
International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 18 (2015) pp 39822-39827

© Research India Publications. http://www.ripublication.com

39822

Regression Testing Using Aigrtp Algorithm For Industries

Ms. K. Hema Shankari

Research Scholar Bharath University Assistant Professor,

Department of Computer Science, Women’s Christian College, Chennai hems_banu@yahoo.com

Dr. R. Thirumalai Selvi

Research Supervisor, Assistant Professor, Department of Computer Science, Govt. Arts College,

Nandanam, Chennai sarasselvi@gmail.com

Abstract

In a software industry during the software production phase

the software maintenance activity is an expansive phase which

cost nearly sixty percentage of total cost. Regression testing is

an important phase in software maintenance activity to ensure

the modification caused by debugging. Regression testing is a
testing to test the modified software during the maintenance

level. Regression testing is a costly but crucial problem in

software development. Both the research community and the

industry have paid much attention to this problem. This paper

try to do the survey of and current practice in industry and

also try to find out whether there are gaps between them. The

observations show that although some issues are concerned

both by the research community and the industry. The goal of

our research is to improve the control of the testing and reduce

the amount of redundant testing in the product line context by

applying regression test selection strategies. The proposed

Advanced Industry oriented genetic algorithm for regression

test case prioritization (AIGRTP) is compared with previous

approach using APFD metric. The results represent that

propose approach outperforms the earlier approach.

Keywords: Regression testing; Cost-risk-assessment;

Industry application; Business rules, AIGRTP,Test case

prioritization, APFD metric.

Introduction

Regression testing is not an isolated one-off activity, but
rather an activity of varying scope and preconditions, strongly

dependent on the context in which it is applied. Several

techniques for regression test selection are proposed and

evaluated empirically but in many cases the context is too

specific for a technique to be easily applied directly by

software developers. This research discusses the problems

about current research on regression testing and quality

control in application of regression testing in the engineering

practice, and proposes a practical regression method, combing

with change-impact-analysis, business rules model, cost risk

assessment and test case management. It provides confidence

that changes do not harm the existing behavior of the

software. With the wide application of IT in various

industries, software systems have became extremely

important. The reliability of the system is playing a key

supporting role for the application business development.

Development and maintenance are always accompanied the

entire life cycle of application systems. As a result, there is a

growing demand for regression testing. This paper presents an

approach to prioritize regression test cases based on the

factors such as rate of fault deduction, percentage of fault

detected and the risk detection capability. Industry application

regression testing has its inherent characteristics. The first is
business-related. Application changes mainly come from

business development. Because new business and old business

are inextricably linked, which bring great difficulties to define

the scope of regression testing. The second is iteration.

Regression testing is an iterative process, a new round of

testing has a great similarity with the pre-test, so how to reuse

historical accumulation of test resources, and improve testing

automation to efficiently complete testing are worthy of

further study.

The Test case prioritization techniques [4] intend to arrange

test cases for regression testing in such a manner, with the

goal of amplifying some criteria. Rothermel et al. [1] and

Elbaum et al. [3] proposed a variety of test case prioritization

techniques to the boost fault detection rate. Numerous

techniques have been investigated to arrange test cases for

regression testing, with an attempt to test modified software,

nine different test case prioritization techniques have been

explained by Rothermel et al. [1]. We have presented an

approach for prioritizing regression test cases on the basis of

three factors which are rate of fault detection (RFT),

percentage of fault detected (PFD) and risk detection ability

(RDA). RFT is defined as the average number of defects

found per minute by a test case [7]. PFD is the percentage of
fault detected by a test case. RDA is defined as the ability of

test case to detect severe faults per unit time.

Problems for Regression Testing in Industry Application

A. Problems Faced

There are typically two major problems for regression testing

of large-scale business systems. Firstly, regression test

coverage cannot be accurately defined with the changes of

system; Secondly, the number of test cases expands

dramatically with the combination of parameters, so it is

unable to complete regression testing of the minimum

coverage requirements within the determined period of time at

a reasonable cost.

Automated functional testing tools are frequently introduced

in the testing of large business systems. These tools provide a

basic means of testing, but t automatic function test

mailto:sarasselvi@gmail.com

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 18 (2015) pp 39822-39827

© Research India Publications. http://www.ripublication.com

39823

management framework is not available, which leads to the

fact that automated functional tests are often unable to be

effectively implemented and carried out. The root cause is that

functional testing is based on business, with a strong industry

relevance, but automated functional testing tools are not

related to business, so it cannot automatically adapt to the

specific business needs of each industry, and it requires a lot

of human intervention during the implementation of the

testing process, and the results are often difficult to meet

people's expectations.

Regression testing of large-scale business systems tends to be

restrained by the deadline and budget constraints, and
engineering properties of the test determine that it is

impossible to achieve completely as it describe in theory.

With the limited time and resources, in order to make more

rational arrangements for testing, a decision-making

mechanism is of great need in testing planning phase to

constraints resources (time, manpower, budget) based on the

premise of risk assessment and (test) cost estimation for

decision making.

B. Methodology

The previously mentioned test models are relying on software

development process, so there is no practical implementation

approach for regression testing. Different from the unit

testing, integration testing and performance testing in

development process, regression testing repeatedly

emphasizes accumulation, which can be completed through

the structure and the business rules modeling methods, so that

the cycle of regression testing can proceed.

To build a supporting platform of regression testing for

decision-making, at first, you need to scan and analyze the

source code of the core business systems, and set up an

application description model; meanwhile, a bank of expert

knowledge of the industry should be established to collect and
refine business information. And then, a model of business

rules should be established to express business information.

Finally, risk assessment model will be established, according

to industry application and the characteristics of test

implementation.

In regression testing, reusing of used cases can greatly

improve test efficiency, and reduce time and duplication of

effort. Therefore, there is a huge test case library at the

supportive platform. It indexes all the used cases in catalogue

to associate the specific cases with related businesses, and

facilities the reference of cost-assessment model and the

automatic generation of the test scripts.

If business systems change with the modification of demands,

and with the changes of system maintenance and other

reasons; if new versions of the software are produced by the

development department, implementation steps regression

testing of are as follows:

(1) Scan and analyze the source codes in the new

version, and conduct analysis of changes bases on the

application model, automatic identify system

changes;

(2) Analysis of change impacts analysis accurately

pointed out the scopes of functional business directly
or indirectly influenced by a change of version.

(3) With the application of business rules, the regression

test ranges are determined by experts and analysts

(4) Test suite is generated in the assessment model of

cost and risk, and it will be compressed with

optimization algorithm;

(5) Complete automatic testing by refusing used test

cases in the library or developing new cases.

C. Limitations of the APFD Metric

The APFD metric just presented relies on two assumptions:

(1) all faults have equal severity, and (2) all test cases have

equal costs. In practice, however, there are cases in which
these ssumptions do not hold: cases in which faults vary in

severity and test cases vary in cost. In such cases, the APFD

metric can provide unsatisfactory results.

(i) Average Percentage Block Coverage (APBC).

This measures the rate at which a prioritized test suite covers

the blocks.

(ii) Average Percentage Decision Coverage (APDC).

This measures the rate at which a prioritized test suite covers

the decisions (branches).

(iii) Average Percentage Statement Coverage (APSC).

This measures the rate at which a prioritized test suite covers

the statements.

(iv) Average Percentage Loop Coverage (APLC).

This measures the rate at which a prioritized test suite covers

the loops.

(v) Average Percentage Condition Coverage (APCC).

This measures the rate at which a prioritized test suite covers

the conditions.

(vi) Problem Tracking Reports (PTR) Metric

The PTR metric is another way that the effectiveness of a test

prioritization may be analyzed. Recall that an effective

prioritization technique would place test cases that are most

likely to detect faults at the beginning of the test sequence. It

would be beneficial to calculate the percentage of test cases

that must be run before all faults have been revealed. PTR is

calculated as follows:

Ptr(t,p) = nd/n

Let t - be the test suite under evaluation, n - the total number

of test cases in the total number of test cases needed to detect

all faults in the program under test p

Regression Testing Methods for Industry-oriented

Application

Building a decision-support platform of regression testing

provides a viable solution to industrial applications of

regression testing. The construction involves models of

business rules, application description model, change-impact-

analysis, cost-risk-assessment, and test case management.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 18 (2015) pp 39822-39827

© Research India Publications. http://www.ripublication.com

39824

Extraction and Loading of Business Rules

Business rules are defined as constraints and norms for

business structure and operation. They are important resources

for enterprise business operations and management decisions.

Business rules should be managed by the rule-based system,

thereby separating application logic from the business process

logic of application system. Rules engine is an embedded

component in an application program. Its task is to test and

compare the object data which have been submitted by the

rule with the original rules, activate rules that meet the current

state of the data, and trigger corresponding actions in the

application program, according to the rules declared in the
executive logic.

To build business rules model supported by regression testing

is to inherit the accumulated knowledge of senior analysts, so

that there is an explicit expression for the actually used rules.

On this basis, combining test theories and rules integration

and optimization algorithms with the case, we can establish a

generation system, which is not less efficient than an average

level of case generation system in manual test.

The sources of business rules generally include:

(1) Rules derived from business needs (Rdbn)

(2) Rules derived from the theoretical testing principles

(Rdtp)

(3) Rules from the industrial tradition (Rdit)

(4) Rules from the common sense of industry (Rcsi)

The basis of business rules model is the accumulation of a

series of designing rules, industry standards, and special

constraints from operations in manual test cases. Business

rules model is used to express these rules in manual testing

age, and establish a structure of rule engine which can be

loaded rules. With these rules, a basic template case can be

generated in the supportive system of decision-making for a
specific business process.

Loading rules is to add a rule to the rule base. The key point is

how to express the applicable conditions and specify

optimization algorithms.

The expression of business rules is specific, and its basic form

is If (applicable conditions of rules) Then op, among which

Op both means generation of test points and case algorithms.

For a target system, it is impossible to exhaust all possibilities,

it can only advance progressively. Therefore, manual addition

should be allowed, and it is regarded as a learning process for

business rule model.For industrial applications, tools for the

source code analysis also need to extract some relationships of

business process and component, component and component,

component and class hierarchy, components and associated

database table.

CASE STUDY

[12] shows a functional/regression testing for securities

industry application. The tool they use is called Infosys

ACCORD. It is an intelligent functional test automation

solution that enables securities firms to cost-effectively test

the functionality and improve the quality and performance of
critical applications. ACCORD simplifies the overall testing

processes of generation, translation and execution of test

cases.

What is unique to ACCORD and we should notice is that it

has an intelligent algorithm that optimizes the number of test

cases while eliminating the redundant ones, thereby reducing

cycle time and improving test quality. This shows the Test

Suite Reduction Technology has been utilized in the real

industry applications. has a process for requesting and

managing changes to an application during the product

development cycle. The process includes:

Step 1. Collect change requests

Step 2. Identify the scope of the next release and the scope of
the next release and determine which change requests will be

included in the next build.

Step 3. Document the requirements, functional requirements,

functional specification and implementation plans for each

grouping of change requests.

Step 4. Implement the change.

Step 5. Test or verify the change. Unit testing is done by the

person who made the change, usually the programmer.

Function testing tests a functional area of the system to see

that everything works as expected.

Step 6. Release.

.A. Factors Taken For Proposed Approach

We consider three factors for proposed prioritization

technique. These factors are discussed as follows.

(i) Rate of Fault Detection

The rate of fault detection (RFD) is defined as the average

number of defects found per minute by a test case For the test

case k.

RFDk = (Nk / time k) * 6 (1)

(ii) Percentage of Fault Detected

The percentage of fault detected (PFD) for test case Tk can be

computed by using number of faults found by test case Tk and

total number of faults, expressed as follows.

PFDk = (Nk / N) * 6 (2)

(iii) Risk Detection Ability

Risk value was allocated to every fault depending on the

fault‟ s impact on software. To every fault a Risk value has

been allocated based on a 10 point scale expressed as follows.

Very High Risk: RV of 10

High Risk: RV of 8

Medium Risk: RV of 6

Less Risk: RV of 4

Least Risk: RV of 2.

For test case Tk, RDAk have been computed using severity

value Sk, Nk is the number of defects found by Tk, and timek

is the time needed by Tk to find those defects. The equation

for RDA can be expressed as follows.

RDA = (Sk * Nk)/time k (3)

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 18 (2015) pp 39822-39827

© Research India Publications. http://www.ripublication.com

39825

IV.B Test Case Ranking

Test case Ranking is the summation of the three factors which

are RFD, PFD and RDA. For test case Tk, Test case ranking

(TCRk) can be calculated by the equation given below:

TCR k = RFD k + PFD K + RDA k (4)

AIGRTP (Advanced Industry oriented Genetic algorithm

for Regression Test Case Prioritization)

The proposed prioritization technique expressed as follows.

Input: Test suite T1, and test case ranking (TCR) for every

test case are inputs of the algorithm.
Output: Prioritized order of test cases.

Algorithm:

Step1. Start

Step 2. Set T1 empty

Step 3. For each test case Tk ε T1 do

Step 4. Calculate test case ranking using equation (4)

Step 5. end for

Step 6. Sort T1 according to descending order of TCR value

Step 7. Let T1 be T

Step 8. end

EXPERIMENT AND ANALYSIS

The Advanced Industrial Genetic Algorithm is well suited for

solving problems where solution space is huge and time taken

to search exhaustively is very high. For the purpose of

motivation this example assumes a priori knowledge of the

faults detected by T in the program P.

TABLE 1: Sample data of Test cases

Faults

Test

cases

F1 F2 F3 F4 F5 F6 F7 F8

T1 X X X X X X X

T2 X

T3 X X

T4 X X X

T5 X X X

T6 X X X

For example, suppose that regression test suite T contains six

test cases with the initial ordering {T1, T2, T3, T4, T5. T6} as

described in Table 1.

TABLE 2: Binary representation of Test cases

Test cases Binary form

T1 11011111

T2 10000000

T3 10001000

T4 01100001

T5 00010101

T6 01010100

TABLE 3: Number of faults detected by every test case,

the time required to detect faults, and severity value of

faults for every test case

Test

cases

No of faults

covered

Execution

time

Risk

severity

T1 2 12 8

T2 3 14 10

T3 1 11 4

T4 4 10 20

T5 2 10 12

T6 2 13 6

In Table 3 for the purposes of motivation, this example

assumes a priori knowledge of the faults detected by T in the

program P.

TABLE 4. RFD, PFD, RDA for test cases T1..T6

Test cases RFD PFD RDA

T1 1.66 2 1.333

T2 2.142 3 2.142

T3 0.9 1 0.3636

T4 4.0 4 8

T5 2.0 2 2.4

T6 1.538 2 0.923

The values of rate of fault detection (RFD), percentage of

fault detected (PFD) and risk detection ability (RDA) for test

cases T1..T10 is calculated by using equation (1), equation (2)

and equation (4) respectively. Table 4 represents the values

for all three factors which are RFD, PFD, RDA for test case

T1..T6 respectively.

TABLE 5. Test case ranking for T1..T6 respectively

Test cases Prioritized order

T1 T4

T2 T2

T3 T5

T4 T1

T5 T6

T6 T3

For test cases, T1..T6, TCR value computed from equation (4)

as given below. Table 5 shows test case ranking for each test

case.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 18 (2015) pp 39822-39827

© Research India Publications. http://www.ripublication.com

39826

TABLE 6: Test cases ordering for proposed approach and

previous work

Test cases Test case ranking

TCR=RFD+PFD+RDA

T1 4.993

T2 7.284

T3 2.263

T4 16

T5 6.4

T6 4.461

For execution, test cases are arranged in decreasing order of

TCR. Test cases are ordered in such a manner, that those with

greater TCR value executes earlier

Comparison with the previous work

In this section, the proposed prioritized order is compared

with previous work Table 7 represents proposed order of test
cases and the prioritized order proposed

TABLE 7: APFD % for no prioritization, Random and

proposed prioritization techniques

Prioritization Technique APFD %

Non Prioritized 59%

Random approach 66%

AIGRTP 88%

Fig 1: APFD Percentage for no order and the AIGRTP

In Fig 1 the percentage of APFD for both no order and the

AIGRTP. APFD % for no prioritization and proposed

prioritization techniques

Conclusion

Software tests, especially software represented by regression

testing, it accompanies the whole life cycle of industrial

application system. This paper presents a regression testing

method for industry-oriented applications to solve issues, such

as the low degree of automation of large-scale business

systems and difficulty of defining test coverage The proposed
approach is compared with different prioritization techniques

such as no ordering, using APFD metric. The APFD is

calculated by taking the weighted average of the number of

faults detected during the execution of the test suite. Where

Test case prioritization (TCP) is an effective and practical

technique in regression testing to reduce it. It schedules test

cases in the order of precedence that increases their ability to

meet some performance goals, such as code coverage, rate of

fault detection through APFD metric.It is proven that when

the prioritized cases are run then result is more efficient. In

future, test case prioritization can be done by using more

factors and evaluate by PTR, Weighted Defect Density

(WDD), Defect Removal Efficiency (DRE), Defect

Removable Efficiency (DRE), Weighted Percentage Based on
Fault Severity (WPFS) and risk metrics. We conclude that

prioritization of test case or test suits have different aspects of

fault detection. On the basis of prioritization techniques,

functionality of regression testing can be improved in

minimum time and recourses. This can support to make a

better software product.

REFERENCES

[1] G. Rothermel, R. Untch, C. Chu and M. Harrold,

“Test case prioritization: An empirical study,” In

Software Maintenance, 1999. (ICSM’ 99)

proceedings. IEEE International conference, on

pages 179-188 IEEE, 1999.

[2] A.Pravin and Dr. S. Srinivasan,”An Efficient

Algorithm for Reducing the Test Cases which is

Used for Performing Regression Testing,” 2nd

International Conference on Computational

Techniques and Artificial Intelligence

(ICCTAI'2013) March 17-18, 2013

[3] S. Elbaum, A. Malishevsky, and G. Rothermel,

“Prioritizing test cases for regression testing,” Proc.
The 2000 ACM SIGSOFT International Symposium

on Software Testing and Analysis, Portland, Oregon,

U.S.A., August 2000, 102–112.

[4] W. Wong, J. Horgan, S. London and H. Agrawal, “A

study of effective regression testing in practice,” In

Proc. of the Eighth Intl. Symp. on Softw. Rel. Engr.,

pages 230–238, Nov. 1997.

[5] R.Beena, Dr.S.Sarala, “CODE COVERAGE BASED

TEST CASE SELECTION AND

PRIORITIZATION,” International Journal of

Software Engineering & Applications (IJSEA),

Vol.4, No.6, November 2013.

[6] R. Kavitha, N. Sureshkumar, “Test Case

Prioritization for Regression Testing based on

Severity of Fault,” College of Engineering and

Technology Madurai, Tamilnadu, India (IJCSE)

International Jthenal on Computer Science and

Engineering 2010.

[7] Samaila Musa, Abu BakarMd Sultan, Abdul Azim

Bin AbdGhani, SalmiBaharom,“A Regression Test

Case Selection and Prioritization for Object-Oriented

Programs using Dependency Graph and Genetic

Algorithm”
[8] Sujatha, Mohit Kumar and Varun Kumar, (2010)

"Requirements based Test Case Prioritization using

APFD PERCENTAGE

non
prioritzed

Random

AIGRTP

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 18 (2015) pp 39822-39827

© Research India Publications. http://www.ripublication.com

39827

Genetic Algorithm", International Journal of

Computer Science and Technology, Vol.1, No, 2,

pp.189-191.

[9] S. Elbaum, A. Malishevsky, and G.

Rothermel.(2000), Prioritizing test cases for

regression testing”.

[10] G. Rothermel, R. Untch, C. Chu, and M. J. Harrold.

“Test case prioritization: an empirical study”. Testing

“European Journal of Scientific Research,ISSN

1450-216X Vol.55 No.2 (2011), pp.261-274

[11] S. Elbaum, A. G. Malishevsky and G.

Rothermel,(2001), “Incorporating varying test costs
and fault severities into test case Prioritization”,23rd

International Conference of Software Engineering,

pages329-338

[12]

 www.

infosys.com/industries/banking/automated_order_ma

nagement.asp?page=iemsl

