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Abstract 
 

By its nature, spatial data collected from the real world are complex and 
highly susceptible to noisy and missing data. Noisy data is an unavoidable 
problem in dealing with most of the real world data sources. 
Many machine learning methods have been used for handling missing spatial 
data. Each of them has its own limitations and they are suitable for some 
studies and unsuitable for others. 
In this investigation, we discern that the imputation methods fill in missing 
data with more precise estimated values based on information available in the 
data set. We consider the results using the performance metrics of MAE, 
MSE, and correlation coefficient (R) for each climate variable. However, we 
observe that there is no existing model that is best in all performance 
measuring methods. In this work, we contemplate Holt Winter’s method and 
ANN imputation technique that furnish an overall better result, because Holt 
Winter’s method considers seasonal variation whereas ANN models are 
applied MLP as imputation methods if the time series data have sufficient 
available data before missing values occurred. 
 
Keyword: Preprocessing, NMA, Holts Method, ANN, Imputation 
Techniques. 

 
 
1. Introduction 
Data preparation or data pre-processing is always the first step in the machine 
learning process. Preprocessing is required before one can apply machine learning to 
the dataset. 
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Data preparation comprises techniques concerned with analyzing raw data so 
as to produce quality data, mainly including data collecting, data integration, data 
transformation, data cleaning, data reduction, and data discretization [1]. 

Data can be generated using models or collected from the real world. In this 
study, we used real world data collected from the weather stations of National 
Meteorology agency (NMA) of Ethiopia. 

By its nature, data collected from the real world are complex and highly 
susceptible to noisy and missing data. 

The data can be preprocessed to improve the quality of data so as to improve 
the prediction results. 

In this work, preprocessing has been done to replace the missing values [2]. 
 
Generally, the process for getting data ready for a machine learning algorithm can be 
shortened into three steps: 
• Select data- Consider what data is available, what data is missing and what 

data can be removed. 
• Preprocess Data- Organize your selected data by formatting, cleaning and 

sampling from it. 
• Transform Data- Transform preprocessed data ready for machine learning by 

engineering features using scaling, attribute decomposition and attribute 
aggregation. 

 
The rest of the paper is organized as follow: 
In section 2, a brief literature review on missing data handling techniques is 

described. Section 3 introduces the Imputation Techniques and Section 4 illustrates 
the experiment of selected imputation methods. Evaluation of the models isdescribed 
in section 5 and conclusion is given in Section 6. 
 
 
2. Missing Data Handling Mechanisms 
Missing data is an unavoidable problem in dealing with most of the real world data 
sources. 

Considering the fact that an inappropriate method can bias the information 
contained in the data set and further processing can result in incorrect models. It is 
clear that handling the missing values is a very important part of data preprocessing. 
When having to handle with a missing value problem we have to consider some basic 
things [5].To handle missing, it is helpful to know that the missing variables are 
whether related or not with the others that are not missing. If they are not related, it is 
impossible to predict the missing values based on the others consistently. If the data is 
missing at random, then there is no information in the absence of the data and it is 
possible to replace the missing values with estimates based on the observed data 
without losing any information. In our case, the data is MAR, there is no hidden 
information behind in the absence of the data since the reason for their absence is 
unavailability of physical measurements or the observer due to different reasons. 
Thus, it is possible to fill the missing values with estimates of the recorded data. On 
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the other hand, if the missing data are related to non-missing data, there are different 
methods that can be used to handle them. In this study, we believe that there are 
strong relations between the variables and therefore it is possible to model the missing 
values based on the variables that are present [7]. 

Another aspect when dealing with a missing-value problem is the cost of the 
possible solution. There is a trade-off between the time required to compute estimates 
for the missing values and the quality of the estimates. We have to make a 
compromise between the two. The cost of the method used is determined from a 
variety of factors. First is the size of the data set. This can be very important for 
choosing a method to handle missing values [5]. But, in this study the dataset is not 
big and so ideally we can use a method that is computationally expensive and it is 
possible to select that produces sufficiently good results. Another issue used to select 
a method is the number of missing values in the data set. For this issue, we used some 
commonly used missing data handling methods using station data that have less 
missing data and high percentage missing data as well. By comparing the result, we 
select the method that performs better estimation. 

Many methods have been used for handling missing data. Each of them has its 
own properties and they are suitable for some problems and unsuitable for others. 
Below, we present some of the most widely used methods for handling missing values 
and discuss their suitability to handle missing values of the data. 
There is a number of missing data treatment methods [2] [3]: 
a) Ignoring or discarding data: There are two main ways to discard data with 

missing values. The first one is known as complete case analysis. It is 
available in all statistical packages and is the default method in many 
programs. This method consists of discarding all instances with missing data. 
The second method is known as discarding instances and/or attributes. This 
method determines the extent of missing data on each instance and attribute, 
and deletes the instances and/or attributes with high levels of missing data. 
Before deleting any attribute, it is necessary to evaluate its relevance to the 
analysis. Unfortunately, relevant attributes should be kept even with a high 
degree of missing values [4]. 

b) Parameter estimation. Maximum likelihood estimation (MLE) procedures 
are used to estimate the parameters of a model defined for the complete data in 
the presence of missing data (Expectation-Maximization or EM algorithm). A 
disadvantage of EM algorithm is that its rate of convergence can be painfully 
slow when there is a large fraction of missing values. EM algorithm is an 
iterative algorithm that finds the parameters which maximizes the log 
likelihood when there are missing values. It capitalizes on the relationship 
between missing data and the unknown parameters of a data model. A 
disadvantage of EM algorithm is that its rate of convergence can be slow when 
there is a large fraction of missing values.  Each of the iteration of EM consists 
of an E-step (expectation step) and M- step (maximization step). Given a set of 
parameter estimates, E-step calculates the conditional expectation of the 
complete data log likelihood given the observed data and the parameter 
estimates [2]. 
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For computational convenience, the MLE estimate is obtained by maximizing 
the log-likelihood function, : Assuming that the log-likelihood 
function,  is differentiable, it must satisfy the following partial 
differential equation known as the likelihood equation: 
 

 
L(w/y) represents the likelihood of the parameter w given the observed data y; 
and as such is a function of w. 
The likelihood equation represents a necessary condition for the existence of 
an MLE estimate. An additional condition must also be satisfied to ensure that           
ln L(w/y) is a maximum and not a minimum, since the first derivative cannot 
reveal this [17]. 

 
c) Imputation Methods: It is a class of procedures that aims to fill in the 

missing values with estimated ones. The objective is to employ known 
relationships that can be identified in the valid values of the data set to assist 
in estimating the missing values. 
In this work, the interest is on imputation techniques to fill in missing data 

 because there a number of alternatives methods. 
 
3. Imputation Techniques 
Imputation methods fill in missing data with estimated values based on information 
available in the data set. 

Replacing missing values using imputation methods is a better means rather 
than ignoring or removing variables or observations with missing data. 

There are many options varying from simplistic methods such as the mean 
imputation to more robust methods based on relationships among attributes. 
  
Some commonly used imputation methods are [6]: 
a) Substitution: In this case, one instance with missing data is substituted by 

another non sampled instance. This method is very simple: for nominal 
attributes, the missing data is replaced with the most common attribute value 
or the mode; numerical values are replaced with the average of all values of 
the corresponding attribute or the mean. And mostly used in sample surveys 
not employed in this work. 

b) Hot deck imputation: Identify the most similar case to the case with a 
missing value and substitute the most similar case’s Y value for the missing 
case’s Y value. 

 
The imputed values do not distort the distribution of the sampled values. It is 
common in survey practice and can involve very elaborate schemes for 
selecting units that are similar for imputation. The disadvantage is that it is 
difficult to find such similar responding units in the sample area 
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c) Regression Substitution: Here, we can replace the missing value with 
historical value from similar cases. Given a missing value for a variable X, 
suppose that q variables have been observed for that record. 
The records where these q + 1 variables are available define a training set, and 
a regression model to predict X from the q predictors is fitted. Finally, the 
fitted model provides a prediction for the initial missing value of X. 
A number p >1 of independent variables X1, X2,..., Xp is considered, so a 
population model, Y = β0+ β1X1+ β2X2+ ・・・ + βpXp+ ε, is assumed where 
Y denotes the dependent variable or response, X1, X2,..., Xp are the 
independent or predictor variables, ε is a random disturbance or error whose 
presence represents the absence of an accurate relationship. 
And β0, β1... βp are unknown coefficients or parameters that define the 
regression hyper-plane β0+ β1X1+ β2X2+ ・・・ + βpXp. 
If a qualitative variable is considered with c categories, c–1 dummy 
dichotomous variables are introduced into the model [10]. 

d) Matching Imputation: In such case, for each unit with a missing y, we find a 
unit with similar values of x in the observed data and take its y value [7]. 

e) Mean or Mode Imputation: It is a simple method where any missing value of 
a quantitative variable is replaced by the mean of the observed values for that 
variable. So, if a variable presents several missing values for different records, 
all of them are imputed with the same value. If the variable is qualitative, the 
missing values are replaced by the mode. 
The disadvantage of this method may severely distort summary measures 
including underestimates of the standard deviation. 

f) Last Observation Carried Forward (LOCF): One of the simple and widely 
used methods is Last Observation Carried Forward (LOCF). This method is 
for every missing value to be replaced by the last observed value from the 
same type. However, the value of the outcome remains unchanged after 
missing, which seems likely to be unrealistic. 

g) Prediction model imputations: Prediction models are one of the methods 
used for handling missing data. 
These methods consist of creating a predictive model to estimate values that 
will substitute the missing data such as ANN. Most of the time attributes have 
correlations among themselves. In this way, those correlations could be used 
to create a predictive model for classification or regression for, respectively, 
qualitative and quantitative attributes with missing data. Some of these 
relationships among the attributes may be maintained if they are captured by 
the predictive model. The disadvantage of this approach is that the model 
estimated values are likely to be more consistent with this set of attributes than 
the true (observed) values it would be. A second disadvantage is that there 
must be a correlation among the attributes. If there are no relationships among 
attributes in the data set and the attribute with missing data, then the model 
will not be precise for estimating missing values. The disadvantage of this 
approach is that the model estimated values are likely to be more consistent 
with this set of attributes than the observed values it would be [5]. The basic 
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unit of the neural network is the neuron. The simplest model of a neuron is the 
perceptron. 
A perceptron simply computes a weighted sum of its inputs and computes a 
non-linear function of it [14, 15]: 

, 
where, wi  are the weights of the inputs, xi  are the ith  components of an input x 
to the neuron and b is a bias parameter. Here, f is a non-linear activation 
function (transfer function) and y is the output. 
The non-linear function f is called activation function or transfer function and 
some of the most commonly used choices are the sigmoid, hyperbolic tangent 
and Gaussian functions. 
The most frequently used neural network model is the so-called multilayer 
perceptron (MLP), which is a fully connected network of neurons organized in 
several layers [11]. 
The network, which solves practical nonlinear problems, has hidden layers 
between the input and output layers. Analysis of the neurons in the hidden 
layers is a valuable technique for understanding what has been learnt by the 
network. Multilayer hierarchical networks are powerful because they can 
generate their own internal representation in the hidden units, which can be 
used for interpreting the results. 
An MLP can learn with a supervised learning rule using the back-propagation 
algorithm. The backward error propagation algorithm for ANN learning or 
training caused an advance in the application of multilayer perceptrons. 
The back-propagation algorithm gave rise to the iterative gradient algorithms 
designed to minimize the error measure between the actual output of the 
neural network and the desired output using a pre-computed error on the 
forward pass of information through the network. 
A trained neural network as a computational model can be represented with a 
simple formula for computing predictions based on learned/tuned weights and 
the inputs, i.e. for a two-layer perceptron. 
From the single perceptron, it is possible to modify the formula for multilayer 
perceptron. A trained neural network for computing predictions can be based 
on learned/tuned weights and the inputs. For a two-layer perceptron, the 
trained neural networks can be the following model:  

 
 

The weight  is the weight of the link from the neuron hp of the previous 
layer to the neuron hq in the layer H. This layer can be the output layer that is 
the weights for this are denoted as  meaning the link between the neuron 
hq in the last hidden layer and the output m. Transfer functions for the hidden 
layers are denoted as f hs(.) and for the output layer fout (·) correspondingly. 
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Other variables are: m is the index of an output, H1, H2 are the number of 
hidden units in the first and second layers, K is a number of inputs, and bk, bh1 
and bh2 are the biases of the layers. 
Back propagation [15] is an algorithm to compute the gradients of the error 
function with respect to the network weights. The error to be minimized is by 
a mean squared error (MSE). The outputs of the MLP trained with an MSE 
error function can be explained as the conditional average of the target data. 
By using a single output t, for an inputs-outputs pair (x, t), the error is simply: 

EMSE (w) = , 
where, Zout is an output of the MLP estimated for the desired value t. 
The basic back propagation algorithm follows these steps [13]: 
1)  The weights are initialized. At first, we initialize all the weights and 
bias to be small random values. 
2)  A pair of inputs -target (x, t) is provided to the network. 
3)  The derivatives of EMSE for a single pair (x, t) are computed with 
respect to the weights in each layer, starting at the output layer with the 
backward move to the inputs. 

h) K-Nearest Neighbor Imputation: This method also is used to estimate and 
substitute missing data. The main benefits of this method are that it can predict 
both the mode and the mean among the k nearest neighbors. There is no 
necessity for creating a predictive model for each attribute with missing data. 
Actually, the k-nearest neighbor algorithm does not create explicit models 
since the data set is used as a “lazy” model. Thus, the k-nearest neighbor 
algorithm can be easily adapted to work with any attribute as class, by just 
modifying the attributes to be considered in the distance metric. Also, this 
approach can easily treat examples with multiple missing values. The main 
drawback of the k-nearest neighbor approach is that, whenever the k-nearest 
neighbor looks for the most similar instances, the algorithm searches through 
all the data set. We consider what it might be like in a time series problem. In 
this case the input data is just a long series of time series over time without 
any particular record that could be considered to be an object. The value to be 
predicted is just the next value of the time series. The way that this problem is 
solved for both nearest neighbor techniques and for some other types of 
prediction algorithms is to create training records by taking, for instance, 10 
consecutive stock prices and using the first 9 as predictor values and the 10th 
as the prediction value. Doing things this way, if there are 100 data points in 
time series we could create 10 different training records. 
We can create even more training records than 10 by creating a new record 
starting at every data point. For instance, we can take the first 10 data points 
and create a record. Then we can take the 10 consecutive data points starting 
at the second data point, then the 10 consecutive data point starting at the third 
data point. Even though some of the data points would overlap from one 
record to the next the prediction value would always be different. 
The k-nearest neighbor algorithm assigns the classification of the most similar 
record or records based on the distance. 
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The most common distance function is Euclidean distance, which represents 
the usual manner in which humans think of distance in the real world: 

√ ∑(xi - yi )2 
where x = x1, x2...xm, and y = y1, y2,..., ym represent the m attribute values of 
two records[11]. 

i) Double Exponential Smoothing (Holt’s Method): 
This method works best when the time series has a positive or negative trend 
(i.e. upward or downward). This method uses two constants: β, which is the 
trend component, which must be chosen in conjunction with α, the mean 
component [9]. 
It is defined as 
  Yi+1 = Ei +Ti, i = 1, 2, …, n  
where Yi+1 = fore-casted value, Ei = αyi + (1-α) (E i-1 + T i-1), Ti = β(Ei – E i-1) 
+ (1-β)Ti-1, α is the mean constant (0<α  1), β is trend constant (0<=β<=1), 
and yi is observed value. 

After observing the value of the time series yi at period i, this method 
computes an estimate of the base, or expected level of the time series (Ei) and 
the expected rate of increase or decrease per period (Ti). It is customary to 
assume that E1 = y1 and unless told otherwise we assume T1= 0. 
To use the method, first we calculate the base level Ei for time i. Then we 

 compute the expected trend value Ti for time period i. Finally, we compute the 
 forecast yi+1 [12]. 
j) Triple Exponential Smoothing (Holt Winters Method): 
 This method is appropriate when trend and seasonality are present in the time 
 series. When an actual observation is divided by its corresponding seasonal 
 factor, it is said to be de-seasonalized. This allows us to make meaningful 
 comparisons across time periods. 

Let Si = seasonal factor for period i, c = the number of periods in a cycle (for 
 example 12 if months of year, 7 if  days of week, etc.), Li = seasonal values 
 in one cycle. 

The relevant formulas for this method follow: 
 Ei= α(yi /Si-c) + (1-α) (Ei-1 + Ti-1) 

    Ti = β (Ei – Li-1) + (1-β)Ti-1 
    Si = γ (yi / Li) + (1-γ) Si-c 
    Yi+1 = (Ei + Ti) Si+1-c = forecasted value 
 where α is the mean constant (0<α <= 1), β is trend constant (0<=β<=1), and 
 yi is observed value. γis another smoothing constant between 0 and 1. 
 
 
4. Empirical Experiment in Handling Missing/Noisy Data 
The aim of this subsection is to investigate the climate dataset to explore the 
appropriate techniques for handling missing values of the temperature and rainfall 
dataset. 

Different imputation models are compared from simple to complex such as 
mean/mode, Last Observation Carried Forward (LOCF), ANN imputation, K-Nearest 
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Neighbor Imputation, double exponential smoothing (Holt’s Method), triple 
exponential smoothing (Holt Winters Method). 

Two types of sample climate variable dataset with missing values were taken 
and aforementioned imputation techniques were applied. The maximum temperature 
and mean rainfall data having 5-20 percent missing data were investigated and the 
models were compared to select the best model and were applied on whole weather 
station to replace the missing value. 

For the imputation model selection, we considered two weather stations 
having high missing data and less missing data. 

Bahir Dar station has less missing data and Zegie station that has high amount 
of missing data. The figure below shows the missing data taking maximum 
temperature and mean rain fall of the two stations. 

 
Zegie Station 

 
 

Bahir Dar Station 

 
 

Fig.1 Zegie and Bahir Dar Station Maximum temperature missing data 
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Fig.2. Zegie and Bahir Dar Station mean Rainfall missing data 
 
 
5. Comparison of imputation Techniques. 
In this experiment, we tested different imputation methods selected in the previous 
sections using the dataset of maximum temperature, minimum temperature and mean 
rain fall of the two weather stations, Zegie and Bahir Dar. The models were compared 
using different performance evaluation methods like MAPE, RMSE, Correlation 
coefficient and others. 

These three measures are commonly used to assess the performance of 
machine learning for numerical values [16]. 

 
(a) Mean absolute error (MAE) is a quantity used to measure how close 

forecasts or predictions are to the eventual outcomes. The mean absolute error 
is given by 
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As the name suggests, the mean absolute error is an average of the absolute 
errors , where  is the prediction and  the true value. We note that 
the alternative formulations may include relative frequencies as weight factors. 

The mean absolute error is a common measure of forecast error in time series 
analysis. 

 
(b) Mean Square Error (MSE):This measures the average of the squares of the 

errors, that is, the difference between the estimator and what is estimated. 
MSE is a risk function, corresponding to the expected value of the squared 
error loss or quadratic loss. The difference occurs because of randomness or 
because the estimator doesn't account for information that could produce a 
more accurate estimate. 

 
The Root Mean Square Error (RMSE) (also called the root mean square 

deviation, RMSD) is a frequently used measure of the difference between the values 
predicted by a model and the values actually observed from the environment that is 
being modelled. These individual differences are also called residuals, and the RMSE 
serves to aggregate them into a single measure of predictive power. 

The RMSE of a model prediction with respect to the estimated variable Xmodel 
is defined as the square root of the mean squared error: 

 

n
XX

RMSE
n

i idelmoiobs∑=
−

= 1
2

,, )(
 

 
WhereXobs is observed values and Xmodel is modelled values at time/place i. 
 

(c) Correlation coefficient is a measure of association between two variables, 
and it ranges between –1 and 1. If the two variables are in perfect linear 
relationship, the correlation coefficient will be either 1 or –1.The sign depends 
on whether the variables are positively or negatively related. The correlation 
coefficient is 0 if there is no linear relationship between the variables. 

 
Two different types of correlation coefficients are in use. One is called the 

Pearson product moment correlation coefficient, and the other is called the Spearman 
rank correlation coefficient, which is based on the rank relationship between 
variables. 

The Pearson product-moment correlation coefficient is more widely used in 
measuring the association between two variables. Given paired measurements (X1, 
Y1), (X2, Y2)... (Xn, Yn), the Pearson product moment correlation coefficient is a 
measure of association given by 
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whereX and Y are the sample mean of X1, X2,..., Xnand Y1, Y2,..., Yn, respectively. 
In this Experiment, we tested different imputation methods selected in the 

previous sections using the dataset of maximum temperature mean rain fall of the two 
weather stations: Zegie and Bahir Dar. The models were compared using different 
performance evaluation methods, MAE, MSE and Correlation coefficient. 

To identify the model using different data (temperature and rainfall), each of 
the imputation methods was considered;we used a set of 12 or less lag variables as 
inputs from the time series data. 

The best results using performance metrics of MAE, MSE, and correlation 
coefficient (R) for each climate variable wereinvestigated. However, there is no 
model that is best in all performance measuring methods. In this work, the method 
that best in one climate variable may not be good in another variable. In addition to 
this, from the time series data if one value is missed at a time, one method may be 
better than the method that is used to fill in values having two or more series of 
missing values. Holt Winter’s method and ANN imputation methods are observed to 
be better because the Holt Winter’s method considers seasonal variation. 

ANN models are applied as imputation methods if the time series data has 
sufficient available data before missing values occurred. The results of ANNmodels 
are relatively better than the other methods using single step ahead and multistep 
ahead prediction in replacing missing values in time series data. 

In summary, it can be noted that the machine learning methods specially the 
neural network for producing individual imputations tested are more successful in 
estimating the original data than the classical statistical procedures according to the 
testing experiment done aboveand listed inTable 1. 

From the table, LOCF (Last Observation Carried Forward) method shows that 
its MSE, MSE error is high when compared to others but it is 100 percent correlated. 
In temperature or rainfall climate condition it is unlikely that the current month’s 
temperature or rainfall is exactly similar to next month’s whether condition. 
Therefore, we do not use this method to replace the missing value of the temperature 
and rainfall. 

Double exponential smoothing (Holt’s method) and K-NN show that their 
correlation is high but their error is not when compared to other models. 

The last models that were used as imputation methods is triple exponential 
method or Holts Winter’s method and ANN used to replace missing values. Missing 
values that occurred in the climate time series data before 130 items or instances is 
filled by the Holt Winter’s method which records that has the required amount of 
length and that can sufficient for neural network training handled by the MLP neural 
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network model. These two methods are found to be the appropriate methods to fill in 
missing time series data.Though, the correlation of the Holt winter’s method is poor, 
and it is good especially in rainfall data relative to the other method. 

A further investigation of the imputation methods can obtain better results to 
the dataset used in this work. 

 
Table.1 Performance evaluation of Imputation methods 

 
No Imputation 

Method 
Maximum

Temperature 
Minimum

Temperature 
Mean Rainfall 

MAE MSE R MAE MSE R MAE MSE R 
1 LOCF 1.1216 2.1665 1.000 1.3329 3.0963 1.00 75.1727 

 

14849.9 1.00

2 K-NN 1.7450 4.9490 0.5905 1.1533 2.1219 0.944 129 52356 0.2935
3 Holt's Method 1.3622 2.9862 0.9903 1.2940 2.9136 0.992 70.745 14120.2 0.97677
4 Holt Winter's 

Method 
0.7691 0.9885 0.7507 1.1782 2.8132 0.730 32.567 2952.50 0.6777

5 ANN Imputation 0.7585 1.0945 0.8278 0.7552 1.1774 0.903 29.739 884.416 0.9525
 

 
 

Fig. 3Bahir Dar Station maximum temperature missing data replaced 
 

 
 

Fig. 4 Bahir Dar Station Mean rainfall missing data replaced 
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Fig.5Zegie Station Maximum temperature missing data replaced. 
 

 
 

Fig. 6Zegie Station Mean rainfall missing data replaced. 
 
 
Conclusion 
In this paper, we investigate the climate dataset to explore the appropriate techniques 
for handling missing values of the temperature and rainfall dataset. 

To handle missing values, we tested different imputation methods using the 
dataset of maximum temperature and mean rainfall of the two weather stations. 

Different imputation models are compared from simple to complex such as 
mean/mode, Last Observation Carried Forward (LOCF), ANN imputation, K-Nearest 
Neighbour Imputation, Double Exponential Smoothing (Holt’s Method), Triple 
Exponential Smoothing (Holt Winters Method). 

In summary, it can be noted that the machine learning methods especially the 
neural network for producing individual imputations tested are more successful in 
estimating the original data than the classical statistical procedures according to the 
testing experimental done. 

A further investigation of the imputation methods can achieve better results to 
the dataset used in this work. 
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