
International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 18 (2015) pp 39696-39707

© Research India Publications. http://www.ripublication.com

39696

A Systematic Literature Review: Recent Trends and Open Issues in

Software Refactoring

Sreeji K. S

Research Scholar, Department of Computer Science and Engineering, SRM University, SRM Nagar, Kattankalathur,

Kanchipuram District-Tamilnadu. Sreejiks71@gmail.com

Dr. C. Lakshmi,

Head of the Department, Department of Software Engineering SRM University, SRM Nagar, Kattankalathur,
Kanchipuram District-Tamilnadu. lakshmi.c@ktr.srmuniv.ac.in

Abstract
Software refactoring is a process of improving the internal

structure of software artifacts through various steps of

transformations without affecting the externally observed

behavior. Refactoring aims to improve the quality of the

software in several aspects like code understandability,

maintainability and modularity. Extensive researches are

taking place in this area for the last decade and several papers
are available for review in various angles of software like

code smell detection, refactoring algorithms, patterns and

refactoring, program evolution and refactoring and code clone

detection. The aim of this review paper is to structure and

organize the major findings published since 2004 with more

emphasis given to papers published for the last five years to

understand the current trends in refactoring and also to

formulate better research problems for further research.

Keywords: AntiPatterns, Code smells, Code clones,

Metaprogramming, Software Refactoring, Web mashups.

Introduction

Software tend to evolve over time according to the changing

user requirements, as a result the code becomes more and

more complex [1][2] and deviates much from the original

design. This may lead to poor quality software. Also, software

evolution is time consuming, complex and incurs much of the

software development cost. So much attention must be given

to the maintenance of software which necessitates the

development of flexible and maintainable tools to deal with

reduction of software complexity. The area of software
engineering that focuses and deals with this problem in

software development process is referred to as software

restructuring or in case of object oriented systems, refactoring.

According to Arnold [3] software restructuring can be defined

as the modification of software to make the software (1) easier

to understand and to change or (2) less susceptible to error

when future changes are made." The term refactoring was first

discussed by William Opydke [6] in the year 1999 in his Ph.

D dissertation as a variation of object oriented restructuring.

According to Martin Fowler [4] “Refactoring is the process of

changing a software system in such a way that it does not alter

the external behavior of the code yet it improves its internal
structure”. The refactored code exhibits improvement in

internal quality attributes such as understandability and

maintainability and reusability. Thus the ultimate aim of

software refactoring is to transform the design of the program

in to better quality by resolving antipatterns, code smells, code

clones and other anomalies. For the past fifteen years,

researchers contributed a great deal of knowledge and

emerging ideas in the area of software refactoring. Their

valuable findings encompasses various activities of the
software development process such as requirement analysis

and modeling, design integration, testing and maintenance.

The various research findings emphasized that though

software refactoring brings much reduction in software

complexity and maintenance, it is necessary to have a

thorough understanding, awareness and skills to use of

available tools to fully utilize the benefits of refactoring

process during redesign of the software.

Background of Software Refactoring

The concept of software refactoring was first identified by
William F. Opydke in his Ph. D. Dissertation, but it became

more and more relevant after the publication of the book [4]

Refactoring: Improving the design of Existing Code, written

by Martin Fowler in the year 1999. The process of refactoring

is used to restructure the software by applying a series of

stepwise transformations without changing its observable

behavior. The basic principle of object oriented refactoring is

in reorganizing classes and methods along the class hierarchy

such that future adaptations can be easily made resulting in

more readable and maintainable code of good quality.

It is desirable to identify the parts of the source code that
exhibits signs of „bad smells‟. This challenging task is the

vital part of the refactoring process. According to Beck [5],

„Code smells are structures in the code that suggest the

possibility of software refactoring”. Fowler and Beck, also

other researchers provide a list of bad smells and the

corresponding refactoring strategies to make the refactoring

process much easier.

Refactoring can be applied in various software development

artifacts such as software design patterns, architectures,

models, test suites etc.

i. The Activities Of Refactoring Process Are [8]:
1. Apply unit testing to the program

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 18 (2015) pp 39696-39707

© Research India Publications. http://www.ripublication.com

39697

2. Identify where the software should be refactored by

identifying code smells among the code

3. Select a refactoring strategy to remove the identified

code smell.

4. Apply the strategy

5. Apply regression testing to the refactored code
6. Assess the effect of the refactoring on software

quality characteristics such as complexity, effort,

maintainability and readability.

7. Maintain the consistency between the program and

other software artifacts.

ii. Benefits of Software Refactoring

There are two general categories of benefits to the activity of

refactoring:

1. Maintainability. By applying refactoring strategies

such as moving a method to appropriate class or

removing unnecessary comments on the source code
makes it more readable and understandable.

2. Extensibility. By applying good design patterns to

the overall architecture of the software system it is

easier to extend and adds more flexibility.

Software refactoring is a very useful and valuable technique

but it is not a panacea to all the observable problems in

software development. Software refactoring techniques can be

classified based on how they make changes to the code and is

shown in the following table.

Table I. Refactoring Techniques

Refactoring

Technique

Description

Composing

Methods

Techniques that allow for breaking code

apart into pieces e.g. Extract Method

Moving Features

between Objects

Techniques that allow for improving

location of code e.g. Move method

Organizing data These techniques allow for working with

data easier e.g. Self encapsulate field

Those that allows

for more

abstraction

e.g. replace conditional with

polymorphism, Generalize type

Making method

calls simple

These techniques allow making interfaces

more straightforward and understandable.

e.g. Rename method

Move upwards in

the hierarchy

These techniques allows to pull up fields

around a class hierarchy e.g. Pull up field

Higher level
refactoring

This group consists of complex techniques
that turns a procedural code into object

oriented code. e.g. Extract Class

Hierarchy.

A Brief Of Related Work

Tom Mens (2004) conducted a detailed study of existing

refactoring research such as the refactoring activities,

formalisms, types of artifacts and effects of refactoring on

software process using the concepts of software restructuring.

Karim O. elish and M. Alshayeb [53] proposed a classification

of refactoring methods based on their impact on testability

attribute.

M. Kim et.al [14] conducted a field study of windows version

history and reported many challenges to refactoring during

cross branch integration from different teams. Also the paper

identified the need for a better code understanding tool and
validation tool that checks correctness of refactoring. Mefsin

Abebe and Cheol-Jung Yoo [8] conducted a systematic

literature review approach to classify the refactoring research

literature and presented the contribution and gaps in each of

the relevant area. They used a tool support for taking an

inclusion and exclusion decision.

This review paper is different from the above mentioned one;

since the main purpose is to conduct a review manually which

includes more electronic database and more literatures. Apart

from [8] this review gave a separate section on code clone

detection and antipatterns since more relevant open issues are

found in recent literatures regarding this area.

Review Methodology

The main objective of the study is to find out the relevant

literature regarding software refactoring, major contributions

and identify the recent trends in this emerging field.

i. Review Protocol

The review protocol includes the following steps:

1. Set up the research questions

2. Identify and locate the relevant literature based on
the inclusion and exclusion criteria.

3. Select the relevant studies based on the quality

assessment such as whether the study have a clear

problem statement, specific section on limitations

and open issues for future work.

4. Data is extracted, combined and summarized.

5. Write a review report.

ii. A Quick Tour On The Review Protocol

Following are the questions formulated to identify, classify

and summarize the findings of the collected literature:

RQ: What are the recent trends, major contributions and gaps
in the area of software refactoring research?

SQ: What are the general recent trends in refactoring

activities?

SQ: What are the gaps in each of the relevant contributions?

Inclusion and exclusion is done by selecting the literature that

is relevant to the area of software refactoring according to the

following criteria:

 Papers written by researchers and professional

developers

 Included only international conference and

workshops, journals, tutorial, technical reports,
thesis, dissertations and newsletters.

 Literatures published since 2004 and written in

English language are included and others are

excluded

 The papers are retrieved manually mainly from

electronic databases such as IEEE Explore, Springer

Link, ACM Digital Library.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 18 (2015) pp 39696-39707

© Research India Publications. http://www.ripublication.com

39698

These data sources are searched against the following search

terms.

 Refactoring

 Refactoring and API evolution

 Bad smell and refactoring

 Design pattern, antipattern and refactoring

 Software metrics and Refactoring

 Agile Development and Refactoring

 Code clones and refactoring

The selected literatures are reviewed for data extraction. The

extracted data is recorded manually and arranged in a

chronological order. Once collected, combine and summarize

the findings from each paper depending on the title, abstract,

methods used, study limitations, open issues, conclusion and

future work.

Finally, the summarized findings are reported as identified
gaps and open issues.

Significant Contributions Of The Study

The attractive feature of this study can be viewed from three

angles, which can help the aspirant researchers in the area of

refactoring.

 Grouping of software refactoring literatures based on

their aim, title, and the content

 Identify the significant contributions in each of the

study based on the group.

 Identify the gaps in each of the group based on the

methodology used, applicability, and open issues for

further research.

A Narrative Of The Relevant Literatures In The Area Of

Software Refactoring Research

The analysis results of the 73 papers are summarized in terms

of the methodology used, its applicability, limitations and

open issues.

i. Survey of Software Refactoring

This group consists of some of the surveys conducted in the

field of refactoring, various approaches, software evolution,

comparison of manual and automated refactorings and tool

support.

Tom Tourwe and Tom Mens [10] specified that by applying

the techniques of logic Meta programming one could detect

bad smells and identifies refactoring opportunities. Their

experiments were done on the SOUL research prototype, a

medium sized application. But this approach detects only two

kinds of bad smells such as obsolete parameter and

inappropriate interfaces.
Tom Mens [8] conducted an extensive overview of the area of

software refactoring, the activities of software refactoring

process, the area in which it is applied, assessing the impact of

software quality due to refactoring, the techniques and

formalisms for program correctness and preservation of

semantics using the concepts of software restructuring such as

program slicing, formal concept analysis, program refinement

and dynamic program analysis. The study also concentrated

on the automatic tool support and process support towards

refactoring. The study indicates important open issues in each

of above categories that are yet to be solved.

Zhenchang [11] conducted a detailed study on the structural

evolution of an integrated IDE like Eclipse and a plugin based

framework and concentrated on what fraction of code

modifications are refactorings and what are the most frequent
types of refactorings. If the most frequent types of

refactorings are identified the scope of refactoring can be

narrowed down. They observed many mismatches between

the programmer choice and automated refactoring as

awareness, naming etc.

The studies by Tapa [12] made use of structural and semantic

information of the source code for refactoring process. The

researchers also advocate the use of semantic information

such as comments in the source code.

S. Nagara, N. Chen et.al [13] conducted a comprehensive

study of manual and automated refactorings. Their approach

implemented a refactoring inference algorithm that checks for
continuous changes. The study focused on the analysis of two

version control system snapshots, they concluded that many of

the refactorings are clustered in time and is incomplete or do

not reach different versions. Their studies have the following

results: 1) an average experienced developer performs

automated refactoring. A novice user is less familiar with

refactoring tools. 2) On average manual refactorings takes

longer times than automated ones. Extract method refactoring

is most time consuming both manually and automatically.

Rename field refactoring is fast. The algorithm makes use of a

snapshot analysis. They conclude that their algorithm can be
used to infer intelligently changes occurring on the source

code continuously.

M. Kim, Thomas Zimmermann et.al [14] conducted a field

study of windows version history and found that the binary

modules refactored have significant reduction in the number

of inter module dependencies, post release defects than other

regular changed modules. The study pointed out the major

challenges associated with refactoring as cross branch

integration from different teams. The studies suggested that

even though the developers know the type of most common

refactorings they perform it manually. The developers are

unaware of the existence of certain tools support. Developers
wanted to have a better code understanding tool and validation

tool that checks correctness of refactoring.

E. M. Hill, C. Parrin et. al. [15] in their paper explains that

high level refactorings are those that change the signatures of

classes, methods or fields refactorings at this level include

rename class, move static field and add parameters. They

found that refactoring tools are seldom used because of lack

of awareness, opportunity and trust in them. Also due to the

limitation of refactoring tools within the programming

environment would bring much benefit to the developers.

Their study was based on JAVA and Eclipse environment.
Their findings revealed another interesting fact that many of

the refactorings are medium and low level categories. A few

tools address higher level refactorings that change the

signatures of classes, methods or fields. That means 24 to

60% of refactorings is yet found to be detected and this will

produce much benefit to improve the maintenance of the

software.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 18 (2015) pp 39696-39707

© Research India Publications. http://www.ripublication.com

39699

Pinto [16] conducted a study to understand the views of

programmer regarding refactoring tools; they wanted to have

more unimplemented features in the tools for refactoring in

the future.

ii. Software Refactoring Tools
In most of the refactoring tools, the refactorings are performed

by applying certain preconditions and transform the code

automatically and manually by programmers. To alleviate this

limitation, researchers [Emerson Murp, 17] proposed tools

based on synthesis from examples.

Michael Mortenson, Sudipto Ghosh et.al [18] have developed

a tool suite support of refactoring to legacy systems based on

the principles of test driven development. The aim is to ensure

that adding new aspects using mock stub systems and testing

using regression tests does not introduce new faults when

aspects are into a large legacy system.

Yasemin et.al [19] proposed a machine learning based model
to predict classes to be refactored. This method is able to

detect 82% of the candidate classes to be refactored with little

effort.

Erica Mealy and Paul Strooper [20] conducted a framework

study on six java refactoring tools using feature analysis

method. Their paper revealed that existing tool support

towards refactoring does not cover all of the aspects of the

refactoring process such as usability, reliability, efficiency etc.

and found to be immature in detecting code smells. They are

arguing that, an integrated approach of identifying usability

requirements and automated code smell detection will help the
developers to maintain accurate software.

Refactoring is considered as a preventive maintenance

activity. There is lack of tools for supporting decisions like

when and where to apply refactorings. L. Zhao and J H Hayes

[21] introduced the tool, JRIA (JAVA refactoring Inspection

Assistant) a rank based software-measure driven refactoring

decision support approach to assist managers. The approach

used static software measures like size oriented, coupling, and

dependency to rank the classes and packages that needs

refactoring. The results have shown that maintainability

prediction of JRIA is faster than human reviewers but

applicable only to limited size of code.
Wafa Basit and Fukhar Lodhi et.al [22] proposed an extended

set of refactoring guidelines and developed a model for

building specification of extended refactoring guidelines. The

guidelines address the semantic issues as the client code and

test code evolves.

M. Vakilian [23] proposed that certain general characteristics

such as supplier assessment, economic issues, easy of

introduction, reliability, maintainability and compatibility is to

be considered in developing refactoring tools.

Max Schafer et.al [24] addressed the problem of naming and

accessibility of variables with respect to their program scope
during refactoring. While performing refactoring current

refactoring engines pay poor attention to preserve the program

behavior with respect to access control preservation and name

binding. They proposed a tool that transform the original java

program to a representation that is look up free and access

control free. They applied two types of refactoring that is

extracting interface and pull up method on a collection of real

world applications and assessed the effect of naming and

accessibility adjustments arises on real code and compared the

performance of other tools. Major tools do not address these

issues of naming and accessibility bindings in refactoring and

hence rejected. But the tool fails to assess the control flow and

data flow properties preservation during refactoring.

iii. Bad Smell and Refactoring

Ganesh B et.al [25] briefed the 22 code smell that fowler

identified and their results revealed that duplicate code smell

has more emphasis in research and message chain has attained

little focus.

J Perez [26] shown that the move method, move field, rename

method, rename field are low level refactorings that provide

service to more complex refactoring techniques.

Schumacher [27] analyzed the relationship among different

kinds of bad smell and their impact on the resolution order.

Serguei Roubtsov, Alexander Serebrenik et.al [28] developed

a classification of the dependency injections using java
annotations, the associated modularity principle violations,

and their impact on the deployment of software systems and

the resolution of code smells.

Huaxin [29] documented the collection of refactorings as

problem templates that identify suspect code design and

suggested target design patterns as solutions.

Hui Liu [30] found out that there exists some indirect

relationship among most of the commonly used refactorings

and proposed an approach to automatically detect and

optimally resolve bad smells. They evaluated their approach

using two nontrivial open source applications, and the results
suggest that a significant reduction in refactoring effort

ranging from 17.64 to 20 percent can be achieved.

Almar Hamid, Muhammed Ilyas et.al [31] have made a

comparative study on two different code smell detection tools

such as JDeodorant and Insect only for Java source code. Both

of them have used different approaches to identify code

smells. The studies have shown that there is lack of mature

tools for code smell detection and refactoring.

Dag I. K et.al [32] made an attempt to find out the relationship

between code smells and maintenance effort. They used

multiple linear regression analysis on twelve code smells and

concluded that none of these code smells contributed
significant effect on maintenance effort. The authors

experience have shown that more focus on code size and the

work practices limit the number of changes and thereby

reduces the change induced smells. But other than these

twelve code smells may still cause problems to maintenance

effort.

Kathryn T. stolee and Sebastain Elbaum [33] made an attempt

to automatically identify and refactor the code smells in pipe

like web mashups. They have identified the candidate smells

of mashup environment such as laziness smells, redundancy

smells, environmental smells and population based smells. To
perform refactorings they have used the concepts of graph

transformation. The main aim is to unify duplicated code to

simplify pipe structures and reduce their sizes. They have

reached at a conclusion that the refactorings they proposed

can reduce the number of smelly mashups to a certain level.

They conclude their study in such a way that the study can be

extended to end user programming environments like

spreadsheets and web macros.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 18 (2015) pp 39696-39707

© Research India Publications. http://www.ripublication.com

39700

Hui Liu et.al [34] proposed a monitor based instant

refactoring framework which helps the developers to detect

code smells at the early stages of the software development.

The framework consists of a 1) monitor which oversees

changes made source code 2) smell detectors and refactoring

tools provides smells and suggestions for refactoring. 3) a
smell view presents the detected smells to the developer 4)

The feedback controller adjust the feedback from refactoring

tools. The framework produces improved software quality but

only 8 types of code smells is capable to detect and the

performance is not thoroughly evaluated.

Jiang Dexun, Ma Peijum et.al [35] have identified a new bad

smell functionally over related classes but confused

inheritance in some object oriented programs. Presence of this

kind of bad smell reduces the understandability, reusability

and ultimately the maintainability of software system. Their

approach performs an analysis to form the number of large

cluster group of entities with dependency relationships. The
threshold value is computed using the metric which

determines refactoring suggestions to be performed. This

preset threshold computation is the limitation of this approach.

Their studies revealed that the cost of this type of refactoring

is lower but there is chance for reduced coupling and

improved cohesion among modules. There is greater degree of

encapsulation and inheritance which supports reusability but

increased complexity reduces understandability.

Denys Poshy Vanyk et.al [36], presented a method book based

on relational topic models. The method book used this model

to store the friends of a method. Methodbook captures textual
information from the source code to represent the relationship

between methods. The approach detects feature envy bad

smells in the source code. Their approach is briefed as

follows. The method friendships are identified using relational

topic model (RTM) which is a hierarchical probabilistic

model of document attributes and link between documents.

Methodbook keeps track of all comments, all types of

identifiers, and literal strings present in a method. A cut of list

is prepared then a term by document matrix is computed. The

static analysis of the software matrix yields structural

similarity between the methods and call based dependence

between methods. Once the RTM similarity matrix is
computed, rank friendships among methods, then find out best

friends and identify the envied class. The studies with six

software systems suggest that methodbook provides accurate

suggestions for move method refactoring.

M. Kesantine, H. Saharoui et.al [37] presented code smell

detection as a distributed optimization problem. Their idea is

based on genetic programming for the detection of rules at the

first level that yields a set of population. A second

evolutionary algorithm is executed in parallel that generates

detectors from well designed codes. A set of candidate

solutions are evolved that reaches to a good solution. This
approach is named by them as parallel-evolutionary algorithm

(P-EA). The authors conducted an empirical study of their

approach to two single population based approaches and two

code smell detection techniques such as DÉCOR and

JDEODORANT, and the results shown that, P-EA is more

efficient and accurate in terms of precision and recall in the

detection of eight different types of code smells.

Santiago et.al [38] presented a semi automated approach

called SPIRIT (Smart Identification of Refactoring

Opportunities) to suggest ranking of code smells based on a

combination of three criteria such as 1) Past component

modifications 2) important modifiability scenarios for the

system and 3) relevance of the kind of smell. Their approach
has been evaluated in two JAVA applications and suggested

code smells is indeed useful to the developers.

iv. Software Artifacts and Refactoring

Demeyer et.al [39] presented a rule based inconsistency

resolution which is reusable across different model

refactorings that manages the flow of inconsistency

resolution.

Detects design defects early in the design process yield more

benefit to designers belonging to MDE process. Mika V et.al

[40] conducted an empirical study of drivers for software

refactoring decisions using Java code developed among a
group of students. The study has more implications in

determining which stings for refactoring, method size is a

driver, also suggest code problem indicators such as poor

algorithm.

Richard Mateos [41] studied the refactoring of use case

models based on the information obtained using episode

model and suggested 10 refactoring rules including validation

of the behavior preserving property towards use case

refactoring.

Dobrza [42] proposed a systematic approach to specification

of UML model refactorings and bad smells in models, which
forms the sound basis for model driven architecture. They

exemplified their approach in Telelogic TAU, a use case tool.

M. Mohammed, M. Romdhani et. al [43], in their attempt to

detect errors and defects early in the development process

they proposed a tool M Refactor for model refactoring. They

conducted domain analysis to identify anti-patterns and bad

smells. For each design defects, identify the metric based

heuristics, such as tight class cohesion, attribute per method

etc. then model the refactoring places using UML model and

restructures it after the user validation.

Mohammed et.al [44] performed a systematic literature

review by a multistage selection process and analyzed the
results based on different criteria such as the methods of

model refactoring, the tool support towards model refactoring

and the quality of the model after refactoring process. They

argued that model refactoring is an active area of research in

the future.

v. Agile Development and Refactoring

Thomas D [45] investigated the XP engineering activities:

new design, refactoring and error fixing, and concluded that

more the design is new less the effort required to refactor it

and fix the errors.
Cledson R B de Souza et al. [46] studied the effects of

refactoring in the coordination of software development

activities. The results have shown that the core developers of

the project are highly involved in active communication

during the refactoring process. They suggest that refactoring

process should be carefully planned to avoid too much stress

while conducting refactoring activities.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 18 (2015) pp 39696-39707

© Research India Publications. http://www.ripublication.com

39701

Tony clear [47] and E. M Hill [15] in their studies revealed

that when refactoring is applied in object oriented or agile

oriented, as agile is a new buzzword in software development,

software projects the quality and productivity increases.

vi. Design Pattern, Anti-pattern and Refactoring
Jing Wang [48] explained the relationship between design

pattern, anti-pattern, code smell and refactoring, also how to

use these techniques.

Monteiro [49] identified the causes of anti-patterns from

different perspectives such as knowledge problems, artifacts

problems and management problems. The proliferation of

antipatterns can be prevented by promoting the awareness of

anti-patterns to the software developers.

Yixin Luo, Allyson Hoss.et.al, [50] developed a knowledge

engineering model that depicts the relationship between

antipatterns and code smells and refactoring solutions. The

ultimate aim of this research work was to improve software
quality by identifying and removing code smells and anti

patterns before coding begins.

Recent researches have shown that poor design choices such

as anti-patterns and poor naming and commenting choices

affect software understandability and overall software quality.

Venera Arnaoudiva et.al [51] developed a detector prototype

and a fast catalogue of linguistic anti-patterns as poor

recurring design practices in the naming, documentation and

choice of identifiers in a software system. The catalogue they

proposed is applicable to methods and attributes. They

developed detection algorithms for these linguistic
antipatterns. The facts such as methods, types and attribute

names are extracted from the source code using a meta

language and produces a XML based parse tree. After that a

part of speech analysis is performed using a natural language

parser and find out the relations among source code elements

and comments. The studies among two AgoUML releases,

Coccoon and Eclipse reveal that there is more presence of

linguistic anti-patterns. Out of the detected linguistic patterns

the tool is able to validate only a subset of them for certain

categories.

vii. Test Driven Development and Refactoring
Counsell [52] proposed a development environment called

TTCN-3 (Testing and Test Control Notation Version 3) which

suggest metrics and refactoring support to automatic

restructuring of test suites.

Karim O [53] proposed a test driven development approach

with motto test first which has three phases red, refactor and

green. They used five refactoring methods such as Extract

method, Extract class, consolidated conditional expression,

Encapsulate field and Hide methods. All the refactoring

methods except extract class method exhibited testability

property.
Peng hua [54] and Roderickborg [55] conducted unit testing

while performing refactoring to check that the changes made

to the design preserves semantics after refactoring. Peng Hua

used an approach based on object oriented quality model and

validated the design pattern against the non functional

requirements. Roderickborg proposed a tool for automated

acceptance test maintenance using a refactoring approach. The

studies have shown that this tool support reduces maintenance

effort and makes the system less error prone.

Amog Katti, Sujatha Terdal [56] proposed an algorithm that

can be used as a part of extraction refactoring which

dynamically analyses the source code and produce static

slices. Connection preserving transformation is applied prior
to refactoring by applying structural testing of source code

and the collected data is analyzed to find data dependencies

and compute the slices.

Mark Harman in his keynote presentation at the first

refactoring and testing workshop [57] revealed the concept of

refactoring as usability transformation. A testability

refactoring is a class of testability transformation in which the

transformed version of the original program contains test data

for the original program. The aim is to build a software that is

easier to test and more maintainable. This paper presents

several open issues related to testability refactoring such as

search based testability refactoring and the concept of test
carrying code.

Frens et.al [58] investigated and concluded that unit tests

conducted during refactoring does not leads to quicker or

quality code refactoring. But their study concentrated on small

group controlled experiment, so further study is needed in this

area.

viii. Software Refactoring and API Evolution

Danny Dig and Ralph Johnson [59] studied the impact of API

changes in three major frameworks and one library. They

found that much of the API changes are structural and
behavior preserving transformations. They suggest that when

components evolve they must be properly documented and

proper migration tools must be available to integrate the new

components into an application.

Danny Dig et al., [60] presented an algorithm which performs

a fast syntactic analysis based on shingles encoding to detect

refactoring candidates among two versions of the component

followed by the semantic analysis using some strategies to

compute the likelihood of refactoring based on references

among the source code entities. This refactoring Crawler is

robust and scalable but provides poor support for interfaces

and fields.
When components in a framework upgrades, changes to its

interface may invalidate existing component based

applications and require adaptation. Ilie Savga and Michael

Rudolf [61] developed a comeback tool that is capable of

automatically constructing adaptation specification for the

API refactorings such as type and method name changes,

change in method signatures and inheritance relations. But the

tool fails to adapt field refactorings such as renaming and

moving public fields.

Mryung Kim et.al., [62] stated that even though it is believed

that refactoring improves software quality, but there is no
systematic study of the benefit regarding API level

refactorings. Their study produced certain major results 1)

After API level refactorings there is an increase in no. of bug

fixes but 2) the time taken to fix the bug is shorter after

refatorings and 3) revisions occur more frequently due to bug

fixes. The study demands the necessity of new software

engineering tools that are capable of detecting refactoring

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 18 (2015) pp 39696-39707

© Research India Publications. http://www.ripublication.com

39702

mistakes. Also a quantitative assessment of the refactoring

investment is to be made in future.

Miryung Kim, David Notkin et.al [63] proposed a rule based

program differencing approach which automatically detects

code changes as logical rules applied at API level and the

code level. But the rule inference approach omits exception
handling and access modifiers in methods. Also, do not

address renaming of fields. The algorithm for program

differencing using top down rule learning is inefficient

because a large rule space is worst searched and discards most

of them. The algorithm fails to handle complex refactorings

such as changes to design patterns and renaming of fields at

API levels.

ix. Software Metrics and Refactoring

Panita Meananeatra [64] proposed an approach to identify

optimal refactoring sequences which when applied to

programs yield a version with fewer numbers of bad smells
with higher maintainability and changeability.

Thushar S. [65] presented a method to estimate the quality of

the software design using an index called software design

quality index. He concluded that more than a better

refactoring tool, a better validation tool is essential to increase

the productivity in software development.

Even though there is a belief that refactoring of software

systems would improve their quality, there is little bit

evidence regarding its quantitative benefits. S. H. Kannangara

et.al [66] made an empirical evaluation on the impact of

refactoring on code quality improvement. They conducted
experiments to identify which refactoring has the highest

impact on software quality. They have selected ten refactoring

techniques having high impact on code quality and the

external quality factors selected are maintainability and

efficiency and excluded portability. The experiments were

conducted among 60 students on their mini projects the

refactoring benefits are assessed for each external quality

attributes. Their studies shown that out of ten refactoring

techniques they selected replace conditional with

polymorphism ranked the highest impact on code quality

improvement. The major drawback of their study is that the

experiments were conducted among non experts. So it is
better to conduct a survey in real industry to identify the

refactoring techniques that have high impact on code quality

rather than selecting them randomly.

Sultan Alschri and Luigi Benedizenti [67] applied an analytic

hierarchy process in an agile environment to rank the

refactoring techniques based on the internal quality attributes.

Their aim is to exploit maximum benefit when applying

refactoring to software systems by reducing the effort and

time to a certain extent. They found that the extract method

and extract class techniques exhibit internal quality attributes

such as reduced complexity, coupling and code size with
increased cohesion.

x. Code Clones and Refactoring

Ranier Koschke [68] have revealed certain techniques to

detect code clones which may affect the maintainability of the

software systems. He identified certain open issues like the

integration of clone management tools to support automated

refactoring.

Hoan Anh Ngyuen, Thung Thanh Nguyen et.al [69]

introduced a clone management tool Jysync to support

developers to identify clone relation among code fragments as

software emerges and in making consistent changes when

creating or modifying code clones. Their empirical study on

large open source systems reveals that the tool accurately
detect and update code clones using an AST based tree editing

operations and analyze the changes of cloned code and

performs synchronization and merging. These techniques are

more focused on the preventive lines of clone management,

that is to avoid new clones as well as compensative view that

is to detect and perform consistency analysis of code clones.

But there is an open issue for the corrective aspect of clone

management that is to remove clones from a system.

Tsantalis and Giri Panamoottil Krishnan [70] in their seminal

paper argued that there are still open areas of research in the

field of clone management such as determining valid clone

regions, refactoring of type-2 and type-3 clones as well as
decomposing original clones into sub clones.

E. Kodhai and S. Kanmani [71] developed an enhanced clone

manager for clone detection and modification of clones. The

detected clones and clusters are documented in a text file. A

metric based clone collection is built from the text file. A

clone set with high value of number of code clones is a good

candidate for applying refactoring after which improves the

maintainability of the software system. As per experimental

results, the enhanced tool is fast and is able to detect more

refactoring opportunities only at the method level.

Franqui Meng et.al [72] proposed a refactoring model of
legacy software in smart grid. The model is based on

extracting code clones in the scanned source code by means of

CCFinder tool. Clone functions which have similar syntax

structure is identified and find out the extent of variations

among them. Finally combined and other frequently invoked

functions are encapsulated or packaged into a DLL file and

reused in the development smart grid based new software

system. But their studies shown one important fact that the

amount valuable clones in legacy software are not too much

and hence their model can be used as a subsidiary method in

refactoring of large scale legacy software.

Manisankar Modal et.al [73] presented an empirical study
about clone fragments that belong to the same clone class and

co-change during evolution preserving their similarity. They

found that these fragments are important candidates for

refactoring. They defined these candidates as evolving,

according to them a similarity preserving change pattern.

Their studies revealed that merging of clones can greatly

reduce the maintenance effort. They developed a prototype

tool that detect similarity preserving change patterns clones

and then mine important of them using association rule

mining concept and also the tool is likely to be enhanced to

predict future co-change candidates.

The Identified Gaps and Recent Open Issues in the Area

of Software Refactoring Research

After the analysis of the 73 papers, those literatures in which

there is a clear mention upon open issues and future work are

summarized. The following are some of the identified gaps

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 18 (2015) pp 39696-39707

© Research India Publications. http://www.ripublication.com

39703

and recent open issues in various areas of software refactoring

research.

i. Survey of Software Refactoring

- Researchers found that if the most frequent types of

refactorings are identified, the scope of refactoring
can be narrowed down. They observed many

mismatches between the programmer choice and

automated refactoring such as awareness of tools,

naming etc.

- Studies have found that an average experienced

developer performs automated refactoring. A novice

user is less familiar with refactoring tools. Studies

have shown that manual refactoring takes longer

times than automated ones. Also Extract method

refactoring is most time consuming both manually

and automatically. Rename field refactoring is fast.

- Some of the interesting findings produced by
researchers are that the developers wanted to have a

better code understanding and validation tool that

checks correctness of refactoring.

ii. Software Refactoring Tools

- No refactoring tool is able to support all kinds of

refactoring support as per the customer requirement.

Therefore customers wanted to have a tool support

with better customer support.

- An interesting fact is that many of the refactorings

are medium and low level categories. A few tools
address higher level refactorings that change the

signatures of classes, methods or fields. That means

24 to 60% of refactorings is yet found to be detected

and this will produce much benefit to improve the

maintenance of the software.

iii. Bad Smell and Refactoring

- Even though a lot of studies are there to discuss the

term code smell, but there is no formal definition of

what is meant by code smell and how to deal with it.

- Studies note that there is no mature tools to deal with

automatic code smell detection and resolution.
- Bad smell concept can be extended to web

applications and end user environments like spread

sheets and macros, suggest future area of refactoring

research.

iv. Software Artifacts and Refactoring

- Refactoring can be applied to different software

artifacts such as requirements analysis and design

models; test suites etc. are future area of study.

v. Agile Development and Refactoring
- Refactoring advocates for agile development

environment, so can this refactoring process is

applicable to classical software development process

is an open area of research.

- Refactoring improves productivity and

maintainability in agile environment, but this needs

strong evidence using a quantitative approach.

vi. Design Pattern, Anti-pattern and Refactoring

- Though there exists some studies which may exhibit

the relationship between patterns, anti-patterns and

refactoring, but the applicability in an industry

environment needs further study.

- New researches in this field found out the presence
of new anti-patterns like linguistic patterns which

affects maintainability of the software needs further

study.

vii. Test Driven Development and Refactoring

- Recent studies have shown that unit tests conducted

during refactoring does not leads to quicker or

quality code refactoring.

- A new area of research emerged in the field of

refactoring as testability transformation with the

concept of test carrying code.

viii. Software Refactoring and API Evolution

- Although refactoring improves software quality there

is lack of tools to perform complex refactorings such

as changes to design patterns, renaming fields and

automatic consistent semantic preserving updating of

renamed program entities at API level.

- Also a quantitative assessment of the benefit of API

level refactorings is another open area of research.

ix. Software Metrics and Refactoring

Many works are there to deal with software metrics and
refactoring, but the results are found to be inconsistent. Some

of the researchers found that there is high impact for particular

refactoring technique on code quality but this is to be

thoroughly proved by a survey in real industry platform by

considering all types of refactoring techniques rather than

selecting them randomly.

x. Code Clones and Refactoring

Though code clones are important candidates for refactoring

which affects maintainability of the software systems. There

are open issues like identifying valid clone regions, removal

of clones from the system, detect and remove clones from the
package level, decomposing original clones into sub clones,

and identification of co-change of clones prior to refactoring

during evolution of software systems.

Validation of the Results

In this section, keep in mind the research questions try to

discuss how the study findings address them. The collected

literatures covered a wide variety of topics. For the past 5

years there is an increase in number of literatures in the area

of software refactoring research especially in the group bad
smell, design pattern, code clone detection and system

evolution. But there are a few papers in survey of refactoring,

programming languages and antipatterns. The identified gaps

and recent open issues with respect to each group has

collected during analysis itself by looking at the open issues

and future work reported in the literature. This made the

reporting of the result much easier.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 18 (2015) pp 39696-39707

© Research India Publications. http://www.ripublication.com

39704

Limitations of this Review

The literatures are collected manually and the relevant topics

are included. The search terms used in this literature are few

to formulate the query. Some terms like feature oriented

refactoring, program transformation and refactoring,

refactoring and metaprogramming, refactoring and
reengineering will add much more results to this study.

Conclusion and Future Work

In software engineering code refactoring plays an important

role in improving the quality of the product. The aim of this

study is to reveal the recent trends and important contributions

using a systematic literature review. The study utilized the

literatures of high impact electronic databases. The title,

abstract, methods of study, implementation aspects,

conclusion and limitations are reviewed to reach at a

summarization on where to focus and not to focus. The study
can be extended by integrating interviews, questionnaires and

practices in the software industry to improve further

credibility of the findings.

REFERENCES

[1] M. Lehman, “Laws of Program Evolution-Rules and

Tools for programming Management”, proceedings

Infotech State of the art conference, Why Software

Project Fails, vol. 11, pp. 1-25, 1978.
[2] M. Lehman and J. Ramil, “Rules and Tools for

Software Evolution Planning and Management”,

Annals of Software Engineering”, vol. 1, no.1, pp.

15-44, 2001.

[3] R. S. Arnold, “Tutorial on Software Restructuring,

“An Introduction to Software Restructuring”, IEEE

Press, 1986.

[4] M. Fowler, “Refactoring: Improving the Design of

Existing Programs”, Addison-Wesley, 1999.

[5] Beck, K., Andres, C.: Extreme Programming

Explained: Embrace Change (2nd Edition). Addison-

Wesley Professional 2004.
[6] W. F. Opydke, “Refactoring: A Program

Restructuring Aid in Designing Object Oriented

Application Frameworks”, Ph. D. Thesis, University

of Illinois at Urban-Champaign, 1992.

[7] T. Mens, “A Survey of Software Refactoring”, IEEE,

vol. 30, No.2, February 2004.

[8] Mefsin Abebe and Cheol-Jung Yoo, “Trends,

Opportunities and Challenges of Software

Refactoring: A systematic Literature Review”,

International Journal of Software Engineering and its

Applications, vol.8, No.6, pp. 299-318, 2014.
[9] http://sourcemaking.com/refactoring/defining-

refactoring.

[10] Tom Tourwe and Tom Mens, “Identifying

Refactoring Opportunities using logic Meta

Programming”, Proceedings of the Seventh European

Conference on Software Maintenance and

Reengineering (CSMR ‟03), IEEE Computer Society

Press, pp. 91-100, 2003.

[11] Zhenchang Xing, Eleni Stroulia, “Refactoring

Practice: How it is and How it should be Supported-

An Eclipse Case Study. ICSM 2006, pp: 458-468,

2006.

[12] Ishwar Thapa, Harvey Siy, “Assessing the Impact of

Refactoring assertions on the JHotDraw Project”,
SAC ‟10 Proceedings of the 2010 ACM Symposium

on Applied Computing, pp: 2369-2370, ACM, 2010.

[13] Stas Negara, Nicholas Chen, Mohsen Vakilian,

Ralph E. Johnson, and Danny Dig, “A Comparative

Study of Manual and Automated Refactorings”, In

ECOOP ‟13: Proceedings of the 27th European

Conference on Object Oriented Programming, pp.

552-576, ACM, 2013.

[14] M. Kim, Thomas Zimmermann, Nachiappan

Nagappan “A Field Study of Refactoring Challenges

and Benefits”, IEEE Transactions on Software

Engineering, Vol. 40, No. 7, pp. 633-649, July 2014.
[15] Emerson Murphy-Hill, Chris Parnin, Andrew P.

Black, “How We Refactor, and How We Know It”,

IEEE Transactions on Software Engineering, Vol.38,

No.1, pp. 5-18, January/February 2012.

[16] Gustavo H Pinto and Fenando Kamei, “What

Programmers say about Refactoring Tools? : an

Empirical Investigation of Stack Overflow”, In

WRT‟13: ACM workshop on Workshop on

Refactoring Tools”, pp 33-36, ACM, 2013.

[17] Emerson Murp, “Improving Usability of Refactoring

Tools”, In OOPSLA „06‟: companion to the 21st
ACM SIGPLAN conference on Object Oriented

Programming Systems, Languages, and Applications,

pp 746-747, ACM, 2006.

[18] Michael Mortenson, Sudipto Ghosh, James M.

Bieman, “Testing during Refactoring: Adding

Aspects to Legacy Systems, 17th International

symposium on Software Reliability Engineering

(ISSRE ‟06), 2006.

[19] Yasemin Kosker, Burak Turhan and Ayse Bener,

“An Expert System for Determining Candidate

Software Classes for Refactoring”, In Expert System

with Applications: An International Journal, Vol. 36,
Issue 6, August 2009, pp 10000-10003. 2009.

[20] E. Mealy and P. Strooper, “Evaluating Software

Refactoring Tool Support”, Proc. Australian

Software Engineering Conference, pp. 331-340,

2006.

[21] L. Zao, J. H. Hayes, “Rank based Refactoring

Decision Support: two studies”, Innovation System

Software Engineering, Springer, pp. 171-189, August

2011.

[22] Wafa Basit, Fakhar Lodhi, and M. U Bhatti, “Formal

Specification of Extended Refactoring Guidellines”,
In Proceedings of QUORS 2012 pp. 260-265, 2012.

[23] M. Vakilian, N. Chen, S. Negara, B. A Rajkumar, B.

P Bailey, and R. E. Johnson, “Use, Disuse, and

Misuse of Automated Refactorings. In ICSE: 2012

34th International Conference on Software

Engineering, pp 233-243, 2012.

[24] Max Schafer, Andreas Thies, F. Steimann and Frank

Tip, “A Comprehensive Approach to Naming and

http://sourcemaking.com/refactoring/defining

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 18 (2015) pp 39696-39707

© Research India Publications. http://www.ripublication.com

39705

Accessability in Refactoring Java Programs”, IEEE

Transactions on Software Engineering, Vol. 38, No.

6, pp. 1233-1257, November/December 2012.

[25] Regulwar, Ganesh B.; Tugnayat, Raju M, “ Bad

Smelling Concept in Refactoring”, In International

Proceedings of Economics Development &
Research, Vol. 45, pp. 56, 2012.

[26] J. PereZ and Y. Crespo, “Perspectives on Automated

correction of code smells”, in IWPSE-EVOL 2009,

Amsterdam, pp 1-34, August 2009.

[27] J. Schumacher, N. Zazworka, F. Shull, C. Seaman

and M. Shaw, “Building Empirical Support for

Automated Code Smell Detection”, In ESM‟10:

Proceedings of the 2010 ACM-IEEE International

Symposium on Empirical Software Engineering and

Measurement, Article No. 8, 2010.

[28] Serguei Routsov, Alexander Serebrenik and M. Van

Den Brand, “ Detecting Modularity smells in
Dependencies Injected with Java Annotations”, In

2010 14th European Conference on Software

Maintenance and Reengineering, IEEE Computer

Society Press, pp. 244-242, 2010.

[29] Mu Huaxin and Jian Sherai, “Design Patterns in

Software Development”, In ISESS: 2011 IEEE 2nd

International Conference on Software Engineering

and Service Science, pp 322-325, 2011.

[30] Hui Liu, Zhiyi Ma, Weizhong Shao, and Zhendong

Niu, “ Schedule of Bad Smell Detection and

Resolution: A New way to Save Effort”, IEEE
Transactions on Software Engineering, Vol. 38,

No.1, pp. 220-238, January/February 2012.

[31] Hamid, M Illyas, M Hummayun and Asad Nawaz,

“A Comparative Study on Code Smell Detection

Tools”, International Journal of Advanced Science

and Technology, Vol. 60, pp. 25-32, 2013.

[32] Dag I. K. Sjøberg, Aiko Yamashita, Bente C.D.

Anda, Audris Mockus, and Tore Dyba, “Quantifying

the Effect of Code Smells on Maintenance Effort”,

IEEE Transactions on Software Engineering, Vol.

39, No.8, pp. 1144-1156, August 2013.

[33] K. T. Stolee and Sebastian Elbaum, “Identification,
Impact, and Refactoring of Smells in Pipe-Like Web

Mashups”, IEEE Transactions on Software

Engineering, Vol. 39, No.12, pp. 1654-1679,

December 2013.

[34] Hui Liu, Xue Guo and Weizhong Shao, “ Monitor-

based Instant Software Refactoring”, IEEE

Transactions on Software Engineering, Vol. 39, No.

8, pp. 1112-1126, August 2013.

[35] Jiang Dexun, Ma Peijun, Su Xiaohong and Wang

Tiantian, “Functional Over-related Classes Bad smell

Detection and Refactoring Suggestions”,
International Journal of Software Engineering and

Applications, Vol. 5, No.2, pp. 29-48, March 2014.

[36] Gabriele Bavota, Rocco Oliveto, Malcom Gethers,

Denys Poshyvanyk, and Andrea De Lucia,

“Methodbook: Recommending Move Method

Refactorings via Relational Topic Models”, IEEE

Transactions on Software Engineering, Vol. 40, No.

7, pp. 671-694, July 2014.

[37] W. Kesantine, M. Kessantini, H. Sahroui, S. Bechikh

and Ali Ouni, “ A Cooperative Parallel Search-based

Software Engineering Approach for Code Smells

Detection”, IEEE Transactions on Software

Engineering, Vol. 40, No. 9, pp. 841-861, September

2014.
[38] Santiago A. Vidal, C. Marcos, J. Andres and Diaz

Pace, “An Approach to Prioritize Code Smells for

Refactoring”, Springer Science and Business Media,

November 2014.

[39] S. Demeyer, S. Ducasse and O. Nievstrasz, “Object

Oriented Reengineering Patterns”, Published by

Square Bracket Associates, Switzerland, Reprinted

first edition, 2009.

[40] Mika V. and C. Lassenium, “Drivers for Software

Refactoring Decisions”, In ISESE ‟06: International

Symposium on Empirical Software Engineering”,

ACM, pp 297-306, 2006.
[41] Richard Mateos, “Software Development Patterns”,

IEEE Micro, Vol. 28, No. 5, pp. 72,71, IEEE 2008.

[42] L. Dobraznski and L. Kuzniarz, “An approach to

Recovering of Executable UML Models”, In SAC

‟06: Proceedings of the 2006 ACM Symposium on

Applied Computing, pp 1273-1279, ACM 2006.

[43] M. Mohammed, M. Romdhani, and K. Ghedira, “M-

REFACTOR: A New Approach and Tool for Model

Refactoring”, ARPN Journal of Systems and

Software, Vo. 1, No.4, July 2011.

[44] Mohammed Misbhauddin and M. Alshayeb, “UML
Model Refactoring: a Systematic Literature Review”,

Empirical Software Engineering, Vol. 26, Issue1, pp.

206-251, 2013.

[45] Thomas D., “Agile Programming Design to

Accommodate Change”, IEEE journals and

Magazines, Vol. 22, Issue 3, pp. 14-16, 2005.

[46] Cledson R. B, M. P Rosa, C. S. Goto, Jean M. R.

Costa, and P. J. F Treccani, “ On the Effects of

Refactoring in the Coordination of Software

Development Activities”, In ECSCW ‟09:

Proceedings of the 11th European Conferenceon

Computer Supported Cooperative Work, Springer
Series in Computer Science, pp. 215-222, 2009.

[47] Tony Clear, “Disciplined Design Practices: A Role

for Refactoring in Software Engineering?”, In

Newsletter ACM SIGCSE Bulleting Vol. 37, Issue 4,

pp 15-16, 2005.

[48] Jing Wang, Y-T Song and L. Chung “ From Software

Architecture to Design Patterns”, In SNPD/SAWN

‟05: Proceedings of the sixth International

Conference on Software Engineering, Artificial

Intelliegence, Networking and Parallel/Distrbuted

Computing and First ACIS International Workshop
on Self Assembling Wireless Network.

[49] M Monteiro and A. Aguiar, “Pattern for Refactoring

to Aspects: An Incipient Pattern Language”, In PLoP

2007, pages 1-19, 2007.

[50] Yixin Luo, A. Hoss and D. L Carver, “An

Ontological Identification of Relationships between

Anti-Patterns and Code Smells”, IEEEAC Paper,

IEEE Computer Society Press, pp. 1-10, 2010.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 18 (2015) pp 39696-39707

© Research India Publications. http://www.ripublication.com

39706

[51] Venera Arnaoudova, M. D Penta, G Antoniol, and Y.

Gueheneuc, “A New Family of Software Ani-

Patterns: Linguistic Anti-Patterns”, In 2013 17th

European Conference on Software Maintenance and

Reengineering, IEEE Computer Society Press, pp.

187-196, 2013.
[52] S. Counsell and R. M Hierons, “Refactoring Test

Suites Versus Test Behaviour: A TTCN-3

Perspective”, In Proceedings of SOQUA ‟07 Fourth

international Workshop on SQA: in conjunction with

the ESEC/FSE joint meeting, pp 31-38, ACM DL,

2007.

[53] Elish, Karim O., and Mohammad Alshayeb. (2009),

"Investigating the Effect of Refactoring on Software

Testing Effort" In Software Engineering Conference,

APSEC'09, Asia-Pacific, pp. 29-34, IEEE Computer

Society Press, 2009.

[54] Nien-Liu, H Such, Peng Hua and William chu, “A
Test Case Refactoring Approach for Pattern-based

Software Development”, Journal of Systems and

Software, Vol. 81, Issue 8, pp 1430-1439, 2008.

[55] Roderick Borg and M. Kropp, “Automated

Acceptance Test Refactoring”, in WRT ‟11:

Proceedings of the 4th Workshop on Refactoring

Tools, pp 15-21, ACM, 2011.

[56] Amogh Katti and Sujatha Terdal, “ Program Slicing

for Refactoring: slicer using dynamic Analyzer”,

International Journal of Computer Applications, Vol.

9, No.6, pp. 36-43, November 2010.
[57] Mark Harman, “Refactoring as Testability

Transformation”, Keynote Presentation in the Ist

Refactoring and TESTing Workshop, Berlin, March

2011.

[58] Vonken Frens and Zaldman A.,“Refactoring with

Unit Testing A Match made in Heaven”, In WCRE

‟12: 19th Working Conference on Reverse

Engineering, pp 29-38, IEEE, 2012.

[59] Dig, D., Johnson, R.: The Role of Refactorings in

API Evolution. In: ICSM (2005), IEEE computer

Society Press, pp. 389-398, 2005.

[60] Dig, D., Comertoglu, C., Marinov, D., Johnson, R.E.:
Automated detection of refactorings in evolving

components. In Proceedings of 20th European

Conference on Object Oriented Programming

(ECOOP), pp. 404-428, 2006.

[61] Illie Savga and Michael Rudolf, “Refactoring-Based

Adaptation of Adaptation Specifications”, Software

Engineering Research, Management and

Applications, SCI 150, Springer Series, pp. 189-203,

2008.

[62] M. Kim, D. Cai and S. Kim, “An Empirical

Investigation into the Role of API-Level
Refactorings during Software Evolution”, ICSE‟11,

ACM, 2011.

[63] M. Kim, D. Notkin, D. Grossman and Gary Wilson, “

Identifying and Summarizing Systematic Code

Changes via Rule Inference”, IEEE Transactions on

Software Engineering, Vol. 39, No. 1, pp. 45-62,

January 2013.

[64] Panita Meananetra, “Identifying Refactoring

Sequences for Improving Software Maintainability”,

ACM Press, pp. 406-409, September 2012.

[65] Tushar S., “Quantifying Quality of Software Design

to Measure the Impact of Refactoring”, In

COMSACW ‟12: Proceedings of the 2012 IEEE 36th
annual Computer Software and Application

Conference Workshops, pages 266-271, ACM, 2012.

[66] S. H. Kannangara and W. M. J. I. Wijayanayake,

“Impact of Refactoring on External Code Quality

Improvement: an Empirical Evaluatiion”, In

Internatiional Conference on advances in ICT for

Emerging Regions (ICTer), IEEE Computer Society

Press, pp. 60-67, 2013.

[67] Sultan Alshehri and Luigi Benedicenti, “Ranking the

Refactoring Techniques Based on the Internal

Quality Attributes”, International Journal of Software

Engineering and Applications, Vol. 5, No. 1, pp. 9-
30, January 2014.

[68] Ranier Koschke, “Frontiers of Software Clone

Management”, Frontiers of Software Maintenance

2008, pp. 119-128, 2008.

[69] H.A Nguyen, T. T Nguyen, N. H Pham, J. A Kofahi

and T.N.Nguyen, “Clone Management for Evolving

Software”, IEEE Transactions on Software

Engineering, Vol. 38, No. 5, pp. 1008-1026,

September/October 2012.

[70] Nikolaos Tsantalis and Giri Panamoottil Krishnan,

“Refactoring Clones: A New Prespecitve”, IWSC
2013, IEEE Computer Society Press, 2013.

[71] E. Kodhai and S. Kanmani, “Method-level Code

Clone Modification using Refactoring Techniques

for Clone Maintenance”, Advanced Computing: An

International Journal (ACIJ), Vol. 4, No.2, pp. 7-26,

March 2013.

[72] Fanqi Meng, Zhaoyang Qu and Xiaoli Guo,

“Refactoring Model of Legacy Software in Smart

Grid based on Cloned Codes Detection”,

International Journal Computer Science Issues, vol.

10, Issue1, No.3, pp. 296-303, January 2013.

[73] Manisankar Modal, Chanchal K. Roy and Kevin A.
Schneider, “Automatic Ranking of Clones for

Refactoring through Mining Association Rules”,

CSMR-WCRE 2014, IEEE Computer Society, Press,

pp. 114-123, 2014.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 18 (2015) pp 39696-39707

© Research India Publications. http://www.ripublication.com

39707

Sreeji K. S was born in Thrissur, Kerala, India in 1970. She

received her M. Tech degree in Computer Science and

Engineering from SRM University, Chennai, India and

pursuing PhD degree in the department of Computer Science

and Engineering at SRM University under the guidance of Dr.

C. Lakshmi, Professor and Head of the Department of
Software Engineering, SRM University, Chennai, India. She

is working as Assistant Professor in Malabar College of

Engineering and Technology affiliated to Calicut University

and A. P. J Abdul Kalam Kerala Technological University,

Kerala, India.

Dr. C. Lakshmi received the Masters of Engineering in

Computer Science and Engineering from Madras University,

INDIA and received her Ph. D in Computer Science and

Engineering from SRM University, Chennai, INDIA. She is

the professor and Head of the Department of Software

Engineering in SRM University. Her research interests

include Digital image processing, Pattern Recognition, Web

Services, E-learning, and Software Engineering. She is

certified as adjunct Faculty for Architecture for software
systems and Analysis of software Artifacts courses for the

year 2014-2015 by Institute of software Research, Carnegie

Mellon University, Pittsburgh, USA.

