
International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 18 (2015) pp 38704-38707

© Research India Publications. http://www.ripublication.com

38704

Improving Software Quality through Effective Software Testing

B.Saravanan,

Research Scholar, Department of Computer Science and Engineering, Coimbatore Institute of Engineering and Technology,

Coimbatore, Tamil Nadu, India. saravananciet@gmail.com

Dr. C.S.Ravichandran,

Dean & Professor, Department of Electrical and Electronics Engineering, Sri Ramakrishna Engineering College,

Coimbatore, Tamil Nadu, India. eniyanravi@gmail.com

Abstract

In a typical Software Development Life Cycle (SDLC),

Software testing phase is one of the important and critical

phase. This is why because; the quality of the software is

decided based on the amount of errors we find in the software

testing phase. The more amount of error we find in the testing

phase will bring good quality product. The fewer amounts of

errors we find will bring quality degradation in the end
product. Even though, many categories of testing available,

regression testing are one of the most critical activities of

software development and maintenance. Regression testing is

basically re-executing or re-testing the modified software by

using test cases. However, most of the time it is impractical

for the software tester to re-execute all the test cases available

in the test suite due to time constraints and resource

constraints. This problem can be solved by using the

prioritization of the test cases, so that the test case with the

highest priority will be executed first than the lower priority

test cases to meet some performance goals. In this paper, we

have discussed various techniques used for prioritization of

test cases so that we can save time and cost involved in the

regression testing and thereby improving the software quality

and increasing the customer satisfaction.

Keywords: Test cases, Test Cases Prioritization, Regression

Testing, Test Case Selection, Test case Minimization,

Software Quality.

Introduction

The purpose of regression testing is to ensure that bug-fixes
and new functionalities introduced in a new version of the

software do not adversely affect the correct functionality

inherited from the previous version. Regression testing is the

selective retesting of a system or component to verify that

modifications have not caused unintended effects and that the

system or component still complies with its specified

requirement as shown in figure 1.

The regression testing validates the parts of the software

where changes occur, validates the parts of the software which

may be affected by some changes, ensures proper functioning

of the software enhances the quality of software [2].

Figure 1: Regression testing operation

The various regression testing techniques are test case

minimization or test suite reduction technique, test case

selection technique and test case prioritization technique. In
this paper, we discuss various operation performed on the

above techniques in order to achieve effective software testing

and thereby increasing the software quality.

Regression Testing Selection Techniques

Regression test selection attempt to reduce the cost of

regression testing by selecting a subset of the test suite that

was used during development and using that subset to test the

modified program. With this approach only a subset of test

cases are selected and rerun. Regression test selection divides

the existing test suite into reusable test cases, re-testable test

cases and obsolete test cases [9].

Retest-All Technique: This conventional method reruns all

test cases in T that were previously run during testing phase

and not a single test case is left. So the technique is very

expensive as regression test suites are costly to execute in full

as it require much time and budget and therefore it may be

used when test effectiveness is the utmost priority with little

regard for cost.

Random / Ad-Hoc Technique: In this technique, the testers

rely on their previous experiences and knowledge to select

which test cases need to be rerun. This can include selecting a
percentage of test cases randomly.

Dataflow Techniques: This technique is coverage-based

regression test selection technique that selects test cases that

exercise data interactions that have been affected by

modifications.

Safe Technique: This technique by definition eliminates only

those test cases that are probably not able to reveal faults. A

mailto:saravananciet@gmail.com
mailto:eniyanravi@gmail.com

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 18 (2015) pp 38704-38707

© Research India Publications. http://www.ripublication.com

38705

safe technique, routinely selected almost all test cases when

more than a few changes were made to the subject programs.

This technique does not focus on criteria of coverage but

select all those test cases that produce different output with a

modified program as compared to its original version.

Hybrid Technique: Hybrid Approaches includes techniques of

both Regression Test Selection and Test Case Prioritization or

Regression Test Minimization and Test Case Prioritization.

Minimization Techniques

In this technique a minimum number of test cases are selected
from T, which helps the testers to uncover the modified

elements of P‟ . This technique can include selecting those

test cases that are related with those modified elements of the

program [3].

Minimization can be defined as: A test suite, T, a set of test

requirements {r1,r2,….rn}, that must be satisfied to provide

the desired „adequate‟ testing of the program, and subsets of

T, T1,T2,….Tn, one associated with each of the ris such that

any one of the test cases tj belonging to Ti can be used to

achieve requirement ri, find a representative set, T‟,

comprised of test cases from T, that satisfies all ri. Under this

definition, T‟ is equivalent to a hitting set for all Ti and a

minimal T‟ is equivalent to the minimal hitting set.

Test Case Prioritization

Test case prioritization techniques schedule test cases in an

execution order according to some criterion. The purpose of

this prioritization is to increase the likelihood that if the test

cases are used for regression testing in the given order, they

will more closely meet some objective than they would if they

were executed in some other order [1].

Test case prioritization can address a wide variety of
objectives, including the following:

 Testers may wish to increase the rate of fault

detection – that is, the likelihood of revealing faults

earlier in a run of regression tests.

 Testers may wish to increase the rate of detection of

high-risk faults, locating those faults earlier in the

testing process.

 Testers may wish to increase the likelihood of

revealing regression errors related to specific code

changes earlier in the regression testing process.

 Testers may wish to increase their coverage of

coverable code in the system under test at a faster

rate.

 Testers may wish to increase their confidence in the

reliability of the system under test at a faster rate.

The test case prioritization is classified into four categories

[7]:

 Statement coverage prioritization

 Additional statement coverage prioritization

 Branch coverage prioritization

 Additional branch coverage prioritization

Statement Coverage Prioritization

In this technique, we can prioritize test cases in terms of the

total number of statements they cover by counting the number

of statements covered by each test case and then sorting the

test cases in descending order of that number. (When multiple

test cases cover the same number of statements, an additional

rule is necessary to order these test cases; we order them

randomly or use First Come First Serve basis (FCFS)).

Table 1: Statement Coverage by test cases

Test Case 1 Test Case 2 Test Case 3 Test Case 4 Test Case 5

* * *

* *

* * *

* * *

 * * *

 * * *

 * * *

* * *

* * *

 *

 *

When we apply the statement coverage technique for the table

1, the order of execution of the test cases will be 3, 1, 2, 4 and

5.

Table 2: Statement Coverage by test cases (Random

Selection)

Test Case 1 Test Case 2 Test Case 3 Test Case 4 Test Case 5

* * *

* *

* * *

* * *

 * * *

 * * *

 * * *

* * *

* * *

 * *

 *

When we apply the statement coverage technique for table 2,

the order of execution of the test cases will be 3, 1, 4, 2 and 5

(for random selection) and the order of execution will be 3, 1,
2, 4 and 5 (for FCFS basis).

 Number of statements exercised

Percentage of

statement coverage
= ----------------------------- * 100

 Total number of statement available

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 18 (2015) pp 38704-38707

© Research India Publications. http://www.ripublication.com

38706

Additional Statement Coverage Prioritization

In the additional statement coverage prioritization, first we

select the test case which covers the maximum number of

statements and then select the test case which covers

additional statements which is not covered by the already

selected test cases.

Table 3: Additional Statement Coverage by test cases

Test Case 1 Test Case 2 Test Case 3 Test Case 4 Test Case 5

* *

* *

* * *

* * *

 * * *

 * * *

 * * *

* *

* *

 * *

 * *

When we apply the additional statement coverage to table 3,

the order of selection of execution of the test cases will be 3,

5, 1, 2 and 4.

Branch Coverage Prioritization

Branch coverage prioritization is the same as statement

coverage prioritization, except that it uses test coverage

measured in terms of program branches rather than

statements. In this context, we define branch coverage as

coverage of each possible overall outcome of a condition in a

predicate. Thus, for example, each if or while statement must

be exercised such that it evaluates at least once to true and at

least once to false. To accommodate functions that contain no

branches, we treat each function entry as a branch, and regard

that branch as covered by each test case that causes the

function to be invoked.

 Number of branches exercised

Percentage of

branch

coverage

= --- * 100

 Total number of branches available

Additional Branch Coverage Prioritization

Additional branch coverage prioritization is the same as

additional statement coverage prioritization, except that it uses

test coverage measured in terms of program branches rather

than statements.

Reduction in Test Suite

Sometimes, if the time allocated for the testing process is

limited, then it is enough to execute the test cases which

perform 100% statement coverage and branch coverage or

maximum coverage.

For example, when we consider the table 3, it is enough to

execute the test case 3 and 5 to have the 100% statement

coverage.

The comparison between the original size of the test suite and

the reduced size of the test suite is specified in Figure 2. The

result shows that there is a notable reduction in the size

between the two test suites.

Figure 2: Test Suite Size and statement coverage

Software Testing Vs Software Quality

The amount of time and effort spent on the software testing

process will have a great impact in software quality. The

software quality is defined as “Customer should come back

and not the product”, “Satisfying the customer requirements”

or “zero defects”. The more amount of errors found in

software testing will drastically improve software quality and

thereby increase the customer satisfaction. So, the prime

responsibility of the software testing team is to write effective

test cases, so that maximum amount of errors is captured

before delivery of the product to the customer.

Conclusion

Test case prioritization is a method to prioritize and schedule

test cases. The technique is developed in order to run test

cases of higher priority in order to minimize time, cost and

effort during software testing phase and thereby increasing the

quality of the software. This paper concentrates on the

prioritization of test cases in regression testing based on the

statement coverage and branch coverage.

International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 18 (2015) pp 38704-38707

© Research India Publications. http://www.ripublication.com

38707

Table 4: Results of a regression test cycle

Current

result

from

regression

Previous

results

Conclusion Remarks

Fail Pass Fail Need to improve the

regression process and

code reviews

Pass Fail Pass This is the expected

result of a good
regression to say defect

fixes work properly

Fail Fail Fail Need to analyze why

defect fixes are not

working. “Is it a wrong

fix?” Also should

analyze why this test is

rerun for regression

Pass Pass Pass This pattern of results

gives a comfort feeling

that there are no side-

effects due to defect

fixes

Future Enhancement

In future, this paper can be extended to prioritize the test cases

in the test suite with the help of APFD (Average Percentage

Fault Detection). Test case prioritization can also be applied

over requirement analysis using APFD and risk metrics. We
can also extended focus to the following areas: practical

prioritization weight values for commercial systems, improve

the ability to automatically find duplicate test cases with the

same values, improve the ability to automatically prioritize

multiple large test suites with real commercial data.

References

[1] Jyoti, Kamna Solanki “A Comparative Study of Five

Regression Testing Techniques: A Survey”

International Journal of Scientific & Technology

Research Volume 3, Issue 8, August 2014. pp. 76-80.

[2] Sunny Kumar, Sheena Singh “Test Case

Prioritization: Various Techniques–A Review”

International Journal of Scientific & Engineering

Research, Volume 4, Issue 4, April-2013. pp. 1106-

1109.

[3] Wu, Kun, Chunrong Fang, Zhenyu Chen, and

Zhihong Zhao. "Test case prioritization incorporating

ordered sequence of program elements."

InAutomation of Software Test (AST), 2012 7th

International Workshop on, pp. 124-130. IEEE 2012.
[4] Kumar, Dr.Varun. "Sujata and M. Kumar,“Test Case

Prioritization Using Fault Severity”." IJCST 1, no. 1

(2010): 67-71.

[5] Kavitha, R., and N. Sureshkumar. "Test Case

Prioritization for Regression Testing based on

Severity of Fault." International Journal on Computer

Science and Engineering 2, no. 5 (2010): 1462-1466.

[6] Srivastava, Praveen Ranjan. "Test case

prioritization." Journal of Theoreticaland Applied

Information Technology 4, no. 3 (2008): 178-181.

[7] Zheng Li, Mark Harman, and Robert M. Hierons,

“Search algorithm for Regression Test Case

Prioritization,” IEEE Transactions on Software

Engineering, Vol. 33, No.4, April 2007.

[8] Dennis Jeffrey and Neelam Gupta, “Improving Fault

Detection Capability by Selectively Retaining Test

Cases during Test Suite Reduction,” IEEE
Transactions on software Engineering, VOL. 33

NO.2, February 2007.

[9] Wes Masri, Andy Podgurski and David Leon, “An

Emprical Studey of Test Case Filtering Techniques

Based on Exercising Information Flows,” IEEE

Transactions on software Engineering, VOL. 33,

NO.7, February 2007.

