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Abstract 
 

In this paper we consider an application of the recently proposed quantum 
hashing technique for computing Boolean functions in the quantum 
communication model. The combination of binary functions on non-binary 
quantum hash function is done via polynomial presentation, which we have 
called a characteristic of a Boolean function. 
Based on the characteristic polynomial presentation of Boolean functions and 
quantum hashing technique we present a method for computing Boolean 
functions in the quantum one-way communication model, where one of the 
parties performs his computations and sends a message to the other party, who 
must output the result after his part of computations. Some of the results are 
also true in a more restricted Simultaneous Message Passing model with no 
shared resources, in which communicating parties can interact only via the 
referee. 
We give several examples of Boolean functions whose polynomial 
presentations have specific properties allowing for construction of quantum 
communication protocols that are provably exponentially better than classical 
ones in the simultaneous message passing setting. 
 
Keywords: Quantum hashing, communication complexity, quantum 
communications, simultaneous message passing. 

 
 
1. INTRODUCTION 
While a large-scale fully functional quantum computer remains a theoretical model, 
quantum communications are extensively implemented and may soon enter our daily 
life. That is why the study of different quantum communication models could add 
value to this technology. However, in absence of long-term quantum memory and 
quite small coherence time of quantum states we should consider restricted versions 
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of quantum communication models in the first place. In particular, such models 
include those considered here: the one-way quantum communication model and the 
more restricted simultaneous message passing (SMP) model [1] with no shared 
resources. 

From the complexity theoretic viewpoint such a strong restrictions on a 
computational model allow a variety of techniques for proving lower bounds on the 
complexity in this model. Sometimes it even allows to prove exponential separations 
for quantum and classical models, e.g. Buhrman et al. [2] proposed a fingerprinting-
based protocol for computing Equality in the SMP model that uses  
quantum bits of communication while in classical case it requires . Besides, 
restricted communication models have proved their usefulness in proving lower 
bounds for related models (see, for example, [3], [4], [5]). 

In this paper we focus on proving upper bounds for a class of Boolean 
functions, described by the properties of their polynomial presentations. Our approach 
relies on the polynomial presentation of Boolean functions, which has proven its 
usefulness in a number of papers [6], [7], [8]. However, here we use a slightly 
different type of polynomial presentation proposed in [9]. 

Another component of our approach is quantum hashing [10], which 
transforms a classical input into quantum superposition. In [10] we have shown that 
quantum hashing can have applications in quantum cryptography and in [11] we have 
demonstrated computational aspect of this technique. Here, hashing is used to reduce 
the amount of data transferred between communicating parties, just like it has been 
done by means of quantum fingerprinting in [2]. However, we have proposed that 
quantum fingerprinting is also a quantum hashing in terms of [10]. 

Altogether, the main construction provides effective one-way quantum 
communication protocols for the class of functions with specific polynomial 
presentation. This construction can be immediately used in the SMP model, however, 
when this construction is generalized for arbitrary Boolean function it is valid for one-
way model only. We show that several known Boolean functions are in this class. 
 
 
2. PRELIMINARIES 
At the core of our approach lies the polynomial presentation of Boolean functions 
proposed in [9]. We recall some of the definitions here. 
 
Polynomial presentation of Boolean functions. 
Definition 2.1.  
We call a polynomial  over the ring  a characteristic polynomial of 
a Boolean function  and denote it  when for all  it holds 

 iff . 
It was also shown that such a polynomial always exists (but is not unique). 
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Lemma 2.1 
 For any Boolean function f of n variables there exists a characteristic polynomial  
over . 
 
Proof.  
One way to construct such characteristic polynomial  is transforming a sum of 
products representation for . 

Let  be a sum of products for  and let  be a product of 
terms from  (negations  are replaced by ). Then  is a 
characteristic polynomial over  for  since it equals 0 iff all of  (and thus ) 
equal 0. This happens only when the negation of  equals 0. 

Generally, there are many polynomials for the same function. For example, the 
function , which tests the equality of two n-bit binary strings, has the following 
polynomial over : 

 

 
 

On the other hand, the same function can be represented by the polynomial 
 

 
 

We have used this presentation to test a single property of the input encoded 
by a characteristic polynomial. Using the same ideas we can test the conjunction of 
several conditions encoded by a group of characteristic polynomials which we call a 
characteristic of a function. 
 
Definition 2.1.  
We call a set  of polynomials over  a characteristic of a Boolean function  if 
for any  it holds that all polynomials  equal 0 on  iff 

. 
From Lemma 2.1 it follows that for each Boolean function there is always a 

characteristic consisting of a single characteristic polynomial. 
We say that a characteristic is linear if all of its polynomials are linear. In [9] 

we have shown that Boolean functions with linear characteristics of logarithmic size 
can be efficiently computed in the quantum OBDD model. 
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Quantum communication protocols.  
Quantum communication protocol is a generalization of randomized communication 
protocols (see for example [4]). In a quantum protocol both players (conventionally 
called Alice and Bob) have a private set of qubits each initialized to . At the 
beginning both receive a Boolean string that encodes their part of the input. In each 
communication round one player applies a unitary transformation to the qubits in his 
possession (including those received from the other communicating party) and then 
sends some of the qubits to the other player. At the end of the protocol the state of 
some qubits belonging to one player is measured and he outputs the result (the value 
of the function being computed). 

The one-way restriction implies a single round of communication, when Alice 
sends some information to Bob, who outputs the result. 

We also consider a restricted variant of quantum communication model known 
as simultaneous message passing (SMP) model [1] with no shared resources, which 
involves three communicating parties: Alice, Bob and referee. Alice and Bob do not 
interact directly. Instead, they send their messages to the referee during a single 
round, and the referee must output the result. 

In each case the complexity of the protocol is the amount of qubits sent 
between the parties. 
 
 
Quantum hashing.  
We recall a definition of quantum hashing function from [10]. 

Let  and . We define a quantum hash 
function  as follows. For an input  
we let 

 

 
 

It follows from this definition that the quantum hash  of an -bit 
string  consists of  qubits. The set  of hashing 
parameters not only determines the size of the hash but also gives the function  
an ability to withstand collisions, i.e. to distinguish different hashes with bounded 
error probability. We have called this property -resistance. 

Formally, for  we call a function  -resistant if 
for any pair  of different inputs 
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We have shown that  can be of order  without losing the quality of 
hashing [10]. 

Thus, for a quantum hash-function it is important to have an ability to reliably 
compare quantum hashes of different words and those quantum states need to be 
distinguishable with high probability, that is, they have to pass non-equality tests. 
 
 
REVERSE-test.  
Whenever we need to check if a quantum state  is a hash of a classical 
message , one can use the procedure that we have called a REVERSE-test. 

Essentially the test applies the procedure that inverts the creation of a quantum 
hash, i.e. it “uncomputes” the hash to the initial state (usually the all-zero state). 

Formally, let the procedure of quantum hashing of message w consist of 
unitary transformation , applied to initial state , i.e. . 
Then the REVERSE-test, given  and , applies  to the state  
and measures the resulting state. It outputs  iff the measurement outcome is 

. So, if , then  would always give , and REVERSE-
test would give the correct answer. Otherwise, the probability of error would be 
bounded by  by -resistance of the hash function [10]. 
 
SWAP-test.  
A more general test, that checks the equality of two arbitrary states is a well-known 
SWAP-test [2], given by the circuit in Fig. 1. 

 

 
 

Fig. (1). A quantum circuit for SWAP-test. 
 
 

Applied to quantum hashes it outputs , if the measurement 
result of the first qubit is . 
 
Property 2.1.  
The probability of obtaining  in the SWAP-test is equal to 

. 
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The probability of error of the SWAP-test inherently depends on the value of 
the inner product of  and , i.e. on the -resistance of the underlying 
quantum hash function. 
 
 
3. QUANTUM COMMUNICATION PROTOCOLS BASED ON QUANTUM 
HASHING 
The quantum hashing defined above can be used for constructing effective protocols 
in the quantum communication model defined by Yao in [12]. 

Here we consider a one-sided restriction of this model, where Alice makes her 
computations, sends some information to Bob, who computes his part of the protocol 
and outputs the result. The complexity of such a protocol is the number of qubits sent 
to Bob. 

Let  be a Boolean function of  
variables, i.e. 

 
 

 
Alice gets the sequence of values  of the first  variables, and 

Bob gets  - the values of the last  variables. 
To compute  we exploit its polynomial presentation, described in Section 2. 
In the communication scenario the input is split between parties, and a 

polynomial for f should also be decomposed. For the quantum hashing technique 
proposed we decompose this polynomial into the sum of two polynomials, one for 
each of the communicating parties. 
 
Theorem 3.1.  
Let  be a Boolean function of 2 variables. 
Let  be a characteristic polynomial for  over the ring . If  can be decomposed 
into 

  
 
then for arbitrary   can be computed by a one-way quantum 
communication protocol with  qubits of communication. 
 
Proof.  
For the proof we describe the following quantum one-way communication protocol. 

The communicating parties given an input  want to know whether 
 or not. This is the same as asking whether , or, 

equivalently, whether . And this equality is 
exactly what the protocol would check using quantum hashing technique, i.e. it will 
compare quantum hashes of those values. 
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More formally, the following describes a one-way protocol of computing  in 
the quantum communication setting using -resistant quantum hashing for some 

. 
1.  Alice, depending on her input , creates a quantum hash for the 

value  

 and sends it to Bob. 
2.  Given  and his input  Bob creates a quantum 

hash for the value  
 

3.  Bob compares  and  using the SWAP-test. 
So, Bob obtains the result , if the 
measurement of the first qubit gives , which happens with probability 

. 
4.  Bob outputs the result of computations. He says  if 

 and  otherwise. If the 
value of  was 1, then Bob outputs 1 with certainty. If  was 0, 
then by -resistance property , and 
the probability of erroneously outputting 1 is bounded by . 

 
The communication complexity in this case is bounded by the size of the 

quantum hash passed from Alice to Bob, which is 
 qubits. 

 
Remark 3.1.  
By inspecting the proposed communication protocol one can note that if instead of 
directly communicating Alice and Bob had to send their hashes to the referee, we 
would have a protocol in a more restrictive setting of simultaneous message passing 
model, and the Theorem 3.1 can be restated and proved for this model as well. 
 
Remark 3.2.  
The probability of error in the construction of Theorem 3.1 can be reduced to  if Bob 
would perform REVERSE-test of the received quantum hash and his computed value 

. Unfortunately, this is not the case for the simultaneous message passing 
model. 
 
3.1. SOME EXAMPLES 
The theorem above assumes that characteristic polynomial can be decomposed into 
the sum of polynomials over independent sets of variables. The simplest case of such 
polynomials is linear polynomials and we have exposed in [9] several examples of 
natural Boolean functions that have linear characteristic polynomials. Among them 
there is an Equality test, which is frequently considered in the study of 
communication complexity. The corresponding Boolean function has the following 
linear characteristic polynomial over  
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and thus can be computed by the -qubit quantum communication protocol. 
Here are some more Boolean functions with linear characteristic polynomials, 

which are thus effectively computable in the SMP model. 
 The function  tests whether the number of 1's in the input is 0 

modulo . The linear polynomial over for this function is 

 
 

 This function is the same as , but the input is treated as a 
binary number. Thus, the linear polynomial is 

 

 
 

 This function tests the symmetry of the input, 
i.e. whether  or not. The polynomial over 

 is 
 

 
 

 The Permutation Matrix test function ( ) is defined on  
variables  . It tests whether the input matrix contains exactly one 1 

in each row and each column. Here is a polynomial over  
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3.2. AN EXTENSION FOR ARBITRARY BOOLEAN FUNCTION 
Now, if for some Boolean function  there is no characteristic polynomial, that can be 
decomposed as shown earlier, we use the following decomposition 

 

 
 

Such a decomposition always exists, since we can choose ,  
and . 

Then the following result holds, which generalizes Theorem 3.1. 
 
Theorem 3.2.  
For arbitrary   can be computed by a one-way quantum communication 
protocol with  qubits of communication. 
 
Proof. The protocol is almost the same as the one from Theorem 3.1, but Alice sends 
a hash plus  qubits containing the values of , and Bob use them to 

construct his own hash. The protocol now requires  
qubits of communication. 
 
Corollary 3.1.  
If  (which is the most usual case) and  the described 
protocol would require  qubits of communication, which is exponentially 
better than just sending all of the input from Alice to Bob. 
 
Remark 3.3.  
However, for arbitrary Boolean function the bound is still no better than trivial , 
since in general . 
 
 
4. GENERAL APPROACH 
In a more general approach, for some Boolean function  depending on 

 variables we consider a characteristic  over . 
Let us pick two sets  and  of polynomials 

over the ring , such that the set  is a characteristic 
of  over . Here we assume that polynomials from  depend only on , 
and those from  – depend not only on , but also on . Then 
the following theorem holds. 
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Theorem 4.1.  
For arbitrary   can be computed by a one-way quantum communication 
protocol with  qubits of communication. 
 
Proof. The proof below constructs a protocol that is some generalization of the one 
from Theorem 3.1. 
1.  The protocol starts when Alice receives an input , combines 

the values  into the following generalized quantum hash of 

qubits  

 and sends it to 
Bob along with the values . 

2.  Bob receives his part of the input , the quantum hash and 
values  from Alice. Then he computes his own hash for 

  
 

 and performs 
the SWAP-test. 

3.  Bob outputs 1 iff all the hashes have passed the test, which happens with 
probability , which equals 

 
When , this protocol would always lead to correct results. But 
if , then for at least one  , and 
the probability of outputting 1 is bounded by 

 
 

The last inequality is based on the -resistance property proof in [10]. 
Thus, the complexity of communication protocols based on quantum hashing 

and general characteristic polynomial presentation of Boolean functions is 
. 

 
Corollary 4.1.  
Whenever , , and , the complexity of 
such protocol would be . 

An example of such function is a Boolean version of Hidden Subgroup 
Problem, considered in [9], which has a characteristic over , consisting of two 
polynomials. 
 
 



Quantum Communications Based On Quantum Hashing 31425 

5. SUMMARY 
To summarize, we have proposed an approach for constructing quantum 
communication protocols for Boolean functions given by their characteristic 
polynomial presentation. Quantum hashing technique is used here to reduce the 
amount of information being sent between communicating parties. 
 
 
6. CONCLUSIONS 
The construction presented in this paper uses quantum hashing technique for 
distributed quantum computations. The communication complexity of Boolean 
functions being computed depends on the properties of their polynomial presentation 
and collision resistance of the underlying quantum hash function. Generally, any 
Boolean function can be computed using this approach, but the complexity bound 
would be trivial. However, for certain classes of Boolean functions with “good” 
polynomial presentation the resulting quantum communication protocols are 
exponentially better than their classical counterparts. 
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