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Abstract

Many practical applications developed in high level languages(HLL) like C,
C++ when synthesized into a hardware description (HDL), using the high
level synthesis tool, span large amount of space on the chip. In reconfigurable
computing systems (RCS) when such a design is interfaced and mapped with
the processor bus following a system-on-chip flow, the total area required may
fall short due to a number of other peripherals present in the design. For
mapping such an application, the solution is migrating part of the design to
hardware (HW) and the remaining part to software (SW). Instead of following
HW-SW approach, in this paper, we propose a novel design flow to map such
an application using the concept of partial reconfiguration (PR) on field
programmable gate arrays (FPGA). The design flow proposes a robust method
to partition the application into n parts, determined by giving a maximum
possible area on the chip. The process of mapping logic from HLL to HDL
requires resource estimation at the granularity level of instruction. Hence,
using a compiler the control flow graphs (CFG) have been created. HDL files
have been written for each operator found in the low level virtual machine
(LLVM) compiler intermediate format and a table of area has been tabulated
on Virtex-5 series supporting PR. The obtained partitions in LLVM-IR are
read by a Perl script and converted into Verilog. Using PR design flow the
partitions are bound to a PR region using PlanAhead SW. The results
highlight the pros and cons of this technique by comparing the time required
in SW and PR flow.
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INTRODUCTION

Accelerators are the applications which have been migrated from software to
hardware implementation for increasing the performance. In contemporary chips
examples of such accelerators are advance encryption algorithm (AES), Cyclic
redundancy check (CRC), image processing etc. In such a migration, the HDL code is
manually written to optimize it for application specific integrated circuits
development (ASIC) [1]. The performance gain in this process is ten folds but the cost
increases because of ASIC based design. The other way around is the automatic
generation of HDL and implementation on FPGAs. Many academic and commercial
compilers are available which can be used for automatic generation; examples include
Spark, ROCCC, LegUp etc. [2]. FPGAs do not deliver as much performance as ASIC
based design but chip fabrication can be by-passed. The automatic generated code for
practical designs consumes large area of the device. Following the embedded design
flow in Xilinx we concluded that an Intellectual property (IP) can be allocated 20% to
30% of the device area in Virtex-5 series. The application which consumes 60%
cannot fit in such design. This data’s can vary from chip to chip. Conventional
method for putting such applications on FPGA is by partitioning the design into HW
and SW parts [1]. In this research work we propose the design flow of HW partitions
of the same applications. To run such application we can partition the design and
produce partial HDL files. To partition the design we need to know the resources
required for each operator. The partitions can then be mapped to partial
reconfigurable regions in Planahead software. The scheduler to run the partitions can
be written in the Software development kit (SDK) in Xilinx.

Research works published in this domain can be cited firstly in [3] and have
shown the estimation of 10 pins and time required for the benchmarks. The work is
outdated as the density of logic elements has increased many folds.

The work done in the area estimation was first seen in [4]. The authors show
the number of CLB consumed for a design based on number of operator, their bit-
width and number of registers. The estimation is applicable to dataflow model where
semantics is similar to netlist. The work in [5] shows the estimation model for Matlab
based system generator designs. The model is well developed for Simulink based
design and is not applicable to HLL. The work in [6] shows the compiler framework
required for resource estimation of ANSI-C programs. Similar work has been done in
later but synthesis has not been done for comparison.

The resource estimation require a mathematical model giving results taking
inputs as operators, bit-width and types of operators and return the number of
LUTs/registers used. This model has been thoroughly proposed in [7]. The results
have only been shown for one benchmark which is not generic and estimation is not
for ANSI-C programs. The current work shows the usage of resource estimation for
ANSI-C program with a complete design flow.
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There has been extensive research work in the field of high level synthesis
which has produced many commercial tools. Since the objective of this paper is not
HLS but showing the usage of HLS in a different way, literature survey has not been
shown for it.

The remainder of this paper is organized as follows. Section Il gives a design
flow for implementing C applications on FPGA with resource estimation and
partitioning process. Section Il discusses the problem definition and its solution.
Section IV shows the theoretical and algorithmic approach for resource estimation
and library creation. Section V elaborates the high level synthesis. Section VI
describes the comparative results. Section VII and VIII show future work and
conclusion of our implementation respectively.

I PROPOSED DESIGN FLOW FOR HW-HW PARTITIONING

Reconfigurable Computing Systems (RCS) offer a versatile platform for
implementing applications in software or hardware using FPGAs. Additionally they
offer what is known as partial reconfiguration which allows loading partial HW
compiled bitstream that are stored in a memory and loaded with a help of a
configuration controller [8]. This feature is also known as run-time reconfiguration
(RTR), as the configuration is loaded when the systems are running. Fig.1 shows one
such PRR region and two partially reconfigurable modules (PRM) named as add and
Mult bound to this region.

Generate cfg and
urces

Fig. 2 HW-HW partitioning design flow in Xilinx PR tool
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The steps given below describe the proposed design flow for HW-HW
partitioning as shown in Fig.2

The application written in C is converted to LLVM IR and is optimized for
better HW generation. A library is created in HDL of instructions in LLVM IR and
synthesized in Xilinx ISE. The output is tabulated in a table. The resource
requirement of the program is then calculated and manual decision is taken from the
results to do partitioning. The generated partitions are converted to Verilog by parsing
the LLVM IR. A PR project is created in PlanAhead SW and generates the partial bit
files are generated for each partition. Results are compared with respect to time results
in SW and HW PR design flow.

1. PROBLEM DEFINITION AND GENERATING CONTROL FLOW GRAPH
Suppose a C program that has three for loops, as they are ones that consume most of
the time in the program. Assume when migrating this program to HW, the total
resource estimation exceeds the amount that can be allocated. This requires that the
program should be partitioned and executed in the correct order. Since there many
options possible during the partitioning phase, it is necessary to systematize the
process and make it robust. In this process it is necessary that we estimate the amount
of resources that each line of C code will take when it converted to HW. Hence this
places the requirement of parsing the C code using a compiler and generates operator
level information. This is can be done using a LLVM compiler that has an easy
instruction set and has many in-build optimization passes available.

A control flow graph (CFG) in literature is a representation, of all paths that
might be traversed through a program during its execution. In compiler, a control flow
graph node in the graph represents a basic block, i.e. a straight-line piece of code
without any jumps or jump targets. The representation of a piece of code in control
flow graph (CFG) is essential to many compiler optimizations and static
analysis tools. CFG is an intermediate representation which carries the control and
data flow. Control flow graphs have been frequently used for the automatic generation
of HDL [9]. Compilers usually decompose programs into their basic blocks as a first
step in the analysis process. Basic blocks from the vertices or nodes in a control flow
graph.

Any compiler can be used to generate CFG [10] e.g. are SUIF, LLVM, GCC,
TRIMARAN. The one having the in-built pass for CFG generation would be most
optimum. This pass is available in LLVM [11], so it is a good candidate for
generation of CFGs. Using LLVM we can generate the machine independent IR code
and from that form the CFG of basic blocks. LLVM is a compiler infrastructure
written in C++. It is designed for compile-time, link-time, run-time, and idle-time
optimization of programs written in arbitrary programming languages. Many HLS
compilers have used LLVM e.g. Ctoverilog, PandA, LegUp etc. Clang is the frontend
of the LLVM complier that converts the C program into an Intermediate
Representation (IR) that is similar to assembly language and useful for performing
subsequent compiler stages. Opt utility allows various passes to run on the code for
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doing optimizations like dead code elimination etc. We have used mem2reg pass to
minimize the memory access to minimum.

For Fibonacci, the c code and corresponding cfg is:
int fibo(int n){

int prev =-1;

int result = 1;

int sum;int i;

for(i = 0;i <= n;++ 1)

{

sum = result + prev;

prev = result;

result = sum;

by

return result;}

%0:

br label %1

%1:

%oresult.0 = phii32 [ 1, %0 ], [ %4, %5 ]
%prev.0 = phii32[ -1, %0 ], [ %result.0, %5 ]
%i.0 = phii32[ 0, %0 ], [ %6, %5 ]

%2 = icmp sle i32 %i.0, %n

br il %2, label %3, label %7

— L

%7:

-

%03:

%4 = add nsw i32 %result.0, %prev.0

br label %5

%6 = add nsw i32 %i.0, 1
br label %1

CFG for 'fibo' function

ret i32 %oresult.0

%05:

Fig. 3 CFG of Fibonacci series



30704 Ashish Mishra et al

V. RESOURCE ESTIMATION AND LIBRARY CREATION
For estimating the amount of chip space required for each operator a library is
required. The table-1 shows the LLVVM instructions and their corresponding area. The

Xilinx FPGA Virter-5 series xc5vix70t-1ff1136 [12] on ML507 was used to compile
the operators. This kit was chosen as it offers Partial Reconfiguration (PR) design.

Table-1
Ilvm instruction set: i32 | Equivalent hardware unit LUT FF
Phinode Multiplexer 32 32
+register
Phinode Up/down counter 33 32
Or acculumator
add Adder 32 -
fadd FP Adder 721 -
sub Substractor 32 -
fsub FP Sub 874
mul Multiplier 3/128 DSP | -
fmul FP Multiplier 49 -
icmp_eq equal 11 -
icmp_ne Not equal 11

Since the datapath contains arithmetic operators and consume most of the area,
there estimation is of prime concern. In this work we are focusing on area hence we
have not shown the delay values. In the table, column 1 is the LLVM instruction,
column 2 is the equivalent hardware unit and column 3 is the area in terms of Look-up
tables (LUTS). In order to estimate resources correctly we need so see the types and
quantity of resources available in Xilinx Virtex-5. We need to inspect the interrelation
in the result summary of the Xilinx ISE to create a formula. The various kinds of
resources available in Virtex-5 are slice registers with LUTs and flip-plops, DSP slices
and BRAMs. We need to create formula for slices registers and LUT which are the
primary resources under the assumption, that no operator sharing i.e. one to one
mapping for each instruction in CFG to its corresponding hardware block.

The total estimated area depends on the area consumed by three files FSM,
datapath and top level. The area consumed by FSM and top level is insignificant. The
analysis is given below:

Estimatedrota = FSMarea + Datapatharea + Toplevelares

Proposed theatrical formula for resource estimation:

Registers = (number of phinodes) * (width of variable) +
nodes)/log2]

LUT slices = (LUT slices of hardware) * (occurrences) + LUT slices used in

[log(number of

FSM

Since datapath is 32 bit and the FSM signals are 1 bit wide, LUT slices used by
FSM can be ignored without losing much in accuracy. Based on the resource table,
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Case a : Fibonacci series program,

Expected slice register = 3*32+3 = 99

Expected LUTs = 2*(phi node) + 1*(constant increment phinode) + 1*(32-bit adder) +
1*(icmp_sle) = 161

Case b: GCD program,

Expected slice register = 4*32+3 = 131

Expected LUT = 4*(phi node) + 2*(32-bit subtractor) + 1*(icmp_eq) + (icmp_sgt) =
236

Case c: factorial program,

Expected slice register=4*(phinode)+4=132

Expected slice LUT=1*(phi node) + 2*(constant increment phinode) + 2*(icmp_sle) =
194

The optimized intermediate code from LLVM is given as input to a Perl file
which processes the IR code and outputs a text file containing the resource required
for each basic block and the total resource requirement. The algorithm used for the
resource estimation is given below

ALGORITHM 1. RESOURCE ESTIMATION ALGORITHM

Create library of resources
No.of LUTs =0

No.of DSP slices =0

For each line in LLVM IR

If (line==BasicBlock name)

{Make a new entry in the Resource requirement table

LUTSs required for the previous block = no. of LUTSs

DSP slices required for the previous block = no. of DSP slices

No.of LUTs=0

No.of DSP slices=0}

Else {

Search for matches with library

If a match is found {

No.of LUTs += Matched entry’s resource requirement in the library
No.of DSP slices += Matched entry’s resource requirement in the library)}

}

}
Total LUTs required = Sum of LUTSs required for each block

Total DSP slices required = Sum of DSP slices required for each block
END
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V. HIGH LEVEL SYNTHESIS
High-level synthesis [13], is the design flow to obtain hardware automatically from
high level specification. The high level specification can be in various forms e.g.
flowchart, C, C++, pseudo code etc. These specifications are sequential in behavior
hence the flow is converted to concurrent execution in hardware. Parallelism is
extracted and clock is added to the generated hardware. The generated hardware is in
RTL form described in Verilog or VHDL. The goal of HLS is to let hardware
designers efficiently build and verify hardware, by giving them better control over
optimization of their design architecture, and through the nature of allowing the
designer to describe the design at a higher level of tools while the tool does the RTL
implementation. Verification of the RTL is an important part of the process. With
embedded system design flow the IP is interfaced to the bus and bus controller signals
are wrapped around it. The master i.e. processor is responsible for initiating the
transactions and computation is handled by IP. A Perl script was written to parse the
LLVM IR and convert to Verilog.

The Perl file gives three files as outputs FSM, data-path and the top module.
The FSM module preserves the dataflow dependency and data-path preserves the
dataflow. The top module instantiates the two modules and bind them together.

The LLVM IR instructions can be divided into four categories [14].
1. Datapath instructions e.g. add, sub, mul,

2. Conditional jumps e.g. whilecond, ifcond.

3. Control flow e.g. br, ret

4. PHI nodes define the incoming branch.

Fig. 4 depicts the generated data-path, FSM and top module for the CFG in
fig. 2. Each basic block is modeled as one FSM state. Each phi node defines the
incoming branch which infers a MUX operation. The first line in %1 state means
assign the variable %result.0 a value of 1 from %0 state or a value of %4 from %5
state. The select line of the MUX comes from FSM when in state %1.The output of
the MUX goes to a register which has an enable line from FSM. The phi node with
loop variable infers a counter in synthesis, so in diagram for control variable with
constant adder is shown. The operators like icmp and add are synthesized as separate
blocks. The output of the comparator is send to FSM to update the state. In state %7
the program ends and result is the output. Fig. 3 shows the complete block diagram of
the Fibo. module. Signals generated in FSM are mapped to the data-path in the top
level module. As shown in fig. 2 the CFG has five states, so are in FSM diagram. The
various enable signals are generated when the state changes. Since this is first step for
resource estimation, simple programs with no high level constructs have been used.
There are many limitations that this HLS has like restricted subset of C (no function
calls, memory access). In future we tend to remove these restrictions.
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TOP MODULE FOR FIBONNACI NUMBER PROBLEM

DATAPATH MODULE

FSM MODULE

Out[31:0]

k]

L 32 mux2-1 32 bit regiter
D Ouwt +
B "
Data_valid

In[31:0] _low

PHINODE as REG+MUX(for generic phinode) /
|:| COUNTER (for constant increment phinode) I:I COMBINATIONAL ELEMENTS

. Data is valid when state reaches state :%7 which is encoded as 011

Fig. 4 Top Module for Fibo program

The actual resource consumption is measured by no. of LUT flip-flop pair
used. Generally, as seen from table, number of LUT slices used is larger in number
than FF used. So to save resource usage on FPGA slice LUT utilization must be
minimized. Table-2 shows the results of the resources used by the program after
synthesis and theoretical calculation. The results are also compared with a commercial

tool Vivado.

Table-2 Comparison of Resources

Module(1) Estimate(2) Actual after synthesis(3) | Vivado Results
Slice Slice Slice Slice Slice
Lut register Lut register Lut, registers
Nth Fibonacci 161 99 164 99 168,96
number
Gcd function 236 131 240 134 212, 65
Sum of all 194 132 199 136 265
factorials + + +
upto ns 3/128 DSP 3/128 DSP 4/128 DSP,163
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VI, RESULTS
The LLVM IR can be extracted with different optimizations for the convenience of
the programmer. It is found that different optimizations give different area. For this
purpose, three C programs are taken as example.
1. GCD of two numbers,
2. Sum of Fibonacci series upto n numbers,
3. Factiorial of a given number.

Different optimizations used for analysis are:

Optim1: -mem2reg, -instsimplify

- memz2reg pass considers memory as register

- instsimplify simplifies instruction and inserts phi nodes

Optim2: - mem2reg —Icssa -licm

- Icssa is loop closed SSA form pass. It places phi nodes at the end of loops

- licm is loop invariant code motion. This pass identifies the statements which
are inside the loop whose values are not changing and keeps them outside the loop

Optim3: -mem2reg -loop-rotate -loop-reduce
- loop-rotate rotates loop and —loop-reduce reduces the strength of array
references inside loops

Optim4: -mem2reg -loop-unswitch
- loop-unswitch creates multiple loops wherever it is necessary

Optim5: -mem2reg -loop-rotate -loop-unroll
- loop-unroll unrolls the loop. Here the unroll count used is 10.

Table-3 Shows the LUT/DSP resource estimation for each of the optimizations

Function Optiml1 | Optim2 | Optim3 | Optim4 | Optim5
Gced 236/0 | 268/0 | 311/0 | 268/0 | 1859/0
Factorial 320/6 | 384/6 | 512/6 | 384/6 | 1376/60
Sum of Fibonacci series | 192/0 | 224/0 | 288/0 | 224/0 | 1152/0

Fig. 5 below is the graphical representation of LUTs used for different
optimizations. It is clear that loop unrolling increases the resource requirement. But
with loop unrolling, concurrency can be achieved.
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optiml optim2 optim3 optim4 optim5

Fig.5 Comparison of optimizations on HLS

The Verilog codes which are generated after is synthesized using Xilinx ISE.
The output waveforms generated for the GCD program is in Fig. 6.

1,000.000 ns
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Fig. 6 Verification of the GCD program

An experimental setup consists of a PowerPC running at 100 MHz, ICAP
controller at 100 MHz and xps timer at 100 MHz. The three partitions were interfaced
to the PLB bus and partial bit files were generated in PlanAhead tool. SDK program
was written to load the files dynamically. The partial bitstream files were placed in
flash memory. As an example, the area of DCT program is calculated. The callgraph
of DCT program is given in figure 7. The table 4 shows the amount of LUTs/DSP
slices required for a DCT program. The taken to run the DCT using partial
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reconfiguration was calculated using xps_timer running at 100 MHz. A data set of
64x 64 values was given as input and configuration of F and Y-C was done as two
configurations. Time was found to be to 0.163 sec for each configuration and total
time was 0.429 when the entire design was running.

e

CodecDoFdct

,/ .:,-’f ."r { T~ \TH‘\ \\__
vy & ¢ ‘

Fig. 7 C program for Discrete Cosine transform with three functions.

Table-6 Resource table and Reconfiguration time taken

Function LUTSs required | DSP Slices required
CodecDoFdct 582 0
Y 1941 4
F 6582 60
C 11 0
VIL. FUTURE WORK

In this work we were able to estimate the resource requirement of the program on the
reconfigurable hardware. Depending on the estimated values the program can be now
partitioned into clusters and executed on partial reconfigurable HW. By estimation
technique we will be able to create cluster of the required size For mapping the
partitioned design to one PR region a wrapper generation is requires which will
interface to the bus. This wrapper should be automatically generated for each partition
created. The scheduler was designed statically for the program; this is a major bottle
neck in design flow. A significant research work is required to generate the scheduler
aromatically depending on the control flow of the program. No such scheduler has
ever been discussed in literature although many works in the direction still remain.
The current work will continue in this direction and bring up a robust scheduler
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VIIL. CONCLUSION

In this work we successfully showed the process of resource estimation by creating
library. We have verified the formula by generating HDL code and synthesizing on
Xilinx. The results show that the proposed design flow is very useful extension to
currently existing tools on partial reconfiguration and HLS synthesis that will allow
any program to migrate on FPGA irrespective of amount of resources it can use. The
reconfiguration process is still not very robust as it gives error at many places where
the placement is not routable. The reconfiguration time was high as the loading of
bitstream from the ICAP controller is limited by its bit with and clocking. This time
can be further improved by placing small bitstreams in BRAM memory which will be
local to the chip.
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