repeat sequence of statement and number of times it is

being repeated.In next step this repeat sequence is removed

from

For each pair of and

, the execution path vectors towards loop

standardization are and respectively.

 And are similar paths and denoted

as , if P and are

identical paths.To achieve loop standardization, passed test

cases having similar paths are removed.The said approach is

validated with experiments and proved to be effective.

Gregg Rothermel, Christie hong, Jeffery von ronne and Mary

Jean Harrold [12] have conducted experiments and showed

that test suite minimization algorithms severely compromises

the bug detection capabilities of test suites. Savings in terms

of the number and percentage of test cases removed is

measured as follows:

Two kinds of costs are considered. First kind of cost is tool

execution cost to achieve reduction. Second cost is based on

the discarded fault revealing test cases, as this reduced

effectiveness compounded over subsequent releases. Two

methods are used to measure the cost of missed faults.

First method identifies test cases that reveal a fault, which is

not present in reduced suite.

Second method classifies the results of test suite reduction,

based on fault in one of the following ways 1) find ineffective

test case in suite, which are not fault revealing 2) test cases in

a suite which are fault revealing, and need not be eliminated

3) some of the test case elimination may compromise bug
detection.

The following are found:

By conducting experiments, they inferred the following: 1)

Minimization algorithm differences will not affect result

differences. 2) Program size as well as structure may lead to

differences in bug detection effectiveness. 3) Size of the test

suite will impact reduction and bug detection effectiveness. 4)

Powerful test cases when included in reduced test suite will

lead to little loss in fault detection effectiveness. 5) Types of

bugs will make difference in bug detection effectiveness. 6)

Interaction of factors - program characteristics, test suite

design and fault types facilitate determining faults.
In a coverage based reduction, the ratio of inputs to locate the

bug and other inputs that locate the same fault is used in

minimization. They conclude that test suite reduction may or

may not impact fault detection effectiveness.

3.4 Cluster based reduction

SreedeviSampath, Renee C. Bryce [9] developed a heuristic,

for test suite reduction and prioritization. They used clustering

called concept analysis. This was used to cluster user session

based test cases in the first stage. In next stage, heuristics

applied in selection process from the clusters forming

reduction in test suite. For every requirement, test cases are

clustered and the suitable ones are selected with the help of

heuristics.The heuristic used is to test-all-exec-requests, and it

selects test cases form different concept analysis clusters so as

to cover all test requirements, while maintaining different use

cases. This test suite reduction method is complimented with

the prioritization technique which uses many criteria as

detailed below:

Count based criteria to prioritize are:http requests, parameter

values, http requests length in descending/ascending order,

Values length of parameters in ascending/descending order.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 18 (2015) pp 39841-39848

© Research India Publications. http://www.ripublication.com

39845

Frequency based criteria to prioritize are:Frequency of http

requests access sequence in descending order, Frequency in

all access http request sequence in descending order.

Combinatorial based criteria:Parameter interaction is main

focus here. In single way interaction, the test which comes

across the most uncovered parameter value is chosen.In dual

way interaction, the test which comes across the most

uncovered dual way interactions is selected.Logged ordering

and random permutation are also used for test case

prioritization.Mod_APFD_C metric to measure effectiveness

is found and is as follows:

Consider testsuite T having n number of test cases, with
execution costs t1, t2, …tn.. Let F be a set ofm faults. These

bugs are uncovered during test with fault severities as f1, f2,

…fm.The position of test case being denoted as TF i, and T is

ordered as T‟. Technique G in generation time, tgen uncovers

bug i. The APFDC for T‟ is measured as

AlirezaKhalilian and Saeed Parsa [15] developed an approach

to minimize test suites based on Cluster analysis. They

analyzed execution profiles to form clusters. The procedure is

based on two different two different coverage criteria. Test

cases are executed over the instrumented program to collect

execution profiles. Clustering of profiles is done with
clustering algorithm with the help of wekatool.The test suite

reduction algorithm takes testing requirements and clustered

test cases as inputs. The algorithm finds test cases as effective,

when they satisfy most requirements and exposes most of the

faults. While satisfying requirements, execution paths are

formed. Overlapping execution paths lead to redundancy in

test cases and hence need to be removed. At the same time

Definition-Use pairs may prove that those are not redundant,

as they uncover errors in those execution paths. Hence, both

criterias used in the algorithm and found to be effective in test

suite reduction.

Subashini, Jeyamala [17] have used k-means clustering

technique with the help of Wekatool.The technique uses

Control Flow Graph of any program. Then the independent

paths are found. These paths are clustered with an objective of

minimizing squared error function. Ultimately reducing test

cases count of a suite.

KartheekMuthayala, Rajshekhar Naidu [18] developed an

algorithm to achieve reduction in test suite using data mining.

As a first step, they applied k-means clustering algorithm to

cluster test cases of similar behavior. Then pick-up cluster

algorithm is used to select a representative test case from each

cluster. For all these implementation, they relied on Weka
tool. If clustering does not cover a particular behavior(for

example, path coverage) for the entire system, then take some

higher values of k and reframe the clusters.

Saran Prasad, Mona Jain, Shrada Singh, and Patvardhan [19]

proposed a technique based on coverage criteria with respect

to function, statement, and branch. As a first step, hierarchical

clustering is applied. Clusters are formed with test cases

whose functional coverages are same. A binary matrix is used

to represent the functional coverage of test cases. PureCov

parser and GCov parser tools are used to formulate this

matrix. Function call sequences among the clusters of similar

test cases are compared in the next step. To maintain these

records, a stack based architecture, Call Stack is used. So, a

set of test cases having same functional flow is grouped

further. Test cases are further compared on the basis of same

statement coverage and grouped. And from this obtained

group, set of test cases covering same branch or path of the

function is obtained. The approach finally determines test

cases whose branch coverage is same within a function are

redundant and hence reduction is applied.

SriramanTallam, Neelam Gupta [20] devised greedy

algorithm based on concept analysis to minimize the test

cases. Concept analysis figures out maximal grouping. Here,
the concepts are formed by grouping objects and attributes. It

is a hierarchical clustering technique as it relies on concept

table, concept lattice and table of concepts. Object Reduction

Rule: object O1 implies O2, if concept having O1 is in bottom

of lattice than the concept having O2 and both concepts are in

sequence. Then the row corresponding to the object O2 may

be dismissed from context table. Attribute Reduction Rule:

attribute a1 implies a2, if concept having a1 lies in bottom of

lattice than the concept having a2 and both concepts are in

sequence. Then the column corresponding to the attribute a2

may be dismissed from context table. Owner Reduction Rule:

strongest concepts are the ones which are in higher layer to a

concept in the lattice. Strongest concept having an attribute

implies that a test case in the concept must be chosen to deal

with that attribute. Inference exists in a lattice, when two

concepts ci and cjsuch that c ci along with c cj whichare
neighbors of c. when a lattice has inference, it has no object

implication, attribute implication and no strongest concept.

Then the delayed greedy approach is applied, which is as

follows: test case covering maximum requirements is found

and its corresponding row removed from context table. Also,

the requirements mapped by these inputs are dismissed from

the table.

3.5 Multi objective based reduction

Shuai Wang, Shaukat Ali, Arnaud Gotlieb [10] performed test

suite minimization in product line engineering. The

effectiveness measures used by them are:Feature pairwise

coverage, Test minimization percentage, Fault detection

capability, Average execution frequency and Overall

execution time. And they used the following ten search

algorithms :Weight Based GA‟s (WBGA) setsfixed weight for

every objective defined.WBGA in Multi Objective

Optimization (WBGA-MO) employs a pool of weights.
Weights are assigned randomly per objective during every

generation. RWGA Randomly assigns normalized weights to

multiple objective functions for each solution when selecting

fittest individuals at each generation. Non dominatedSorting

Based GA (NSGA-II) is based on Pareto Dominance Theory,

which outputs a set of non-dominated solutions for multiple

objectives. Cellular based GA (MOCell) is on the assumption

that an individual only interacts with its neighbors during the

search process.Improved Strength Pareto Evolutionary

Algorithm (SPEA2), fitness value for each solution is

calculated by summing up a strength raw fitness based on the

defined objective functions and density estimation.Pareto

Archived Evolution Strategy(PAES) by applying dynamic

cross over and mutation operators aims at maximizing the

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 18 (2015) pp 39841-39848

© Research India Publications. http://www.ripublication.com

39846

stability for the selected solutions. Speed Multi Objective

Particle Swarm Optimization constrained on speed selects best

solutions by calculating crowding distance. Cellular Genetic

Algorithm with Differential Evolution (CellDE), uses MOCell

as a search engine and DE calculates the weighted difference

between two randomly selected solutions and integrate the

obtained parts into third solution for generating a new

solution. Random Search (RS), stochastic algorithm randomly

generate solutions during each generation.Also, a tool called

Test Minimization with Search Algorithms (TEMSA) is

developed for Test Suite Minimization.

Shin Yoo, Mark Harman [11] used three objectives namely,
Coverage, fault history and Cost with a base on Pareto

optimality. They devised an additional greedy algorithm for

two objectives in test suite minimization.Also, they devised

hybrid NSGA-II algorithm, which comprises additional

greedy algorithm with NSGA-II based on pareto fronts.The

Pareto frontier is stated as:

PF1:There is no alternative subset in attaining better coverage

than C while not consuming much time than T

PF2: There is alternative subset to complete in smaller time

than T whilst coverage is more or equal to C

Greedy algorithms are effective for single objective

optimization problems. A variant, additional greedy algorithm

for multiple objective is formed in order to measure coverage

per unit time. This objective is achieved by cost cognizant

greedy algorithm. The additional greedy algorithm lead

selection cannot be dominated and at the same time Pareto

efficient solutions cannot be made.

The greedy approach may be extended to consider „n‟ test

cases inachievingpareto optimality.But this is equivalent to

exhaustive search, and is infeasible.

NSGA-II has two significances.First, selection is based on

paretooptimality. With non dominated sorting individual
solutions are classified into different dominance levels.

Second difference lies in the crowding distance.When at equal

dominance level, individual having greater crowding distance

is rewarded.

The additional greedy algorithm results were taken as initial

population to NSGA-II algorithm forming HNSGA-II

algorithm. The elitism is achieved by gaining diversity among

initial population yielded by additional greedy algorithm. To

compare different algorithms, a reference pareto frontier is

formed by combining best in every approach.

Alessandro Marchetto, Mahfuzul Islam, Angelo Susi,

Giuseppe Scanniello [16] proposed multi objective test cases

reduction. They have done three dimension analysis. Analysis

phase test cases is the focus in structural perspective.

User/system requirements is focused in functional perspective.

The cost dimension focuses on the time to execute test cases.

Traceability links among source code, requirements and test

cases are needed. For this Latent Semantic Indexing as the

Information Retrieval technique is used to recover traceability

links.

Coverage of test cases according to predefined weights is

The strength is

The final requirement coverage of t is

The overall cost of a suite S is the sum of execution cost of all

test cases.

The Non dominated Sorting Genetic Algorithm II is applied to

maximize the three considered dimensions. The pareto front

brings the optimal tradeoff among the structural, functional

and cost dimensions.

3.6 Linear programming model based reduction

Dan Hao, Lu Zhang, Hong Mei, Xingxia Wu, and Gregg
Rothermel [13] uses coverage information when reducing test

suite. For the fault detection capability, confidence level and

upper limit on loss acceptabilityis the threshold. In this

methodology, as a first step data on losses in bug detection

capability for statements is collected. In the second step, two

integer linear programming models constructed in reducing

test suites.

Assume test suite T is reduced to T‟.For statement containing

mutation faults, which are executed by i1 test cases in T, and

by i2 test cases in T‟

On-demand test suite reduction is made with the help of

integer linear programming models. Both models have the

common objective function, predicate variables with distinct

constraints.

Objective function is , Where xi representing

whether test case tihas been selected to be part of reduced

suite.

Decision variables:For test suite , having n

variables to decide whether test case is
included in the reduced test suite T‟.

For a program P, having m statements ,
Boolean predicate variables defined below to denote changes

in coverage during reduction of T to T‟.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 18 (2015) pp 39841-39848

© Research India Publications. http://www.ripublication.com

39847

Constraints:

And, this wi, qwill be true for only one value denoting amount

of test cases in T‟ covers Sj, then for any

,

This can also be represented as

Where, the coverage information is,

The local constraints over loss in bug detection capability

towards each statement is given as

. Where Vc(pj, q) is the loss in bug detection capability of a

statement at confidence level c% and coverage varying from

pj to q

The global constraint over loss in bug detection capability for

the program is given as

Both the above two Integer Linear Programming models
proved empirically to be effective.

3.7 Interaction based reduction

Dale Blue, Rachel Tzoref-Brill, ItaiSegall, and AviadZlotnick

[14] presented an interaction based test suite minimization

which is complemented by combinatorial test design. The

rationale behind this approach is that most software faults are

caused by interaction between small number of parameters.An

algorithm is developed which covers target, which covers the

same target covered by original suite. The features such as

avoiding unnecessary calculations, test prioritization and

counting uncovered targets were added in the algorithm.

4.Conclusion

An in-depth survey of various test suite reduction mechanisms

were explored. We have scrutinized various techniques

devised by many different researchers in various different

dimensions. This survey paper gives insight into test suite

reduction techniques and motivates the researchers to bring

innovation in improving software testing efficiency. We have

explored techniques in clustering, data mining, evolutionary

algorithms, and heuristics.

References

[1] James A. jones, Mary Jean Harrold, “Test suite

Reduction and Prioritization for Modified

condition/decision Coverage”, IEEE Transactions on

Software Engineering, Vol.29, No.3, March 2003

[2] Chu-Ti Lin, Kai-Wei Tang, Gregory M.Kapfhamme,

“Test Suite Reduction methods that decrease

regression testing costs by identifying irreplaceable

tests”, Information and Software Technology(54)10,

October 2014

[3] HaoZhong, Lu Zhang, Hong Mei, “An experimental

study of four typical test suite reduction techniques”,

Information and Software Technology50 (2008)

534–546

[4] Jun-Wei Lin, Chin-Yu Huang, “Analysis of test suite

reduction with enhanced tie-breaking techniques”,

Information and Software Technology 51 (2009)

679–690

[5] T.Y. Chen, M.F. Lau, “A new heuristic for test suite

reduction”, Information and Software Technology

40(1998) 347-354

[6] TsongYueh Chen, Man Fai Lau, “Dividing strategies

for the optimization of a test suite”, Information

Processing Letters 60 (1996) 135- 141

[7] T.Y. Chen, M.F. Lau, “A simulation study on some

heuristics for test suite reduction”, Information and
Software Technology40 (1998) 777–787

[8] Gong Dandan, Wang Tiantian, Su Xiaohong, Ma

Peijun, ”A test-suite reduction approach to improving

fault-localization effectiveness”, Computer

Languages, Systems & Structures 39 (2013) 95–108

[9] SreedeviSampath, Renée C. Bryce, “Improving the

effectiveness of test suite reduction for user-session-

based testing of web applications”, Information and

Software Technology 54 (2012) 724–738

[10] Shuai Wang, Shaukat Ali, Arnaud Gotlieb, “Cost-

Effective Test suite Minimization in Product lines

Using Search Techniques”, The Journal of Systems

Software (2014), Volume 103, May 2015, pages 370-

391

[11] Shin Yoo, Mark Harman, “Using hybrid algorithm

for Pareto efficient multi-objective test suite

minimization”, The journal of Systems and Software

83(2010), 689-701

[12] Gregg Rothermel, Mary Jean Harrold, Jeffrey Von

Ronne, Christie Hong, “Empirical Studies of Test

Suite Reduction”, Software Testing Verification and

Reliabilty 12 (2002) 219-249

[13] Dan Hao, Lu Zhang, Xingxia Wu, Hong Mei, Gregg
Rothermel, “On- Demand Test Suite Reduction”,

34th International Conference on Software

Engineering (ICSE 2012), June 2-9, 2012, pages

738-748, Zurich, Switzerland

[14] Dale Blue, ItaiSegall, Rachel Tzoref-Brill,

AviadZlotnick, “Interaction-Based Test-Suite

Minimization”, 35thInternational Conference on

Software Engineering, (ICSE 2013), May 18-26,

2013, 182-191, San Fransisco, USA

[15] AlirezaKhalilian and Saeed Parsa, “Bi-criteria Test

Suite Reduction by Cluster Analysis of Execution

Profiles”, Advances in Software engineering

Techniques, in : 4th IFIP TC2 Central and East

European Conference on Software Engineering

Techniques, CEE-SET 2009, Krakow, Poland,

October, 12-14, 2009, Volume 7054 2012

[16] Alessandro Marchetto, Md. Mahfuzul Islam, Angelo

Susi, Giuseppe Scanniello, “A Multi-Objective

Technique for Test Suite Reduction”, The Eighth

International Conference on Software Engineering

Advances, October 27, 2013, 18-24

[17] Subashini.B, Jeyamala.D, “Reduction of Test Cases

using Clustering Technique”, International Journal of
Innovative Research in Science, Engineering and

Technology, Volume 3, Special Issue 3, March 2014

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 18 (2015) pp 39841-39848

© Research India Publications. http://www.ripublication.com

39848

[18] KartheekMuthayala, Rajshekharnaidu, “A Novel

approach to test suite reduction using Data Mining,

Indian Journal of Computer Science and

Engineering”, Vol 2 No. 3 – June –July 2011

[19] Saran Prasad, Mona Jain, Shradha Singh,

”Regression Optimizer – A multi coverage criteria

Test Suite Minimization Technique”, International

Journal of Applied Information Systems, Volume 1 –

no. 8, April 2012

[20] SriramanTallam, NeelamGupta, “A Concept

Analysis Inspired Greedy Algorithm for Test Suite

Minimization”, Proceedings of the 6th ACM
SIGPLAN-SIGSOFT workshop on Program analysis

for software tools and engineering, Volume 31 Issue

1, January 2006, pages 35-42

[21] Wan Yongbing, Xu Zhongwei, Yu Gang, Zhu

YuJun, “A Test Suite Reduction Method based on

Test Requirement Partition, International Journal of

Grid and Distributed Computing”, Vol. 6, No. 4,

August 2013

[22] Sara Sprenkle, SreedeviSampath, Emili Gibson, Lori

Pollock, Amie Souter, “An Empirical Comparison of

Test Suite Reduction Techniques forUser-session-

based Testing of Web Applications”,

21stInternational Conference on Software

Maintenance, 26-29, Sep 2005, 587-596

