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1. Introduction

The purpose of this paper is to prove the existence and uniqueness of mild solutions for
impulsive fractional functional integrodifferential equations of the form

Dαx(t) = Ax(t) + f
(
t, xt ,

∫ t

0
h1(t, s, xs)ds,

∫ t

0
h2(t, s, xs)ds

)
,

t ∈ I = [0, T ], t �= tk, k = 1, 2, . . . , m, (1.1)

�x|t=tk = Ik(x(t−k )), k = 1, 2, . . . , m, (1.2)

x0 = φ + g(x), t ∈ [−r, 0], (1.3)
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where T > 0, Dα is Caputo fractional derivative of order 0 < α < 1, A : D(A) ⊂
X → X is the bounded linear operator of an α-resolvent family {Sα(t) : t ≥ 0}
defined on a Banach space X, h1 : J × J × D → X, h2 : J × J × D → X

and f : J × D × X × X → X are given functions, where D = {ψ : [−r, 0] →
X such that ψ is continuous everywhere except for a finite number of
points s at which ψ(s−) and ψ(s+) exists and ψ(s−) = ψ(s)}, φ ∈ D(0 < r < ∞),
0 =< t0 < t1 < · · · < tk < · · · < tm < tm+1 = T , �x|t=tk = Ik(x(t−k )),
x(t+k ) = lim

h→0+ x(tk + h) and x(t−k ) = lim
h→0− x(tk + h) represent the right and left limits

of x(t) at t = tk respectively.
For any continuous function x defined on the interval [−r, T ] − {t1, t2, . . . , tm} and

any t ∈ J . We denote by xt be the element of D defined by

xt (θ) = x(t + θ), θ ∈ [−r, 0].
Here xt (·) represents the history of the time t − r , upto the present time t . For ψ ∈ D,
then ‖ψ‖D = sup {|ψ(θ)| : θ ∈ [−r, 0]}.

Fractional order semilinear equations are abstract formulations for many problems
arising in engineering and physics. The potential applications of fractional calcu-
lus are in diffusion process, electrical science, electrochemistry, viscoelasticity, con-
trol science, electro magnetic theory and several more. In fact, such models can be
considered as an efficient alternative to the classical nonlinear differential models to
simulate many complex processes. In the recent years, there has been a significant
development in ordinary and partial differential equations involving fractional deriva-
tives, see the monographs of Kilbas et al. [21], Lakshmikantham et al. [23], Miller
and Ross [27], Podlubny [30], Michalski [22] and Tarasov [31] and the papers of
[12, 13, 14, 26, 19, 28, 10, 33, 34, 35, 36, 37, 38, 39].

Differential equations with impulsive conditions constitute an important field of re-
search due to their numerous applications in ecology, medicine biology, electrical en-
gineering, and other areas of science. There has been a significant development in
impulsive theory especially in the area of impulsive differential equations with fixed
moments, see for instance the monographs by Lakshmikantham et al. [24], Bainov
et al. [4], Samoilenko et al. [17] and the papers of [8, 11]. Nowadays, many authors
[7, 15, 16, 28, 18, 32] have been studied the existence results combined with fractional
derivative and impulsive conditions.

In [18], Xiao-Bao Shu et al. studied the existence of mild solutions for impulsive
fractional differential equations of the form

Dα
t x(t) = Ax(t) + f

(
t, x(t)

)
, t ∈ I = [0, T ], t �= tk, k = 1, 2, . . . , m,

x(0) = x0 ∈ X,

�x|t=tk = Ik(x(t−k )), k = 1, 2, . . . , m,

where 0 < α < 1, A is a sectorial operator on a Banach space X, Dα is the Caputo
fractional derivative and by using Banach contraction principle and Leray-Schauder’s
Alternative fixed point theorem.
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Very recently, Archana Chauhan et al. [2] extended the results of [18] into the follow-
ing impulsive fractional order semilinear evolution equations with nonlocal conditions
of the form

dα

dtα
x(t) + Ax(t) = f

(
t, x(t), x(a1(t)), . . . , x(am(t))

)
,

t ∈ J = [0, T ], t �= ti, i = 1, 2, . . . , p,

x(0) + g(x) = x0,

�x(ti) = Ii(x(t−i )), i = 1, 2, . . . , p,

where
dα

dtα
is Caputo fractional derivative of order 0 < α < 1, −A generates α-resolvent

family {Sα(t) : t ≥ 0} of bounded linear operators in X and by using Banach contraction
principle and Krasnoselskii’s fixed point theorem.

Motivated by the above mentioned works [2, 6, 18, 33, 34, 36, 39], we consider the
problem (1.1) − (1.3) to study the existence and uniqueness of a mild solution using
the solution operator and fixed-point theorems. The rest of this paper is organized as
follows: In Section 2, we present some necessary definitions and preliminary results
that will be used to prove our main results. The proof of our main results are given in
Section 3.

2. Preliminaries

In this section, we mention some definitions and properties required for establishing
our results. Let X be a complex Banach space with its norm denoted as ‖ · ‖X, and
L(X) represents the Banach space of all bounded linear operators from X into X, and
the corresponding norm is denoted by ‖ · ‖L(X). Let C(J,X) denote the space of all
continuous functions from J into X with supremum norm denoted by ‖ · ‖C(J,X). In
addition, Br(x, X) represents the closed ball in X with the center at x and the radius r .

A two parameter function of the Mittag-Leffler type is defined by the series expansion

Eα,β(z) =
∞∑

k=0

zk

�(αk + β)
= 1

2πi

∫
Ha

µα−βeµ

µα − z
dµ, α, β > 0, z ∈ C,

where Ha is a Hankel path, i.e. a contour which starts and ends at −∞ and encircles

the disc |µ| ≤ |z| 1
α contour clockwise. For short, Eα(z) = Eα,1(z). It is an entire

function which provides a simple generalization of the exponent function: E1(z) = ez

and the cosine function: E2(−z2) = cos(z), and plays an important role in the theory
of fractional differential equations. The most interesting properties of the Mittag-Leffler
functions are associated with their Laplace integral∫ ∞

0
e−λt tβ−1Eα,β(wtα)dt = λα−β

λα − w
, Re λ > w

1
α , w > 0,
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see [30] for more details.

Definition 2.1. [2] Caputo derivative of order α for a function f : [0, ∞) → R is
defined as

dα

dtα
f (t) = 1

�(m − α)

∫ t

0
(t − s)n−α−1f (n)(s)ds,

for n − 1 < α < n, n ∈ N . If 0 < α ≤ 1, then

dα

dtα
f (t) = 1

�(1 − α)

∫ t

0
(t − s)−αf (1)(s)ds.

The Laplace transform of the Caputo derivative of order α > 0 is given as

L{Dα
t f (t) : λ} = λαf̂ (λ) −

n−1∑
k=0

λα−k−1f (k)(0); n − 1 < α ≤ n.

Definition 2.2. [1] Let A be a closed and linear operator with domain D(A) defined
on a Banach space X and α > 0. Let ρ(A) be the resolvent set of A. We call A

the generator of an α-resolvent family if there exists w ≥ 0 and a strongly continuous
function Sα : R+ → L(X) such that {λα : Re λ > w} ⊂ ρ(A) and

(λαI − A)−1x =
∫ ∞

0
e−λtSα(t)xdt, Re λ > w, x ∈ X.

In this case, Sα(t) is called the α-resolvent family generated by A.

Definition 2.3. [3] Let A be a closed and linear operator with domain D(A) defined
on a Banach space X and α > 0. Let ρ(A) be the resolvent set of A. We call A

the generator of an α-resolvent family if there exists w ≥ 0 and a strongly continuous
function Sα : R+ → L(X) such that {λα : Re λ > w} ⊂ ρ(A) and

(λαI − A)−1x =
∫ ∞

0
e−λtSα(t)xdt, Re λ > w, x ∈ X.

In this case, Sα(t) is called the solution operator generated by A.

The concept of the solution operator is closely related to the concept of a resolvent
family ([29], Chapter 1). For more details on α-resolvent family and solution operators,
we refer to [29, 25] and the references therein.

3. Existence Results

In this section, we present and prove the existence of mild solutions for the system
(1.1)− (1.3). In order to prove the existence results, we need the following results which
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is taken from [5, 18]. If α ∈ (0, 1) and A ∈ Aα(θ0, w0), then for any x ∈ X and t > 0,
we have

‖Sα(t)‖ ≤ Mewt, ‖Tα(t)‖ ≤ Cewt(1 + tα−1), t > 0, w > w0.

Let
M̃S := sup

0≤t≤T

‖Sα(t)‖L(X),

M̃T := sup
0≤t≤T

Ceωt (1 + t1−α),

where L(X) is the Banach space of bounded linear operators from X into X equipped
with its natural topology. So, we have

‖§α(t)‖L(X) ≤ M̃S, ‖Tα(t)‖L(X) ≤ t1−αM̃T . (3.1)

Let us consider the set functions

PC([−r, T ], X) = {x : [−r, T ] → X : x ∈ C((tk, tk+1], X), k = 0, 1, 2, . . . , m

and there exist x(t−k ) and x(t+k ), k = 1, 2, . . . , m with x(t−k ) = x(tk), x0 = φ + g(x)}.
Endowed with the norm

‖x‖PC = sup
t∈[−r,T ]

‖x(t)‖X,

the space (PC([−r, T ], X), ‖ · ‖PC) is a Banach space.

Lemma 3.1. [2, 18] If f satisfies the uniform Holder condition with the exponent
β ∈ (0, 1] and A is a sectorial operator, then the unique solution of the Cauchy problem

Dαx(t) = Ax(t) + f
(
t, xt ,

∫ t

0
h1(t, s, xs)ds,

∫ T

0
h2(t, s, xs)ds

)
,

t > t0, t0 ∈ R, 0 < α < 1

x0 = φ + g(x), t ∈ [−r, 0]
is given by

x(t) = Sα(t − t0)(x(t+0 ))

+
∫ t

t0

Tα(t − s)f
(
s, xs,

∫ t

0
h1(s, τ, xτ )dτ,

∫ T

0
h2(s, τ, xτ )dτ

)
ds,

where

Sα(t) = Eα,1(Atα) = 1

2πi

∫
B̂r

eλt λα−1

λα − A
dλ, Tα(t) = tα−1Eα,α(Atα)

= 1

2πi

∫
B̂r

eλt 1

λα − A
dλ,
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B̂r denotes the Bronwich path, Tα(t) is called the α-resolvent family, Sα(t) is the solution
operator, generated by A.

Now, we define the mild solution of a system (1.1) − (1.3).

Definition 3.2. A function x(·) ∈ PC is called a mild solution of the system (1.1)−(1.3)

if x0 = φ + g(x) on [−r, 0]; �x|t=tk = Ik(x(t−k )), k = 1, 2, . . . , m and satisfies the
following integral equation

x(t) =



Sα(t)[φ(0) + gx(0)]
+

∫ t

0
Tα(t − s)f

(
s, xs,

∫ s

0
h1(s, τ, xτ )dτ,

∫ T

0
h2(s, τ, xτ )dτ

)
ds, t ∈ (0, t1];

Sα(t − t1)(x(t−1 ) + I1(x(t−1 )))

+
∫ t

t1

Tα(t − s)f

(
s, xs,

∫ s

0
h1(s, τ, xτ )dτ,

∫ T

0
h2(s, τ, xτ )dτ

)
ds, t ∈ (t1, t2];

...

Sα(t − tm)(x(t−m) + I1(x(t−m)))

+
∫ t

tm

Tα(t − s)f

(
s, xs,

∫ s

0
h1(s, τ, xτ )dτ,

∫ T

0
h2(s, τ, xτ )dτ

)
ds, t ∈ (tm, T ].

From Lemma (3.1) we can verify this definition. Now we need the following as-
sumptions:

H1 f : J × D × X × X → X is continuous and there exist functions L ∈ L1(J, R+)

such that

‖f (t, xt , u1, u2) − f (t, yt , v1, v2)‖X ≤ L
[
‖x − y‖ + ‖u1 − v1‖ + ‖u2 − v2‖

]
,

for x, y ∈ PC, ui, vi ∈ X, i = 1, 2.

H2 h1 : J × J × D → X is continuous and there exists a constant 
1 > 0 such that
for all (t, s) ∈ J × J∥∥∥ ∫ t

0
[h(t, s, xs) − h(t, s, ys)]ds

∥∥∥
X

≤ 
1‖x − y‖PC.

H3 h2 : J × J × D → X is continuous and there exists a constant 
2 > 0 such that
for all (t, s) ∈ J × J∥∥∥ ∫ t

0
[h2(t, s, xs) − h2(t, s, ys)]ds

∥∥∥
X

≤ 
2‖x − y‖PC.

H3 The function Ik : X → X are continuous and there exists �k > 0 such that

‖Ik(x) − Ik(y)‖X ≤ �k‖x − y‖, x, y ∈ X, k = 1, 2, . . . , m.
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Theorem 3.3. Assume that (H1) − (H3) are satisfied and[
M̃S(�i + 1) + 1

α
M̃T T αL(1 + 
1 + 
2)

]
< 1.

Then the impulsive differential system (1.1) − (1.3) has a unique mild solution x ∈
PC([−r, T ], X).

Proof. We define the operator N : PC([−r, T ], X) → PC([−r, T ], X) by

ϒx(t) =



Sα(t)[φ(0) + g(0)]
+

∫ t

0
Tα(t − s)f

(
s, xs,

∫ s

0
h1(s, τ, xτ )dτ,

∫ T

0
h2(s, τ, xτ )dτ

)
ds, t ∈ (0, t1];

Sα(t − t1)(x(t−1 ) + I1(x(t−1 )))

+
∫ t

t1

Tα(t − s)f

(
s, xs,

∫ s

0
h1(s, τ, xτ )dτ,

∫ T

0
h2(s, τ, xτ )dτ

)
ds, t ∈ (t1, t2];

...

Sα(t − tm)(x(t−m) + I1(x(t−m)))

+
∫ t

tm

Tα(t − s)f

(
s, xs,

∫ s

0
h1(s, τ, xτ )dτ,

∫ T

0
h2(s, τ, xτ )dτ

)
ds, t ∈ (tm, T ].

Note that ϒ is well defined on PC([−r, T ], X). Let us take t ∈ (0, t1] and x, y ∈
PC([−r, T ], X). From the equation (3.1) and the hypothesis (H1) − (H2), we have

‖(ϒ1x)(t) − (ϒ2y)(t)‖X ≤ M̃T

1

α
T αL

[
‖xt − yt‖D + 
1‖xt − yt‖D + +
2‖xt − yt‖D

]
≤ M̃T

1

α
T αL

[
‖x − y‖PC + 
1‖x − y‖PC + 
2‖x − y‖PC

]
≤ M̃T

1

α
T αL(1 + 
1 + 
2)‖x − y‖PC.

For t ∈ (t1, t2], and by using (3.1), (H1) − (H3), we have

‖(ϒ1x)(t) − (ϒ2y)(t)‖X

≤ M̃S(1 + �1)‖x − y‖PC

+
∫ t

0
(t − s)α−1M̃T L

[
‖x − y‖PC + 
1‖x − y‖PC + 
2‖x − y‖PC

]
ds

≤
[
M̃S(1 + �1) + 1

α
M̃T T αL(1 + 
1 + 
2)

]
‖x − y‖PC.

Similarly, for t ∈ (ti, ti+1]

‖(ϒ1x)(t) − (ϒ2y)(t)‖X ≤
[
M̃S(1 + �i) + 1

α
M̃T T αL(1 + 
1 + 
2)

]
‖x − y‖PC.

and for t ∈ (tm, T ]
‖(ϒ1x)(t) − (ϒ2y)(t)‖X ≤

[
M̃S(1 + �m) + 1

α
M̃T T αL(1 + 
1 + 
2)

]
‖x − y‖PC.
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Thus, for all t ∈ [0, T ], we have

‖(ϒ1x) − (ϒ2y)‖PC ≤ max
1≤i≤m

[
M̃S(1 + �i) + 1

α
M̃T T αL(1 + 
1 + 
2)

]
‖x − y‖PC.

Since max
1≤i≤m

[
M̃S(�i +1)+ 1

α
M̃T T αL(1+
1+
2)

]
< 1, � is a contraction. Therefore

ϒ has a unique fixed point by Banach contraction principle. This completes the proof.
�

Our next existence result is based on the Krasnoselkii’s fixed point theorem.

Theorem 3.4. [20] Let B be a closed convex and nonempty subset of a Banach space
X. Let P and Q be two operators such that (i) Px + Qy ∈ B whenever x, y ∈ B,(ii)
P is compact and continuous, (iii) Q is a contraction mapping. Then there exists z ∈ B

such that z = Pz + Qz.

Now, we list the following hypothesis:

H4 For each (t, s) ∈ I ×I , the functions h1(t, s, ·), h2(t, s, ·) : D → X is continuous,
and for each x ∈ D the function h1(·, ·, x), h2(·, ·, x) : I × I → X is strongly
measurable.

H5 For each t ∈ J , the function f (t, ·, ·, ·) : D × X × X → X is continuous, and for
each (x, y, z) ∈ D ×X the function f (·, x, y, z) : I → X is strongly measurable.

H6 There exists a continuous function p1 : J → R = [0, ∞] such that∥∥∥ ∫ t

0
h1(t, s, xs)ds

∥∥∥
X

≤ p1(t)ψ(‖x‖D), for every t, s ∈ I and x ∈ D,

where ψ : [0, +∞) → (0, ∞) is a continuous non-decreasing function.

H7 There exists a continuous function p2 : I → R = [0, ∞] such that∥∥∥ ∫ T

0
h2(t, s, xs)ds

∥∥∥
X

≤ p2(t)ψ(‖x‖D), for every t, s ∈ I and x ∈ D,

where ψ : [0, +∞) → (0, ∞) is a continuous non-decreasing function.

H8 There exists a continuous function p3 : I → R = [0, ∞] such that∥∥∥f (t, x, y, z)

∥∥∥
X

≤ p3(t)ψ(‖x‖D) + ‖y‖ + ‖z‖,
for every t, s ∈ I and x ∈ D, y, z ∈ X.

where ψ : [0, +∞) → (0, ∞) is a continuous non-decreasing function.
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H9 The function Ik : X → X are continuous and there exists � > c1 such that

� = max
1≤k≤m,x∈Br

{‖Ik(x)‖X}.

Theorem 3.5. Assume that (H4) − (H9) are satisfied and[
M̃T

1

α
T αL(1 + 
1 + 
2)

]
< 1.

Then the impulsive differential problem (1.1) − (1.3) has at least one mild solution on
PC([−r, T ], X).

Proof. Choose r >
[
M̃S(r + �) + M̃T

1

α
T αψ(r)(p3(t) + p1(t) + p2(t))

]
and consider

Br = {x ∈ PC([−r, T ], X) : ‖x‖PC ≤ r}, then Br is a bounded, closed convex subset
in PC([−r, T ], X). Define on Br the operators P and Q by:

(Px)(t) =


Sα(t)[φ(t) + gx(0)], t ∈ [0, t1];
Sα(t − t1)(x(t−1 ) + I1(x(t−1 ))), t ∈ (t1, t2];
...

Sα(t − tm)(x(t−m) + I1(x(t−m))), t ∈ (tm, T ].

(Qx)(t) =



∫ t

0
Tα(t − s)f

(
s, xs,

∫ s

0
h1(s, τ, xτ )dτ,

∫ T

0
h2(s, τ, xτ )dτ

)
ds, t ∈ (0, t1];∫ t

0
Tα(t − s)f

(
s, xs,

∫ s

0
h1(s, τ, xτ )dτ,

∫ T

0
h2(s, τ, xτ )dτ

)
ds, t ∈ (t1, t2];

...∫ t

0
Tα(t − s)f

(
s, xs,

∫ s

0
h1(s, τ, xτ )dτ,

∫ T

0
h2(s, τ, xτ )dτ

)
ds, t ∈ (tm, T ].

The proof will be given in five steps:

Step 1: We show that Px + Qy ∈ Br , whenever x, y ∈ Br . Let x, y ∈ Br , then

‖Px + Qy‖PC ≤



‖Sα(t)‖L(X)[‖φ‖X + ‖(0)‖X]
+

∫ t

0
‖Tα(t − s)‖L(X)‖f

(
s, xs,

∫ s

0
h1(s, τ, xτ )dτ,

∫ T

0
h2(s, τ, xτ )dτ

)
‖Xds, t ∈ (0, t1];

‖Sα(t − t1)‖L(X)

[
‖x(t−1 )‖ + ‖I1(x(t−1 ))‖

]
X

+
∫ t

t1

‖Tα(t − s)‖L(X)‖f
(

s, xs,

∫ s

0
h1(s, τ, xτ )dτ,

∫ T

0
h2(s, τ, xτ )dτ

)
‖Xds, t ∈ (t1, t2];

...

‖Sα(t − tm)‖L(X)

[
‖x(t−m)‖ + ‖I1(x(t−m))‖

]
X

+
∫ t

tm

‖Tα(t − s)‖L(X)‖f
(

s, xs,

∫ s

0
h1(s, τ, xτ )dτ,

∫ T

0
h2(s, τ, xτ )dτ

)
‖Xds, t ∈ (tm, T ].
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≤



M̃S(r) + M̃T
T α

α
[ψ(r)(p3(t) + p1(t) + p2(t))], t ∈ (0, t1];

M̃S(r + �) + M̃T
T α

α
[ψ(r)(p3(t) + p1(t) + p2(t))], t ∈ (t1, t2];

...

M̃S(r + �) + M̃T
T α

α
[ψ(r)(p3(t) + p1(t) + p2(t))], t ∈ (tm, T ].

Which implies

‖Px + Qy‖PC ≤
[
M̃S(r + �) + M̃T

T α

α
[ψ(r)(p3(t) + p1(t) + p2(t))]

]
≤ r.

Step 2: We show that the operator (Px)(t) is continuous in Br . For this purpose, let
{xn} be a sequence in Br such that xn → x in Br . Then for every t ∈ J , we have

‖(Pxn)(t) − (Px)(t)‖X ≤



0, t ∈ (0, t1];
‖Sα(t − t1)‖L(X)

(×)
[
‖xn(t−1 ) − x(t−1 )‖X + ‖I1(xn(t−1 )) − x(t−1 )‖X

]
, t ∈ (t1, t2];

...

‖Sα(t − tm)‖L(X)

(×)
[
‖xn(t−m) − x(t−m)‖X + ‖I1(xn(t−m)) − x(t−m)‖X

]
, t ∈ (tm, T ].

Since the functions Ik, k = 1, 2, . . . , m are continuous, lim
n→∞ ‖Pxn −Px‖PC = 0 in Br .

This implies that the mapping P is continuous on Br .

Step 3: P maps bounded sets into bounded sets in PC([−r, T ], X).
Let us prove that for any r > 0 there exists a γ > 0 such that for x ∈ Br = {x ∈
PC([−r, T ], X) : ‖x‖PC ≤ r}, we have ‖Px‖PC ≤ γ . Indeed, we have for any x ∈ Br

‖(Px)(t)‖X =



‖Sα(t)‖L(X)[‖φ‖X + ‖ g(x)‖X], t ∈ [0, t1];
‖Sα(t − t1)‖L(X)

[
‖x(t−1 )‖X + ‖I1x(t−1 ))‖X

]
, t ∈ (t1, t2];

...

‖Sα(t − tm)‖L(X)

[
‖x(t−m)‖X + ‖I1(x(t−m))‖X

]
, t ∈ (tm, T ].

≤


M̃S(r + c1), t ∈ (0, t1];
M̃S(r + �), t ∈ (t1, t2];
...

M̃S(r + �), t ∈ (tm, T ].

Which implies that ‖Px‖PC ≤ M̃S(r + �) = γ .
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Step 4: We prove that P(Br) is equicontinuous with Br .
For 0 ≤ u ≤ v ≤ T , we have

‖(Px)(v) − (Px)(u)‖X

≤



‖Sα(v) − Sα(u)‖L(X)[‖φ‖X + ‖ g(x)‖X], 0 ≤ u < v ≤ t1;
‖Sα(v − t1) − Sα(u − t1)‖L(X)

(×)
[
‖x(t−1 )‖X + ‖I1(x(t−1 ))‖X

]
, t1 < u < v ≤ t2;

...

‖Sα(v − tm) − Sα(u − tm)‖L(X)

(×)
[
‖x(t−m)‖X + ‖Im(x(t−m))‖X

]
, tp < u < v ≤ T .

≤


r‖Sα(v) − Sα(u)‖L(X), 0 ≤ u < v ≤ t1;
(r + �)‖Sα(v − t1) − Sα(u − t1)‖L(X), t1 < u < v ≤ t2;
...

(r + �)‖Sα(v − tm) − Sα(u − tm)‖L(X), tp < u < v ≤ T .

Therefore, the continuity of the function t → ‖S(t)‖ allows us to conclude that

lim
u→v

‖Sα(v − ti) − Sα(u − ti)‖L(X) = 0, i = 1, 2, . . . , m and

lim
u→v

‖Sα(v) − Sα(u)‖L(X) = 0.

Finally, combining Step 2 to Step 4 with theAscoli’s theorem, we deduce that the operator
P is compact.

Step 5: We show that Q is contraction mapping.
Let x, y ∈ Br and we have

‖(Qx)(t) − (Qy)(t)‖X ≤



∫ t

0
‖Tα(t − s)‖L(X)

(×)‖f (s, xs,

∫ t

0
h1(s, τ, xτ )dτ,

∫ T

0
h2(s, τ, xτ )dτ)

−f (s, ys,

∫ t

0
h1(s, τ, xτ )dτ,

∫ T

0
h2(s, τ, xτ )dτ)‖Xds,

t ∈ (0, t1];
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≤



∫ t

0
‖Tα(t − s)‖L(X)

(×)‖f (s, xs,

∫ t

0
h1(s, τ, xτ )dτ,

∫ T

0
h2(s, τ, xτ )dτ)

−f (s, ys,

∫ t

0
h1(s, τ, xτ )dτ,

∫ T

0
h2(s, τ, xτ )dτ)‖Xds,

t ∈ (t1, t2];
...∫ t

0
‖Tα(t − s)‖L(X)

(×)‖f (s, xs,

∫ t

0
h1(s, τ, xτ )dτ,

∫ T

0
h2(s, τ, xτ )dτ)

−f (s, ys,

∫ t

0
h1(s, τ, xτ )dτ,

∫ T

0
h2(s, τ, xτ )dτ)‖Xds,

t ∈ (tm, T ].

≤



M̃T
T α

α
L[1 + 
1 + 
2]‖x − y‖PC, t ∈ (0, t1];

M̃T
T α

α
L[1 + 
1 + 
2]‖x − y‖PC, t ∈ (t1, t2];

...

M̃T
T α

α
L[1 + 
1 + 
2]‖x − y‖PC, t ∈ (tm, T ].

Since
[
M̃T

T α

α
L[1 + 
1 + 
2]

]
< 1, then Q is a contraction mapping. Hence, by the

Krasnoselkii’s theorem, we can conclude that (1.1) − (1.3) has atleast one solution on
PC([−r, T ], X). This completes the proof of the theorem. �
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