
International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 18 (2015) pp 39315-39319
© Research India Publications. http://www.ripublication.com

39315

Performance Evaluation of Merge and Quick Sort using GPU Computing
with CUDA

Neetu Faujdar
Ph.D Scholar Department of Computer Science and Engineering, Jaypee University of Information Technology,

Solan District neetu.faujdar@mail.juit.ac.in

Satya Prakash Ghrera
Professor Department of Computer Science and Engineering, Jaypee University of Information Technology,

Solan District sp.ghrera@juit.ac.in

Abstract
The Sorting can be of two ways first is sequential sorting and
second is parallel sorting. Now a day’s it is not a good idea to
do the sorting of data sequentially as in the present life we
require the huge data and many applications with large
computational requirements and data-intensive applications
are rapidly evolving in many scientific domains. In this way,
we have to do parallel computation in the sorting field also.
Sorting algorithms can be parallelized in many ways, but the
most efficient way is to parallelize the sorting algorithms is
GPU computing. So in this paper we are using the GPU
computing to parallelize the merge and quick sort. So the
paper presents the algorithms for fast sorting of large lists by
using modern GPUs. The goal of this paper is to test the
performance of merge and quick sort using GPU computing
with CUDA on a dataset and to evaluate the parallel time
complexity and total space complexity taken by merge and
quick sort on a dataset. Merge and quick sort is evaluated on
four cases of the dataset. The four cases of the dataset are
random data, reverse sorted data, sorted data, and nearly
sorted data, and we compare the performance with sequential
with merge and quick sort.

Keywords: GPU (Graphics Processing Unit), CUDA
(Compute Unified Device Architecture), Merge Sort, Quick
Sort.

Introduction
The parallel execution of sorting algorithms on the graphics
processing unit (GPU) is allowed by general purpose
computing, on graphics processing unit (GPGPU) [1]. Sorting
algorithms having highly parallel code are handled by GPU as
a co-processor. The processing power of the GPU is easily
available for GPGPU, The framework of NVIDIA’s compute
unified device architecture (CUDA) release that provides free
programmability of GPUs [3]. CPUs with number of stream
processors are used for floating point calculations. Parallelism
is limited in a stream processor like ALUs [5]. Stream
processor acts as an ideal in parallelism of floating point
operations. For example, NVIDIA GTX 260 contains 250 on-
board stream processors. The GPU has a much greater
computation throughput compared with a CPU. NVIDIA
implemented their GPGPU architecture through extensions to
the C programming language to allow for simple integration
with existing applications. Unlike for code running on the host

supplied by full ISO C++ through NVIDIA’s CUDA [2]
compiler, functions executed on the device only supports
CUDA C. Many general purpose applications require high-
performance sorting algorithms; therefore many sorting
algorithms have been explicitly developed for GPUs [4]. So
we are going to develop the parallel version of merge and
quick sort using GPU in the framework of NVIDIA’s CUDA
C.
The goal of this paper is to test the performance of merge and
quick sort using GPU computing with CUDA on a dataset and
to evaluate the parallel time complexity and total space
complexity taken by merge and quick sort on a dataset. Both
parallel and sequential versions of merge and quick sort are
evaluated on four cases of the dataset [6] which are random
data, reverse sorted data, sorted data and nearly sorted data.
The remaining paper consists of following sections. The detail
of merge and quick sort is given in section 2 and the parallel
time complexity of the merge and quick sort is calculated in
section 3. The comparison of sequential and parallel execution
time of merge and quick sort on a dataset is given in section 4.
The space complexity based testing and comparison of merge
and quick sort on a dataset is done in section 5 and we present
the conclusion and related work with a few comments in
section 6.

Sorting Algorithms
Parallel Merge Sort using GPU computing with CUDA
Merge sort is a divide and conquer technique [8]. In merge
sort first divide the elements till we get single elements and
then merge the elements and finally get a sorted list of items
[7]. Merge sort preserves the order of duplicate keys or we
can say that it is a stable sorting and it is not an adaptive
sorting.
Parallel merge sort consists of three phases. In the first phase,
we split the input data into ‘p’ equally sized blocks. In the
second phase, all ‘p’ blocks are sorted using ‘p’ thread blocks.
In the final phase, sorted blocks are merged into the final
sequence. Let’s understand the concept of parallel merge sort
with the help of an example. In a first phase assign each
thread to a number in the unsorted array example of parallel
merge sort is shown in figure 1, we have used the two blocks
and 4 threads per block.
Now we will see the CUDA function of merge sort:
The function sortBlocks() is used to sort the blocks. To do this
each block is first compared with the adjacent element and the

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 18 (2015) pp 39315-39319
© Research India Publications. http://www.ripublication.com

39316

elements are sorted after doing this. So the group is made of
the four elements and the third process continues till we have
got the sorted elements in the block.
The function mergeBlocks() is used to merge the blocks. We
merge the blocks to make a larger size block, but arranged in
such way that the elements in the resultant array are sorted. As
the size of block doubles so this function is called until we are
left with the single block.

Fig.1. Example of parallel merge sort

Parallel Quick Sort using GPU computing with CUDA
Quick sort is a divide and conquer technique [10]. Quick sort
is not stable sorting and not an adaptive sorting algorithm. The
quick sort can be applied for highly parallel multi-core
graphics processors [11]. Previously quick sort was not an
efficient sorting solution for graphics processors, but we show
that using CUDA with C on the NVIDIA’s programming
platform GPU-Quick sort [12] performs better than the fastest
known sorting implementations for graphics processors.
Parallel partition of quick sort is as follows; we use the
deterministic pivot selection in our approach and used the
different pivot selection scheme in two phases. During the
first phase, value of pivot is calculated based on the average
of minimum and maximum value of the sequence. In the next
phase, the choice of pivot element is based on the median of
the first, middle and last element [12].

Phase I
• Threads to be assigned to the several blocks.
• All the thread blocks will be working on the different

parts of the same sequence of the elements to be
sorted.

• After that we have to synchronize all the thread
blocks.

• Different subsequences are formed by merging
results of the different blocks.

• Still, we need to have a thread block barrier function
between the partition iterations because blocks might

be executed sequentially and we have no idea to
know that in which order threads will be run.

• So, there is only one way to synchronize thread
blocks are to wait until all blocks have finished
executing. So user can assign new sequence to them.

Phase II
• In this phase, thread block is assigned its own

subsequence of input data so, need of
synchronization between thread and block will be
eliminated.

• This means the second phase can run entirely on the
GPU.

• Finally, we will get sorted list of items.

Parallel Time Complexity of Merge and Quick Sort
Merge Sort
Let p be the number of processes and p<n. Initially, each
process is assigned a block of n/p elements which it sort
internally in Θ ((n/p) log (n/p)) time. During each phase Θ (n)
comparisons are performed and time Θ (n) is spent in
communication [9]. So the formal representation of parallel
run time is shown in equation (1).

())(log nn
p
n

p
nT p θθθ ++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= (1)

Quick Sort
The parallel time depends on the split and merges time, and
the quality of the pivot. For optimized results the primary
focus is on the choice of pivot element. The algorithm
executes in four steps: (i) choose the pivot and broadcast (ii)
Rearrange the array and locally assigned to each process (iii)
Rearrange the array globally and determine the locations in
that array for the local elements will go to and (iv) perform
the global rearrangement. Quick sort takes time Θ (log p) to
choose the pivot, it will take Θ (n/p) in the second step, the
third step takes time Θ (log p), and the fourth step takes time
Θ (n/p). So the formal representation of parallel run time of
quick sort is Θ (n/p) + Θ (log p). The algorithm will work
until the lists are sorted locally for p lists. Therefore, the
overall parallel runtime time of the parallel quick sort is
shown in equation (2).

()pp
p
n

p
n

p
nTp

2logloglog θθθ +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= (2)

Experimental Evaluation
Hardware
We ran the algorithms on Window 7 32-bit operating system
Intel® core™ i3 processor 530@ 2.93 GHz machine. System
having the GeForce GTX 460 graphic processor with (7

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 18 (2015) pp 39315-39319
© Research India Publications. http://www.ripublication.com

39317

multiprocessors X (48) CUDA cores\MP) = 336 CUDA cores.
There are maximum 1536 threads per multiprocessor and
1024 threads per block. System having the CUDA driver
version is 5.0 and CUDA runtime version is 4.2. The total
amount of global memory present in the system is 768 Mbytes
and the total amount of constant memory is 65536 bytes. The
total amount of shared memory per block is 49152 bytes.
System having the total number of registers available per
block is 32768 and warp size is 32. Maximum sizes of each
dimension of a block are 1024 x 1024 x 64 and maximum size
of each dimension of a grid is 65535 x 65535 x 65535.

Algorithms Used
We compared the GPU quick and merge sort with CPU quick
and merge sort. We have tested the merge and quick sort on a
dataset [T10I4D100K (.gz)] [13]. The dataset contains the
1010228 items. The testing consists based on the dataset four
cases as follows:
i. Random with repeated data (Random data)
ii. Reverse sorted with repeated Data (Reverse sorted

data)
iii. Sorted with repeated data (Sorted data)
iv. Nearly sorted with repeated data (Nearly sorted data)

TABLE.1. Sequential and parallel execution time in
seconds of merge sort using the four cases of the dataset.

Sorting

Algorithms Random Nearly
Sorted Sorted Reverse

Sorted
Sequential
Merge Sort 0.172 0.125 0.124 0.125

Parallel
Merge Sort 0.0300016 0.02000154 0.01000151 0.02000167

TABLE.2. Sequential and parallel execution time in
seconds of quick sort using the four cases of the dataset.

Sorting

Algorithms Random Nearly
Sorted Sorted Reverse

Sorted

Sequential
Quick Sort 1.043904 1.219802 1.26322 72.089548

Parallel
Quick Sort 0.080012 0.085014 0.085013 0.085014

By analysing both the table 1 and 2 we can see that parallel
merge and quick sort performs better results in comparison to
the sequential merge and quick sort. We can see this effect
with the help of graphs. In the figure 2 and 3, the X-axis
represents the type of dataset and the Y-axis represents the
execution time in seconds. The sequential quick sort having
the performance gap for reverse sorted data versus other
datasets. It is because of the depth of recursion, but it is not in
the parallel case because in the parallel case we are taking the
median value as a pivot. The performance gap of sequential
quick sort can be overcome by using the median as a pivot.

Fig.2. Graph shows the execution time comparison
between sequential and parallel merge sort using four
cases of the dataset

Fig.3. Graph shows the execution time comparison
between sequential and parallel quick sort using four cases
of the dataset

Space Complexity based Testing of Merge and Quick Sort
using Dataset
Space complexity is not only limited to auxiliary space. It is
the total space taken by the program which includes the
following [6].
1. Primary memory required to store input data (Mip).
2. Secondary memory required to store input data (Mis)
3. Primary memory required to store output data (Mop).
4. Secondary memory required to store output data

(Mos)
5. Memory required to hold the code (Mc)
6. Memory required to working space (temporary

memory) variables + stack (Mw)

We have calculated the space complexity for the every case of
a dataset of merge and quick sort algorithm. In the figure 4
and 5 X-axis represents the type of dataset and the Y-axis
represents the memory in bytes.

Merge Sort
Space complexity of sequential merge sort is 18023234 bytes.
It will be a replica of the dataset having four cases. Space
complexity of parallel merge sort is 18159366 bytes. It is also
a replica of the dataset having four cases. It is shown in table
3.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 18 (2015) pp 39315-39319
© Research India Publications. http://www.ripublication.com

39318

TABLE.3. Sequential and parallel memory in bytes of
merge sort using the random dataset.

Sorting

Algorithms Mip Mis Mop Mos Mc Mw Total(bytes)

Sequential
Merge Sort 4040924 4932283 4 4932283 76800 4040940 18023234

Parallel
Merge Sort 4040924 4932283 4040924 4932283 110,592 102360 18159366

Fig. 4. Graph shows memory comparison between
sequential and parallel merge sort using the four cases of
the dataset.

Quick Sort
Space complexity of quick sort is shown in table 4 using all
the four cases of the dataset

Table 4. Sequential and parallel memory in bytes of quick
sort using all the four cases of the dataset.

Data Set Sorting

Algorithms Mip Mis Mop Mos Mc Mw Total(bytes)

Random
Data

Sequential
Quick Sort 4040924 4932283 4 4932283 76288 97756 14079538

Parallel
Quick Sort 4040924 4932283 4040924 4932283 675,840 1422912 20045166

Nearly
Sorted
Data

Sequential
Quick Sort 4040924 4932283 4 4932283 76288 97468 14079250

Parallel
Quick Sort 4040924 4932283 4040924 4932283 675,840 1590880 20213134

Sorted
Data

Sequential
Quick Sort 4040924 4932283 4 4932283 76288 97756 14079538

Parallel
Quick Sort 4040924 4932283 4040924 4932283 675,840 1590880 20213134

Reverse
Sorted
Data

Sequential
Quick Sort 4040924 4932283 4 4932283 76288 99366 14081148

Parallel
Quick Sort 4040924 4932283 4040924 4932283 675,840 1590880 20213134

Fig. 5. Graph shows memory comparison between
sequential and parallel quick sort using the four cases of
the dataset.

By analysing the figure 4, 5 and table 3, 4 we found that the
memory occupied by the sequential merge and quick sort is
less in comparison to the parallel merge and quick sort. It is
because we need more space to make parallel copies in
parallel algorithms, but in sequential algorithms we do the
sorting directly on the array.

Conclusion
In this paper, we present CUDA merge and quick sort and
compare with the sequential merge and quick sort using
dataset. We have used the four cases of the dataset which are
random data, reverse sorted data, sorted data and reverse
sorted data. All the four cases of dataset contain the 1010228
items. Sequential merge and quick sort is implemented in C-
language. The designing of the program is done at Borland
C++ 5.02 compiler and executed on Window 7 32 bit
operating system Intel® core™ i5-3230 2.93 GHz machine,
and the programs running at 2.2 GHz clock speed. GPU
merge and quick sort implemented in CUDA using C at
GeForce GTX 460 graphic processor. Experimental results of
execution time have shown that GPU merge and quick sort
outperforms the sequential merge and quick sort in all the four
cases of the dataset. Space complexity analysis shows that
sequential merge and quick sort outperforms the parallel
merge and quick sort.

References

[1] Ghorpade, Jayshree, et al. “Gpgpu processing in cuda

architecture”, arXiv preprint arXiv, Vol.3, No.1,
January 2012.

[2] Sanders, Jason, and Edward Kandrot. “CUDA by
example: an introduction to general-purpose GPU
programming”, Addison-Wesley Professional 2010.

[3] Fatica, Massimiliano, et al. “High performance
computing with CUDA”, SC08 2008.

[4] Matloff, Norm. “Programming on parallel machines”,
University of California, Davis 2011.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 18 (2015) pp 39315-39319
© Research India Publications. http://www.ripublication.com

39319

[5] Pirjan, Alexandru. “Improving software performance in
the Compute Unified Device Architecture”, Informatica
Economica, Vol.14, No.4, 2010.

[6] Neetu Faujdar, Satya Prakash Ghrera. “Analysis and
Testing of Sorting Algorithms on a Standard Dataset”,
Paper Presented at the IEEE Fifth International
Conference on Communication System and Network
Technologies, 962-967, 2015.

[7] Żurek, Dominik, et al. “The comparison of parallel
sorting algorithms implemented on different hardware
platforms”, Computer Science, Vol.14, No.4, 2013.

[8] Mišić, Marko J., and Milo V.Tomašević. “Data sorting
using graphics processing units”, Telfor Journal, Vol.4,
No.4, 2012.

[9] Manwade, K. B. “Analysis of Parallel Merge Sort
Algorithm”, International Journal of Computer
Applications, Vol. 12, No.19, pp. 70-73, 2010.

[10] Rajput, Ishwari S., Bhawnesh Kumar, and Tinku Singh.
“Performance comparison of sequential quick sort and
parallel quick sort algorithms”, International Journal of
Computer Applications, Vol. 57, No.9, pp. 14-22,
2012.

[11] Sintorn, Erik, and Ulf Assarsson. “Fast parallel GPU-
sorting using a hybrid algorithm”, Journal of Parallel
and Distributed Computing, vol. 68, no. 10, pp. 1381-
1388, 2008.

[12] Cederman, Daniel, and Philippas Tsigas. “Gpu-
quicksort: A practical quicksort algorithm for graphics
processors”, Journal of Experimental Algorithmics
(JEA), Vol. 14, No. 4, pp.1-22, 2009.

[13] Zubair Khan, Neetu Faujdar, et al. “Modified
BitApriori Algorithm: An Intelligent Approach for
Mining Frequent Item-Set”, Proc. Of Int. Conf.on
Advance in Signal Processing and Communication, pp.
813-819, 2013.

