
International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 18 (2015) pp 39570-39574

© Research India Publications. http://www.ripublication.com

39570

A Polynomial Multiplication Method Using the Modified Cooley-Tukey FFT

Method for Next-Generation Cryptography

Sangook Moon

Mokwon University, Daejeon, Korea smoon@mokwon.ac.kr

Abstract

The emergence of quantum computers equipped with quantum

algorithms threatens the existence of RSA and ECCencryption

schemes, which are based on the hardness of factorization or

discrete logarithm problems. In this paper, we present a

polynomial multiplication algorithm for finite fields and VLSI

architecture that features an O(nlogn) decrease in time

complexity in the number of clock cycles, with trivially

increased area. The proposed construction features

enhancement in operation speed, modular structure with

reconfigurability, and free choice of the finite field. Our

contribution can be applied to next-generation quantum-

reluctant cryptographic applications such as encryption

systems based on ideal lattices defined on the ring

Zp(x)/(xn+1).

Keywords: polynomial multiplication, FFT, ideal lattice, ring

1. Introduction
With the arrival of quantum computers optimized for quantum

algorithmsthat will become common in the near future, 3rd

generation encryption methods such as RSA and elliptic curve

cryptography (ECC), which guarantee their security based on

hard factorization of prime numbers or discrete logarithm

problems, are likely [1][2] to be replaced with post-quantum

cryptographic algorithms such as NTRU, Learning With

Errors (LWE), and Ring-LWE [3]-[5].

Since 2009, when Craig Gentry at Stanford University showed

the proof of the hard problem ofa fully homomorphic

encryption scheme [6][7], lattice cryptology has been the

focusof various academic disciplines including computer

science, mathematics, and VLSI implementation.

The hardness of lattice cryptologystarts with the shortest

vector problem (SVP) and the closest vector problem

(CVP)based on the subset-sum problem, and its application

extends to the learning with errors (LWE) [8] problem.

Recently, in order to address with efficiency the gigantic key

size of O(n2), Lyebashevsky and Peikert proposed and proved

the worst-case to average-case reduction of the Ring-LWE

[9][10] in which the key size reduces to O(n) complexity.

The Ring-LWE cryptography uses polynomial multiplication

with number theoretic transform (NTT) as itsbasicbuilding
block. In the present work, wemodify the Cooley-Tukey FFT

algorithm to efficientlyexecute the polynomial multiplication

to speed up lattice cryptographic applications. This paper is an

extended version of our work presented in [11].

2. Polynomial multiplication using number theoretic

transform

Homomorphic encryption schemesare typicallycomprised of 3

procedures, encrypt, decrypt, and recrypt. The most frequently

used operation is polynomial multiplication. If the bit-widths

of the operands are sufficiently large, it is known that

multiplication using the fast Fourier transform (FFT) is

efficient.

Integer FFT essentially does not require complex floating

point arithmetic computations. Given a primitive n-th root of

unity w on finite field Zp (w
n = 1 mod p), integer FFT (NTT:

number theoretic transform) from a vector space {a0, …, an-1}

to {A0, …, An-1} and the inverse transform are defined as

below:

The necessary and sufficient condition for the NTT to exist is

that for all prime factors q of p, wn/q– 1 0 mod p for

arbitrary prime factor q. Choosing n as an exponential value
of 2, NTT can be computed in O(nlogn) time complexity

when .

Fig. 1 is an example of applying NTT in the multiplication of

large operands, which is known to be mostly efficient when

the operands are larger than . To help understand, we used
decimals as the base 2W, calculating 1234*5678. Modulo

number 337 is taken and w=85 is chosen as the 8th root of

unity. As we can see, first zero-padding should be performed

on each operand and NTT should be computed as per base.

Then we can perform convolution (product-wise

multiplication) of the two operands. As the outcome is

obtained, we do NTT-1 and add the partial sums to yield the

final product.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 18 (2015) pp 39570-39574

© Research India Publications. http://www.ripublication.com

39571

Figure 1. An example of polynomial multiplication using
number theoretic transform

3. Finite field multiplier with modified Cooley-Tukey

algorithm

We present arithmetic expressions in an extended field of Z2.

The extension order is represented by m, so that the field can

be represented by Z2
m. This field is isomorphic to Z2[x]/(P(x)),

where is an irreducible polynomial of

degree m with pi GF(2) and P() = 0. The calculation of the
product of two arbitrary finite elements in GF(2m), Z() =

A()·B(), where , and

expands as follows:

)(mod))(()(
1

0

1

0

xPAbbA ii

m

i

i

m

i

i

)(mod)()(...)()(1

1

2

210 xPAbAbAbAb m

m

m

m
(1)

Here we split the lower row of the expression (1) into an even

part and an odd part,similarly to this process used in

theCooley-Tukey FFT algorithm.

)(mod)()(...)()()(1

1

3

3

2

20 xPAbAbAbAbZ m

m

m

meven

)(mod)()(...)()()(2

2

4

4

3

31 xPAbAbAbAbZ m

m

m

modd

)(mod))()(...)()((3

2

5

4

2

31 xPAbAbAbAb m

m

m

m
(2)

Now we perform reduction utilizing the following

characteristic:
1

110 ... m

m

m ppp

mmm

mm pppp 12

2

10
11 ...

(3)

Here, pm-1 of the bottom row of expression (3) can be treated

asa zero-coefficientfor the purpose ofsuccinctness without

losing generality because primitive polynomials such as

trinomials or pentanomials, which have pi=1 in the highest

and the lowest order of the polynomial, are given in practical

applications. We can describe this as below:

1

12

4

2

3

1

2

0

2 ...)(mm

mm aaaaaA
2

00122011202)()(apapapapapa mmmmm …
1

32112)(m

mmmmm apapa

(4)

Next, reduction based on  2should be performed. The top

row of expression (2) indicates that there should be an extra

circuit thatperforms a multiplicationof to the A() (which

circuit will henceforth be referred to as -multiplier) so that

we can iteratively compute the result of the even part of Z()

in
2/m

 clock cycles. In the 3rd row of equation (2),

iteratively computing in the similar way in 2/)1(m clock
cycles, it multiplies to the outcome itself, which adds one

extra clock cycle, yielding the outcome of the odd part of

Z(). Thus, if we choose an odd-ordered m, we can get the

final outcome of Z() by simply exclusive-OR-ing Zeven()

and Zodd() without wasting even one cycle. Fig. 2 shows the

essential block diagram of the-multiplier when

implemented with n=193, and Fig. 3 shows the construction of

the Zeven() of expression (2). In the same way, we can

construct the Zodd() of expression (2) by onlyexclusive-OR-

ing two 2-to-1 muxes per bit plus extra muxes for

selecting or 2-multiplier, where is the hamming
weight of the primitive polynomial, which is either zero or

one.

Figure 2. -multiplier with n=193

Figure 3. Zodd circuit block diagram on GF(2193)

Thus, the number of clock cycles for one GF multiplication

was reducedby a factor of two. We can

successivelyconstructpolynomialmultiplication circuits that

are multiple times as fast as the one using theserial

method,employing up to an t-multiplier without spending as

many area resources. These resource savingsare possible by

sharing the register blocks of A().

그림 6-2 GF(2 193) 위의 x2 곱셈 회로

a16
a192

• • •

• • •a0 a15

• • •

a191a1

• • •

• • •

• • •

그림 6-3 GF(2 193) 위의 Z even (x)의 블록도

z16 z192

• • •

• • •z0 z15

• • •

• • •

• • •

• • •

• • •

• • •

b192• • •

a15 a192
a0 a1 a191a16

z1
z191

• • •

• • •

b190b0

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 18 (2015) pp 39570-39574

© Research India Publications. http://www.ripublication.com

39572

4. Beyond 2X performance

As we mentioned above in Section 2, the polynomial product

can be represented as expression (5) where two arbitrary

elements of Z2
m are . Then the

product can be obtained as below:

(5)

The order of the result expression reduces down to, at most,

(m-1)th order using Mastrovito’s x multiplier circuit. We

propose another method for speed-up beyond 2X speed. First,

we divide expression(5) by 3 blocks, which consequently

requires an x3-multiplier circuit as in Fig. 4.

Figure 4. x3-multiplier circuit

We next present the expansion structure for a 3X GF

polynomial multiplier as in Fig. 5.

Figure 5. Polynomial multiplication implementation with

3X speed-up

Similarly, we divide expression (5) by t blocks and assign

hardware resources respectively, aiming for t-times speed up,

as broken down in expression (6):

.

.

(6)

Using this method, we require extra muxes and an xt-

multiplier circuit. We also present a 3X GF polynomial

multiplier implementation block diagram in Fig. 5, and the

expanded structure in Fig. 6.This construction features almost

the same length of critical path delay as the Mastrovito’s

serial multiplier.

Figure 6. Polynomial multiplier with tX speed-up

5. Implementation with 3X speed-up

In order to implement the 3X serial polynomial multiplier, we

modify expression (5) as below.

(7)

As we analyze the rows in expression (7), we can see that the

order in the multiplication increases by a factor of 3, and we

should handle the x term and x2 term in the 2nd and the 3rd

rows, respectively. In order to obtain the most essential part of

x3A(x), we can express this as in equation (8):

(8)

We modify the 3 right-most terms as in expression (9).

(9)

am- 3p0 am- 3p1

am- 2p0

am- 3p2

am- 1p0am- 2p1

am- 4 am- 3pm- 1

am- 1pm- 3am- 2pm- 2

am- 4 am- 3pm- 1

am- 1pm- 3am- 2pm- 2

1 x x2

xm- 2 xm- 1

...

a0 am- 3p3

am- 1p1am- 2p2
x3

목원대학교 전자정보보호공학부- 12-

3x GF multiplier implementation

목원대학교 전자정보보호공학부- 13-

제안된 유한체 곱셈기의 확장 구조

A-coef f icient Register Block(shared)
btk

out

Ztk+(t-1) Module Block

Ztk Module Block

Ztk+1 Module Block

btk +1

btk +t- 1

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 18 (2015) pp 39570-39574

© Research India Publications. http://www.ripublication.com

39573

Here, we utilize the characteristics of the primitive polynomial

given. NIST recommends mostly trinomials or pentanomials.

These polynomials feature zero-value pn-1 and pn-2,

respectively. Therefore, using this feature, expression (7) can

be simplified as (10):

(10)

We put (9) and (10) to (8) and obtain the expression (11):

(11)

Expression (11) accounts for Fig. 3 in detail.

6. Performance evaluation

We implemented a 3X GF polynomial multiplication circuit

using the x3 multiplier represented in Fig. 3.The multiplier cell

in Fig. 3 is shown in detail in Fig. 7.

Figure 7. GF(22) multiplication cell structure

In order to validate the operation and reliability of the

implemented 3X polynomial multiplier, we also implemented

both the polynomial multiplication version and the serial

multiplication version of test bench programs in C

programming language and injected arbitrary 193-bit-width

random numbers to verify the results.

We used Verilog-HDL to save the time for hardware

construction and error correction in register transfer level and

performed automatic synthesis and layout. We used a

Samsung 0.35um technology standard cell library (std90) and

the Synopsys Design Compiler in the Synosys Design

Analyzer tool package. CubicDelay from CubicWare was
selected as a tool standard delay format (SDF) file extraction.

Table 1 shows the final synthesis result of the 3X speed, 193-

bit polynomial multiplication circuit. The critical delay,

operating frequency, and number of gates indicate that this

implantation is well-suited for applications such as lattice

cryptography.

Table 1. Synthesis result of 3X 193-bit polynomial

multiplier

 Proposed 193-bit 3X Polynomial

Multiplier

Critical path delay 0.7 ns

Operating

frequency

1.42 GHz

Unit gates 6,563

Technology Samsung Semiconductor 0.35um st90

7. Conclusions

The emergence of quantum computers equipped with quantum

algorithms is about to threaten the existence of RSA and ECC

technologies, which are based on the hardness of factorization

or discrete logarithm problems. In this paper, we present a

polynomial multiplication algorithm for finite fields and VLSI

architecture that features an O(nlogn) decrease in time

complexity in the number of clock cycles, with trivially

increased area. The proposed construction features

enhancement in operation speed, modular structure with

reconfigurability, and free choice of the finite field. Our

contribution can be applied to next-generation quantum-

reluctant cryptographic applications such as encryption

systems based on ideal lattices defined on the ring

Zp(x)/(xn+1).

ACKNOWLEDGMENTS

This research was supported by the Basic Science Research

Program through the National Research Foundation of Korea
(NRF) funded by the Ministry of Education

(2014R1A1A2A16053925).

References

[1] C. Lu, D. E. Browne, T.Yang, and J. Pan,

Demonstration of a Compiled Version of Shor's

Quantum Factoring Algorithm Using Photonic

Qubits.Physical Review Letters, (2007),Vol. 99, No.

25.

[2] E.Lucero, R.Barends, Y. Chen, J.Kelly,

M.Mariantoni, A.Megrant, P.O’Malley, D.Sank,

A.Vainsencher, J.Wenner, T.White, Y.Yin, A. N.

Cleland and J. M.Martinis, Computing prime factors

with a Josephson phase qubit quantum

processor.Nature Physics, (2012),Vol. 8, pp. 719-

723.

[3] J. Hoffstein, J. Pipher and J. H. Silverman, Lecture

Notes in Computer Science.1423 (2006).

그림 3-9 GF(22) 상의 곱셈기 구조

b1

b0

a0 a1

c0 c1

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 18 (2015) pp 39570-39574

© Research India Publications. http://www.ripublication.com

39574

[4] O. Regev, Proceedings of the Thirty-Seventh Annual

ACM Symposium on Theory of Computing, (2005)

May 22, CO, United States.

[5] Z. Brakerski, V. Vaikuntanathan, Lecture Notes in

Computer Sciences. 6841(2011).

[6] C.Gentry, A fully homomorphic encryption scheme.

Ph.D. thesis, Stanford University,

(2009)September;CA, United States.

[7] C.Gentry, Fully homomorphic encryption using ideal

lattices. Symposium on the Theory of Computing,

(2009), pp. 169-178.

[8] V.Lyubashevsky, C.Peikert and O.Regev, On ideal
lattices and learning with errors over rings. Eurocrypt

2010, Lecture Notes in Computer Science, (2010),

Vol. 6110, pp. 1-23.

[9] V.Lyubashevsky, C.Peikert, and O.Regev, A Toolkit

for Ring-LWE Cryptography. Eurocrypt 2013,

Lecture Notes in Computer Science,(2013), Vol.

7881, pp. 35-54.

[10] Z. Chen, W. Jian, C. Liqun and X. Song, Review of

How to Construct a Fully Homomorphic Encryption

Scheme. International Journal of Security & Its

Applications, (2014), Vol. 8, Issue 2, p. 221.

[11] S. Moon, Proceedings of 2015 Workshop on

Security, Reliability and Safety. Modified Cooley-

Tukey FFT Method for Polynomial Multiplication in

Lattice Cryptography, (2015) April 14-17, Jeju,

Korea.

Authors

Sangook Moon

He received his Bachelor’s degree, the Master’s degree, and

the Ph.D. degree in electronic engineering from Yonsei

University, Seoul, Korea in 1995, 1997, and 2002,
respectively. From 2002 to 2004, he was with Hynix

Semiconductor, Seoul, Korea, where he developed Bluetooth

baseband SoCs. Since 2004 he has been with the Department

of Electronic Engineering at Mokwon University, Daejeon,

Korea, where he currently serves as an Associate Professor.

His research interests include computer architecture,

embedded systems, SoCs, data encryption, and computer

arithmetic.

