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Abstract 
The Sorting can be of two ways first is sequential sorting and 
second is parallel sorting. Now a day’s it is not a good idea to 
do the sorting of data sequentially as in the present life we 
require the huge data and many applications with large 
computational requirements and data-intensive applications 
are rapidly evolving in many scientific domains. In this way, 
we have to do parallel computation in the sorting field also. 
Sorting algorithms can be parallelized in many ways, but the 
most efficient way is to parallelize the sorting algorithms is 
GPU computing. So in this paper we are using the GPU 
computing to parallelize the merge and quick sort. So the 
paper presents the algorithms for fast sorting of large lists by 
using modern GPUs. The goal of this paper is to test the 
performance of merge and quick sort using GPU computing 
with CUDA on a dataset and to evaluate the parallel time 
complexity and total space complexity taken by merge and 
quick sort on a dataset. Merge and quick sort is evaluated on 
four cases of the dataset. The four cases of the dataset are 
random data, reverse sorted data, sorted data, and nearly 
sorted data, and we compare the performance with sequential 
with merge and quick sort. 
 
Keywords: GPU (Graphics Processing Unit), CUDA 
(Compute Unified Device Architecture), Merge Sort, Quick 
Sort. 
 
 
Introduction 
The parallel execution of sorting algorithms on the graphics 
processing unit (GPU) is allowed by general purpose 
computing, on graphics processing unit (GPGPU) [1]. Sorting 
algorithms having highly parallel code are handled by GPU as 
a co-processor. The processing power of the GPU is easily 
available for GPGPU, The framework of NVIDIA’s compute 
unified device architecture (CUDA) release that provides free 
programmability of GPUs [3]. CPUs with number of stream 
processors are used for floating point calculations. Parallelism 
is limited in a stream processor like ALUs [5]. Stream 
processor acts as an ideal in parallelism of floating point 
operations. For example, NVIDIA GTX 260 contains 250 on-
board stream processors. The GPU has a much greater 
computation throughput compared with a CPU. NVIDIA 
implemented their GPGPU architecture through extensions to 
the C programming language to allow for simple integration 
with existing applications. Unlike for code running on the host 

supplied by full ISO C++ through NVIDIA’s CUDA [2] 
compiler, functions executed on the device only supports 
CUDA C. Many general purpose applications require high-
performance sorting algorithms; therefore many sorting 
algorithms have been explicitly developed for GPUs [4]. So 
we are going to develop the parallel version of merge and 
quick sort using GPU in the framework of NVIDIA’s CUDA 
C. 
The goal of this paper is to test the performance of merge and 
quick sort using GPU computing with CUDA on a dataset and 
to evaluate the parallel time complexity and total space 
complexity taken by merge and quick sort on a dataset. Both 
parallel and sequential versions of merge and quick sort are 
evaluated on four cases of the dataset [6] which are random 
data, reverse sorted data, sorted data and nearly sorted data. 
The remaining paper consists of following sections. The detail 
of merge and quick sort is given in section 2 and the parallel 
time complexity of the merge and quick sort is calculated in 
section 3. The comparison of sequential and parallel execution 
time of merge and quick sort on a dataset is given in section 4. 
The space complexity based testing and comparison of merge 
and quick sort on a dataset is done in section 5 and we present 
the conclusion and related work with a few comments in 
section 6. 
 
 
Sorting Algorithms 
Parallel Merge Sort using GPU computing with CUDA 
Merge sort is a divide and conquer technique [8]. In merge 
sort first divide the elements till we get single elements and 
then merge the elements and finally get a sorted list of items 
[7]. Merge sort preserves the order of duplicate keys or we 
can say that it is a stable sorting and it is not an adaptive 
sorting. 
Parallel merge sort consists of three phases. In the first phase, 
we split the input data into ‘p’ equally sized blocks. In the 
second phase, all ‘p’ blocks are sorted using ‘p’ thread blocks. 
In the final phase, sorted blocks are merged into the final 
sequence. Let’s understand the concept of parallel merge sort 
with the help of an example. In a first phase assign each 
thread to a number in the unsorted array example of parallel 
merge sort is shown in figure 1, we have used the two blocks 
and 4 threads per block. 
Now we will see the CUDA function of merge sort: 
The function sortBlocks() is used to sort the blocks. To do this 
each block is first compared with the adjacent element and the 
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elements are sorted after doing this. So the group is made of 
the four elements and the third process continues till we have 
got the sorted elements in the block. 
The function mergeBlocks() is used to merge the blocks. We 
merge the blocks to make a larger size block, but arranged in 
such way that the elements in the resultant array are sorted. As 
the size of block doubles so this function is called until we are 
left with the single block. 

 

 
 

Fig.1. Example of parallel merge sort 
 
 
Parallel Quick Sort using GPU computing with CUDA 
Quick sort is a divide and conquer technique [10]. Quick sort 
is not stable sorting and not an adaptive sorting algorithm. The 
quick sort can be applied for highly parallel multi-core 
graphics processors [11]. Previously quick sort was not an 
efficient sorting solution for graphics processors, but we show 
that using CUDA with C on the NVIDIA’s programming 
platform GPU-Quick sort [12] performs better than the fastest 
known sorting implementations for graphics processors. 
Parallel partition of quick sort is as follows; we use the 
deterministic pivot selection in our approach and used the 
different pivot selection scheme in two phases. During the 
first phase, value of pivot is calculated based on the average 
of minimum and maximum value of the sequence. In the next 
phase, the choice of pivot element is based on the median of 
the first, middle and last element [12]. 
 
Phase I 
• Threads to be assigned to the several blocks. 
• All the thread blocks will be working on the different 

parts of the same sequence of the elements to be 
sorted. 

• After that we have to synchronize all the thread 
blocks. 

• Different subsequences are formed by merging 
results of the different blocks. 

• Still, we need to have a thread block barrier function 
between the partition iterations because blocks might 

be executed sequentially and we have no idea to 
know that in which order threads will be run. 

• So, there is only one way to synchronize thread 
blocks are to wait until all blocks have finished 
executing. So user can assign new sequence to them. 

 
Phase II 
• In this phase, thread block is assigned its own 

subsequence of input data so, need of 
synchronization between thread and block will be 
eliminated. 

• This means the second phase can run entirely on the 
GPU. 

• Finally, we will get sorted list of items. 
 
 
Parallel Time Complexity of Merge and Quick Sort 
Merge Sort 
Let p be the number of processes and p<n. Initially, each 
process is assigned a block of n/p elements which it sort 
internally in Θ ((n/p) log (n/p)) time. During each phase Θ (n) 
comparisons are performed and time Θ (n) is spent in 
communication [9]. So the formal representation of parallel 
run time is shown in equation (1). 
 

( ) )(log nn
p
n

p
nT p θθθ ++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= (1) 

 
 
Quick Sort 
The parallel time depends on the split and merges time, and 
the quality of the pivot. For optimized results the primary 
focus is on the choice of pivot element. The algorithm 
executes in four steps: (i) choose the pivot and broadcast (ii) 
Rearrange the array and locally assigned to each process (iii) 
Rearrange the array globally and determine the locations in 
that array for the local elements will go to and (iv) perform 
the global rearrangement. Quick sort takes time Θ (log p) to 
choose the pivot, it will take Θ (n/p) in the second step, the 
third step takes time Θ (log p), and the fourth step takes time 
Θ (n/p). So the formal representation of parallel run time of 
quick sort is Θ (n/p) + Θ (log p). The algorithm will work 
until the lists are sorted locally for p lists. Therefore, the 
overall parallel runtime time of the parallel quick sort is 
shown in equation (2). 
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Experimental Evaluation 
Hardware 
We ran the algorithms on Window 7 32-bit operating system 
Intel® core™ i3 processor 530@ 2.93 GHz machine. System 
having the GeForce GTX 460 graphic processor with (7 
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multiprocessors X (48) CUDA cores\MP) = 336 CUDA cores. 
There are maximum 1536 threads per multiprocessor and 
1024 threads per block. System having the CUDA driver 
version is 5.0 and CUDA runtime version is 4.2. The total 
amount of global memory present in the system is 768 Mbytes 
and the total amount of constant memory is 65536 bytes. The 
total amount of shared memory per block is 49152 bytes. 
System having the total number of registers available per 
block is 32768 and warp size is 32. Maximum sizes of each 
dimension of a block are 1024 x 1024 x 64 and maximum size 
of each dimension of a grid is 65535 x 65535 x 65535. 
 
Algorithms Used 
We compared the GPU quick and merge sort with CPU quick 
and merge sort. We have tested the merge and quick sort on a 
dataset [T10I4D100K (.gz)] [13]. The dataset contains the 
1010228 items. The testing consists based on the dataset four 
cases as follows: 
i. Random with repeated data (Random data) 
ii. Reverse sorted with repeated Data (Reverse sorted 

data) 
iii. Sorted with repeated data (Sorted data) 
iv. Nearly sorted with repeated data (Nearly sorted data) 
 
TABLE.1. Sequential and parallel execution time in 
seconds of merge sort using the four cases of the dataset. 

 
Sorting 

Algorithms Random Nearly 
Sorted Sorted Reverse 

Sorted 
Sequential 
Merge Sort 0.172 0.125 0.124 0.125 

Parallel 
Merge Sort 0.0300016 0.02000154 0.01000151 0.02000167

 
TABLE.2. Sequential and parallel execution time in 
seconds of quick sort using the four cases of the dataset. 

 
Sorting 

Algorithms Random Nearly 
Sorted Sorted Reverse 

Sorted 

Sequential 
Quick Sort 1.043904 1.219802 1.26322 72.089548

Parallel 
Quick Sort 0.080012 0.085014 0.085013 0.085014 

 
 
By analysing both the table 1 and 2 we can see that parallel 
merge and quick sort performs better results in comparison to 
the sequential merge and quick sort. We can see this effect 
with the help of graphs. In the figure 2 and 3, the X-axis 
represents the type of dataset and the Y-axis represents the 
execution time in seconds. The sequential quick sort having 
the performance gap for reverse sorted data versus other 
datasets. It is because of the depth of recursion, but it is not in 
the parallel case because in the parallel case we are taking the 
median value as a pivot. The performance gap of sequential 
quick sort can be overcome by using the median as a pivot. 

 

 
 

Fig.2. Graph shows the execution time comparison 
between sequential and parallel merge sort using four 
cases of the dataset 

 

 
 

Fig.3. Graph shows the execution time comparison 
between sequential and parallel quick sort using four cases 
of the dataset 
 
 
Space Complexity based Testing of Merge and Quick Sort 
using Dataset 
Space complexity is not only limited to auxiliary space. It is 
the total space taken by the program which includes the 
following [6]. 
1. Primary memory required to store input data (Mip). 
2. Secondary memory required to store input data (Mis) 
3. Primary memory required to store output data (Mop). 
4. Secondary memory required to store output data 

(Mos) 
5. Memory required to hold the code (Mc) 
6. Memory required to working space (temporary 

memory) variables + stack (Mw) 
 
We have calculated the space complexity for the every case of 
a dataset of merge and quick sort algorithm. In the figure 4 
and 5 X-axis represents the type of dataset and the Y-axis 
represents the memory in bytes. 
 
 
Merge Sort 
Space complexity of sequential merge sort is 18023234 bytes. 
It will be a replica of the dataset having four cases. Space 
complexity of parallel merge sort is 18159366 bytes. It is also 
a replica of the dataset having four cases. It is shown in table 
3. 
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TABLE.3. Sequential and parallel memory in bytes of 
merge sort using the random dataset. 

 
Sorting 

Algorithms Mip Mis Mop Mos Mc Mw Total(bytes)

Sequential 
Merge Sort 4040924 4932283 4 4932283 76800 4040940 18023234 

Parallel 
Merge Sort 4040924 4932283 4040924 4932283 110,592 102360 18159366 

 
 

 
 

Fig. 4. Graph shows memory comparison between 
sequential and parallel merge sort using the four cases of 
the dataset. 
 
 
Quick Sort 
Space complexity of quick sort is shown in table 4 using all 
the four cases of the dataset 

 
Table 4. Sequential and parallel memory in bytes of quick 
sort using all the four cases of the dataset. 
 
Data Set Sorting 

Algorithms Mip Mis Mop Mos Mc Mw Total(bytes)

Random 
Data 

Sequential 
Quick Sort 4040924 4932283 4 4932283 76288 97756 14079538 

Parallel 
Quick Sort 4040924 4932283 4040924 4932283 675,840 1422912 20045166 

Nearly 
Sorted 
Data 

Sequential 
Quick Sort 4040924 4932283 4 4932283 76288 97468 14079250 

Parallel 
Quick Sort 4040924 4932283 4040924 4932283 675,840 1590880 20213134 

Sorted 
Data 

Sequential 
Quick Sort 4040924 4932283 4 4932283 76288 97756 14079538 

Parallel 
Quick Sort 4040924 4932283 4040924 4932283 675,840 1590880 20213134 

Reverse 
Sorted 
Data 

Sequential 
Quick Sort 4040924 4932283 4 4932283 76288 99366 14081148 

Parallel 
Quick Sort 4040924 4932283 4040924 4932283 675,840 1590880 20213134 

 

 
 

Fig. 5. Graph shows memory comparison between 
sequential and parallel quick sort using the four cases of 
the dataset. 
 
 
By analysing the figure 4, 5 and table 3, 4 we found that the 
memory occupied by the sequential merge and quick sort is 
less in comparison to the parallel merge and quick sort. It is 
because we need more space to make parallel copies in 
parallel algorithms, but in sequential algorithms we do the 
sorting directly on the array. 
 
 
Conclusion 
In this paper, we present CUDA merge and quick sort and 
compare with the sequential merge and quick sort using 
dataset. We have used the four cases of the dataset which are 
random data, reverse sorted data, sorted data and reverse 
sorted data. All the four cases of dataset contain the 1010228 
items. Sequential merge and quick sort is implemented in C-
language. The designing of the program is done at Borland 
C++ 5.02 compiler and executed on Window 7 32 bit 
operating system Intel® core™ i5-3230 2.93 GHz machine, 
and the programs running at 2.2 GHz clock speed. GPU 
merge and quick sort implemented in CUDA using C at 
GeForce GTX 460 graphic processor. Experimental results of 
execution time have shown that GPU merge and quick sort 
outperforms the sequential merge and quick sort in all the four 
cases of the dataset. Space complexity analysis shows that 
sequential merge and quick sort outperforms the parallel 
merge and quick sort. 
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