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Abstract 

The emergence of quantum computers equipped with quantum 

algorithms threatens the existence of RSA and ECCencryption 

schemes, which are based on the hardness of factorization or 

discrete logarithm problems. In this paper, we present a 

polynomial multiplication algorithm for finite fields and VLSI 

architecture that features an O(nlogn) decrease in time 

complexity in the number of clock cycles, with trivially 

increased area. The proposed construction features 

enhancement in operation speed, modular structure with 

reconfigurability, and free choice of the finite field. Our 

contribution can be applied to next-generation quantum-

reluctant cryptographic applications such as encryption 

systems based on ideal lattices defined on the ring 

Zp(x)/(xn+1). 
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1. Introduction 
With the arrival of quantum computers optimized for quantum 

algorithmsthat will become common in the near future, 3rd 

generation encryption methods such as RSA and elliptic curve 

cryptography (ECC), which guarantee their security based on 

hard factorization of prime numbers or discrete logarithm 

problems, are likely [1][2] to be replaced with post-quantum 

cryptographic algorithms such as NTRU, Learning With 

Errors (LWE), and Ring-LWE [3]-[5]. 

Since 2009, when Craig Gentry at Stanford University showed 

the proof of the hard problem ofa fully homomorphic 

encryption scheme [6][7], lattice cryptology has been the 

focusof various academic disciplines including computer 

science, mathematics, and VLSI implementation. 

The hardness of lattice cryptologystarts with the shortest 

vector problem (SVP) and the closest vector problem 

(CVP)based on the subset-sum problem, and its application 

extends to the learning with errors (LWE) [8] problem. 

Recently, in order to address with efficiency the gigantic key 

size of O(n2), Lyebashevsky and Peikert proposed and proved 

the worst-case to average-case reduction of the Ring-LWE 

[9][10] in which the key size reduces to O(n) complexity. 

The Ring-LWE cryptography uses polynomial multiplication 

with number theoretic transform (NTT) as itsbasicbuilding 
block. In the present work, wemodify the Cooley-Tukey FFT 

algorithm to efficientlyexecute the polynomial multiplication 

to speed up lattice cryptographic applications. This paper is an 

extended version of our work presented in [11]. 

 

 

2. Polynomial multiplication using number theoretic 

transform 

Homomorphic encryption schemesare typicallycomprised of 3 

procedures, encrypt, decrypt, and recrypt. The most frequently 

used operation is polynomial multiplication. If the bit-widths 

of the operands are sufficiently large, it is known that 

multiplication using the fast Fourier transform (FFT) is 

efficient. 

Integer FFT essentially does not require complex floating 

point arithmetic computations. Given a primitive n-th root of 

unity w on finite field Zp (w
n = 1 mod p), integer FFT (NTT: 

number theoretic transform) from a vector space {a0, …, an-1} 

to {A0, …, An-1} and the inverse transform are defined as 

below: 

 

 

The necessary and sufficient condition for the NTT to exist is 

that for all prime factors q of p, wn/q– 1  0 mod p for 

arbitrary prime factor q. Choosing n as an exponential value 
of 2, NTT can be computed in O(nlogn) time complexity 

when . 

Fig. 1 is an example of applying NTT in the multiplication of 

large operands, which is known to be mostly efficient when 

the operands are larger than . To help understand, we used 
decimals as the base 2W, calculating 1234*5678. Modulo 

number 337 is taken and w=85 is chosen as the 8th root of 

unity. As we can see, first zero-padding should be performed 

on each operand and NTT should be computed as per base. 

Then we can perform convolution (product-wise 

multiplication) of the two operands. As the outcome is 

obtained, we do NTT-1 and add the partial sums to yield the 

final product. 
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Figure 1. An example of polynomial multiplication using 
number theoretic transform 

 

 

3. Finite field multiplier with modified Cooley-Tukey 

algorithm 

We present arithmetic expressions in an extended field of Z2. 

The extension order is represented by m, so that the field can 

be represented by Z2
m. This field is isomorphic to Z2[x]/(P(x)), 

where is an irreducible polynomial of 

degree m with pi  GF(2) and P() = 0. The calculation of the 
product of two arbitrary finite elements in GF(2m), Z() = 

A()·B(), where , and

expands as follows: 
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Here we split the lower row of the expression (1) into an even 

part and an odd part,similarly to this process used in 

theCooley-Tukey FFT algorithm. 
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Now we perform reduction utilizing the following 

characteristic: 
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Here, pm-1 of the bottom row of expression (3) can be treated 

asa zero-coefficientfor the purpose ofsuccinctness without 

losing generality because primitive polynomials such as 

trinomials or pentanomials, which have pi=1 in the highest 

and the lowest order of the polynomial, are given in practical 

applications. We can describe this as below: 
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Next, reduction based on  2should be performed. The top 

row of expression (2) indicates that there should be an extra 

circuit thatperforms a multiplicationof to the A() (which 

circuit will henceforth be referred to as -multiplier) so that 

we can iteratively compute the result of the even part of Z() 

in 
2/m

 clock cycles. In the 3rd row of equation (2), 

iteratively computing in the similar way in 2/)1(m  clock 
cycles, it multiplies to the outcome itself, which adds one 

extra clock cycle, yielding the outcome of the odd part of 

Z(). Thus, if we choose an odd-ordered m, we can get the 

final outcome of Z() by simply exclusive-OR-ing Zeven() 

and Zodd() without wasting even one cycle. Fig. 2 shows the 

essential block diagram of the-multiplier when 

implemented with n=193, and Fig. 3 shows the construction of 

the Zeven() of expression (2). In the same way, we can 

construct the Zodd() of expression (2) by onlyexclusive-OR-

ing two 2-to-1 muxes per bit plus  extra muxes for 

selecting  or 2-multiplier, where  is the hamming 
weight of the primitive polynomial, which is either zero or 

one. 

 

 
 

Figure 2. -multiplier with n=193 

 

 
 

Figure 3. Zodd circuit block diagram on GF(2193) 

 

 

Thus, the number of clock cycles for one GF multiplication 

was reducedby a factor of two. We can 

successivelyconstructpolynomialmultiplication circuits that 

are multiple times as fast as the one using theserial 

method,employing up to an t-multiplier without spending as 

many area resources. These resource savingsare possible by 

sharing the register blocks of A(). 

그림 6-2 GF(2 193) 위의 x2 곱셈 회로
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4. Beyond 2X performance 

As we mentioned above in Section 2, the polynomial product 

can be represented as expression (5) where two arbitrary 

elements of Z2
m are . Then the 

product  can be obtained as below: 

 

 
(5) 

The order of the result expression reduces down to, at most, 

(m-1)th order using Mastrovito’s x multiplier circuit. We 

propose another method for speed-up beyond 2X speed. First, 

we divide expression(5) by 3 blocks, which consequently 

requires an x3-multiplier circuit as in Fig. 4. 

 

 
 

Figure 4. x3-multiplier circuit 

 

 

We next present the expansion structure for a 3X GF 

polynomial multiplier as in Fig. 5. 

 

 
 

Figure 5. Polynomial multiplication implementation with 

3X speed-up 

 

 

Similarly, we divide expression (5) by t blocks and assign 

hardware resources respectively, aiming for t-times speed up, 

as broken down in expression (6): 

 

 

 
 

. 

. 

 

(6) 

Using this method, we require extra muxes and an xt-

multiplier circuit. We also present a 3X GF polynomial 

multiplier implementation block diagram in Fig. 5, and the 

expanded structure in Fig. 6.This construction features almost 

the same length of critical path delay as the Mastrovito’s 

serial multiplier. 

 

 
 

Figure 6. Polynomial multiplier with tX speed-up 

 

 

5. Implementation with 3X speed-up 

In order to implement the 3X serial polynomial multiplier, we 

modify expression (5) as below. 

 

 

 
(7) 

As we analyze the rows in expression (7), we can see that the 

order in the multiplication increases by a factor of 3, and we 

should handle the x term and x2 term in the 2nd and the 3rd 

rows, respectively. In order to obtain the most essential part of 

x3A(x), we can express this as in equation (8): 
 

(8) 

We modify the 3 right-most terms as in expression (9). 

 

 

 

(9) 
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Here, we utilize the characteristics of the primitive polynomial 

given. NIST recommends mostly trinomials or pentanomials. 

These polynomials feature zero-value pn-1 and pn-2, 

respectively. Therefore, using this feature, expression (7) can 

be simplified as (10): 

 

 

(10) 

We put (9) and (10) to (8) and obtain the expression (11): 

 

 

 

 

 

 

 
(11) 

Expression (11) accounts for Fig. 3 in detail. 

 

 

6. Performance evaluation 

We implemented a 3X GF polynomial multiplication circuit 

using the x3 multiplier represented in Fig. 3.The multiplier cell 

in Fig. 3 is shown in detail in Fig. 7. 

 

 
 

Figure 7. GF(22) multiplication cell structure 

 

 

In order to validate the operation and reliability of the 

implemented 3X polynomial multiplier, we also implemented 

both the polynomial multiplication version and the serial 

multiplication version of test bench programs in C 

programming language and injected arbitrary 193-bit-width 

random numbers to verify the results. 

We used Verilog-HDL to save the time for hardware 

construction and error correction in register transfer level and 

performed automatic synthesis and layout. We used a 

Samsung 0.35um technology standard cell library (std90) and 

the Synopsys Design Compiler in the Synosys Design 

Analyzer tool package. CubicDelay from CubicWare was 
selected as a tool standard delay format (SDF) file extraction. 

Table 1 shows the final synthesis result of the 3X speed, 193-

bit polynomial multiplication circuit. The critical delay, 

operating frequency, and number of gates indicate that this 

implantation is well-suited for applications such as lattice 

cryptography. 

 

Table 1. Synthesis result of 3X 193-bit polynomial 

multiplier 

 

 Proposed 193-bit 3X Polynomial 

Multiplier 

Critical path delay 0.7 ns 

Operating 

frequency 

1.42 GHz 

Unit gates 6,563 

Technology Samsung Semiconductor 0.35um st90 

 

 

7. Conclusions 

The emergence of quantum computers equipped with quantum 

algorithms is about to threaten the existence of RSA and ECC 

technologies, which are based on the hardness of factorization 

or discrete logarithm problems. In this paper, we present a 

polynomial multiplication algorithm for finite fields and VLSI 

architecture that features an O(nlogn) decrease in time 

complexity in the number of clock cycles, with trivially 

increased area. The proposed construction features 

enhancement in operation speed, modular structure with 

reconfigurability, and free choice of the finite field. Our 

contribution can be applied to next-generation quantum-

reluctant cryptographic applications such as encryption 

systems based on ideal lattices defined on the ring 

Zp(x)/(xn+1). 
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