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Abstract 

The Elliptic Curve Cryptography (ECC) was introduced in the 

1980s. It has superior strength per bit compared to the existing 

public key cryptosystems such as RSA. This fact made ECC a 

popular one. It can provide a secured data communication 

among the portable devices using small key sizes. The scalar 

multiplication carried out in ECC is expensive in terms of 

time, power and area. Major time consuming operations are 

reduced with projective coordinate. The proposed Elliptic 

Curve Cryptosystem over GF(2160) is designed with various 

point multiplication schemes in the Galois Field. The 

operations in the elliptic curve are explored using the finite 

field arithmetic in generating the keys and digital signatures, 

based on Elliptic Curve Digital Signature Algorithm 
(ECDSA). The ECC protocol algorithm is parallelizable and 

well adapted to FPGA design of Elliptic Curve 

Cryptosystems. 

 

Keywords: ECC, RSA, ECDSA, FPGA, Lopez-Dahab point 

multiplication, Montgomery multiplication. 

 

 

Introduction 

The use of elliptic curves in cryptography was invented 

independently by Neal Koblitz and Victor.S.Miller. Major 

discussions regarding the security and efficiency of the system 

were carried out followed by the introduction of Elliptic 

Curve Cryptosystem. Since ECC features a superior strength 

per bit compared to other public key cryptosystems, it offers 

the same level of security with small key size and saves 

bandwidth. These desirable features made ECC more 

attractive. The key distribution and digital signature schemes 

based on ECC is recognized by the IEEE standard. National 

Institute of Standards and Technology (NIST) of the U.S 

Government details a list of secured elliptic curves. In the 

hardware realization of Elliptic Curve Cryptosystem, 

considering the computation based operations, the Field 
Programmable Gate Array Technology can serve for the 

purpose better. Certain elements such as cost effectiveness, 

performance and re-configurability of the cryptographic 

algorithm, the hardware realization of ECC supports for the 

same [7]. Many cryptographic processors set the objective of 

reducing the latency due to the scalar multiplication with 

respect to the number of cycles required. Some ECC design 

methods adopted advanced processors in designing an 

Application Specific Instruction set Processor (ASIP). Major 

efforts were spent in optimizing the algorithm as well as 

betterment in arithmetic architectural designs. The proposed 

implementation of GF(2160) is designed with suitable point 

multiplication schemes that reduces the latency due to 

computational complexity in key pair generation. The paper 

analyzed the protocol, ECDSA that yielded better 

confidentiality and integrity in data communication. 

 

 

Elliptic Curve Over GF(
m2 ) 

The Elliptic Curve Cryptography is carried out under the 

prime field GF(P) or the binary field GF(2m). Both Galois 

fields can offer the same security levels. In this work, the 

operations in GF(2m) is focused as it supports for the hardware 

implementation in a better way with mod-2 operations [3]. 

The elliptic curve defined under the Galois field, GF(2m) 

satisfies the solutions of the equation,  

 

baxxxyy 232

  v (1) 
 

where a and b are elements of GF(2m) and b ≠ 0. 

 

 
Figure 1: Elliptic Curve 
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Let ),( 111 yxP and ),( 222 yxP are points on the elliptic 

curve, then summing the points is given by 
321 PPP ; 

where ),( 333 yxP is a point on the elliptic curve such that,  
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Therefore, the point doubling is carried out for the condition, 

.21 PP  The operation will be a point addition if .21 PP  

These operations have major role in developing the algorithm 

for ECC[1]. They constitute the scalar multiplication or the 

point multiplication, kP . 

The computation of inversion operation is expensive when 

compared to the multiplication. To minimize the inversion 

operation, various methodologies based on projective 

coordinate were proposed that employed typical fractional 

methods in the finite field arithmetic. The proposed work used 

a generic algorithm that is based on projective coordinate 

method gives performance enhancement. The algorithm was 

proposed by Lopez-Dahab that resulted an efficient realization 

method for the point multiplication, kP . This method does 

not require any pre-calculations or additional field properties. 

 

 

Lopez and Dahab Multiplication 

The effective realization of point multiplication needs the 

optimization of the elliptic curve operation as well as the 

operations in the Galois field. The optimization over the curve 

arithmetic is focused here that employed projective coordinate 

methods. Both point addition and point multiplication 

operations requires the inversion operations. The usage of 

projective coordinates granted the elimination of inverse 
operation by means of a few additional field multiplications 

[4]. The efficiency can be measured as the ratio of, time for 

the completion of inversion to the time taken for the 

completion of multiplication. 

Several methods of projective coordinates were proposed 

during the previous years. The popular among them are; 

Jacobian, Standard and Lopez-Dahab projective coordinate. 

The projective coordinate system by Lopez-Dahab is used as 

it offers high performance for both point doubling and 

addition. 

The steps for the operation of point addition and doubling 

were based on typical formulae that use the x-coordinates of 

the points. When used with the projective coordinate from 

formulae, the x-coordinate is given by, 

i

i

Z

X
, where i takes 

values 1, 2, 3. The computation for point addition and 

doubling is shown in equations (2) to (5). They are used by 

the algorithm for the point multiplication in the projective 

coordinate. 
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Algorithm for Lopez-Dahab Multiplication 

 

Input: An integer, k 0; Base point, EyxP ),( . 

Output: kPQ . 

 

If k or x 0; then output is (0, 0); stop. 

Let 021 ...( kkkk ll . 

Let 
2

2

4

211 ;;1; xZbxXZxX . 

From 2l down to 0; for j, do; 

If 1jk ; 

),(),,,,( 222211 ZXDBLZXZXADD  

Else,  

),(),,,,( 111122 ZXDBLZXZXADD  

Return, )),,,(Pr( 2211 ZXZXAffojQ . 

 

 

Karatsuba Multiplication 

The Two m-bit numbers, whose multiplication can be carried 

out with reduced bit complexity of less than O(m
2

). This was 

discovered by Ofman and Karatsuba in 1963. The algorithm is 

named as Karatsuba multiplication. For the multiplication in 

Galois field, the Karatsuba multiplication can be applied 

where, a polynomial A in GF (2m) is divided into two. 

For polynomials A, B  GF (2m); the n bit multiplication, A.B 
is sub-divided into n/2 bit multiplications. By defining some 

additional polynomials, that results in a total of three n/2 bit 

multiplications and some extra additions using XOR 

operations that performs one m-bit multiplication. The 

Karatsuba Multiplication for polynomials in Galois field is 

based on the approach of divide and conquer[2]. Here the 

operands are separated into two segments, which follow an 

attempt for generalizing the approach by sub-dividing the 

operands to yield greater two segments. The multiplication 

over finite field is computed using AND operation. The 

multiplication of two polynomials of degree-m can be carried 

out with three m/2-bit multiplications and a few XOR 

operations to find the interim results and then to accumulate 

the final result [5]. This leads to a recursive development 

process, which builds Combined Karatsuba Multipliers 

(CKMs) of width m =2i for arbitrary i  N. 
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Figure 2: 2-bit & 4-bit Combined Karatsuba Multiplier 

 

 

Montgomery Multiplication 

The architecture proposed for Elliptic Curve Cryptosystem 
used the Montgomery scalar multiplication with projective 

coordinate for the realization of fast point scalar 

multiplication. The point operation with affine coordinate (x, 

y) includes finite field inversion [8]. This is more expensive 

compared to multiplication. The usage of projective 

coordinate (X, Y, Z) allows effective replacement of field 

inversion through a sequence of multiplications. The 

Montgomery scalar multiplication proposed here with 

projective coordinate algorithm needs only the computation 

with x and z coordinates for the point multiplication. The 

computation with y coordinate is needed for the coordinate 

conversion (Mxy) only which does the conversion from 

projective coordinate to affine coordinate. Moreover, the finite 

field inversion is only necessary in Mxy. 

The Montgomery point multiplication can be realized 

efficiently through operation scheduling. Initially, the 

functions Madd & Mdouble can be disintegrated into Galois field 

multiplications, additions and squares. The operation 

scheduling of Madd and Mdouble can be made better by using a 

dedicated squarer and three AUs, applying the reduction 

technique. The AU1 & AU2 together yields Madd, meanwhile 

AU3 and the squarer find outs Mdouble. The reduction 
technique resulted in a high performance Cryptosystem 

architecture using the operation schedule for the Montgomery 

point multiplication algorithm as well as bit parallel Modular 

reduction [9]. The proposed Elliptic Curve Cryptosystem 

architecture that explored the Montgomery scalar 

multiplication with projective coordinate designed for fast 

point multiplication is discussed in the algorithm. The 

proposed design method outperforms other Elliptic Curve 

Cryptosystem designs significantly in terms of performance as 

well as cost-effectiveness. 

 

 

Algorithm for Montgo Multiplication with Projective 

Coordinate 

Input: A point P = (x, y), an l-bit integer k = (kl−1, ..., k1, k0). 

Output: Q = kP. 

 

1:  X1 = x, Z1 = 1, X2 = x4 +β, Z2 = x2. 

2:  for i = l−2 to 0 by −1 do 

3:  if ki = 1 then 

4:  (X1, Z1) = Madd (X1, Z1, X2, Z2), (X2, Z2) = Mdouble(X2, 

Z2) 

5:  else 

6:  (X2, Z2) = Madd (X1, Z1, X2, Z2), (X1, Z1) = Mdouble(X1, 

Z1) 

7:  end if 

8:  end for 

9:  Q = Mxy(X1, Z1, X2, Z2) 

10:  Madd (X1, Z1, X2, Z2) // Point Addition 

11:  Z3 = (X1 ×Z2 +X2 ×Z1)
2, X3 = x×Z3 +(X1 ×Z2)×(X2 

×Z1) 
12:  return(X3, Z3) 

13:  Mdouble(X1, Z1) // Point Double 

14:  Z2 = Z1
2×X1

2, X2 = X1
4+b×Z1

4 

15:  return(X2, Z2) 

17:  Mxy(X1, Z1, X2, Z2) // Coordinate Conversion 

18:  X = X1/Z1, Y = (x+X)×(y+x2 +(X2/Z2 +x)×(X1/Z1 

+x))/x+y 

19:  return(X, Y). 

 

 

The ECDSA for ECC 

The proposed work carried out analysis with the elliptic curve 

operations of the ECC protocol ECDSA (Elliptic Curve 

Digital Signature Algorithm). The ECC Transmitter and 

Receiver section performed the generation and verification of 

digital signatures based on the ECDSA Algorithm. Both 

process used the Hash function of the message there by 

resulting in the message digest [6]. The transmitter sends the 

message which need not be encrypted, along with the 

signature to the receiver. The receiver also finds the Hash of 

the received message and uses the received sign and the 

sender’s public key to verify the signature. The generation and 

verification of signatures were carried out based on the 
ECDSA algorithm, thereby it ensured better authentication in 

secured communication environment. 

 

 

Conclusion & Future scope 

The Elliptic Curve Cryptosystem formed a suitable 

substitution for the traditional public key cryptosystems in the 

application level due to its superior strength per bit. This work 

resulted in the realization of an efficient system through the 

effective multiplication schemes in the Galois field. The 

algorithm upholds the enhanced security level of the message 

with less key size and signature size. The algorithm yielded in 

improved authentication through verification of signatures at 

the receiving side. To advance the effectiveness of the system, 

the ECC operations, including point addition and 

multiplication is done using typical multiplication schemes. 

The proposed Elliptic Curve Cryptography processor with 160 

bit point multiplication and coordinates Conversion 

outperforms other EC cryptosystem design in terms of high 

performance and cost effectiveness, thereby it confirmed the 

suitability of FPGA implementation of Elliptic Curve 

Cryptosystem. The improvements in the algorithmic level can 

be extended further when realized completely in macrocode. 
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