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Abstract 
 

Scheduling is an important tool for manufacturing and engineering, where it can have 
a major impact on the productivity of a process. In manufacturing, the purpose of 
scheduling is to minimize the production time and costs, by telling a production 
facility when to make, with which staff, and on which equipment. Production 
scheduling aims to maximize the efficiency of the operation and reduce costs. With 
redundant machines we have the security of knowing that we are not going to be in 
trouble meeting our deadlines if a machine has any unexpected down-times. Finally 
we can work to get our batch sizes as small as is reasonably possible while also 
reducing the setup time of each batch. This allows us to eliminate a sizable portion of 
each part waiting while the rest of the parts in the batch are being machined. We keep 
all of our machines well-maintained to prevent any problems, but there is on way to 
completely prevent down-time. Our research paper deals with the 5*5 job shop 
production scheduling problem solving with sequence dependant setup times 
considering the minimization of the maximum job completion time (Cmax) by using 
genetic operators with string evaluation method and genetic algorithm (GA) with 
Matlab simulation software method. 
 
Index Terms: Job shop scheduling, minimization of maximum job completion time 
(Cmax), Genetic operators, Genetic algorithm (GA), Matlab simulation (Version 
R2009b). 
 
 
Introduction 
In any production facility where resources are shared between multiple batches or 
parts, it is extremely difficult to schedule all of the jobs so that no part is ever waiting 
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at all. In fact this scenario is used to illustrate a difficult to impossible problem to 
solve with computers is known as the job shop problem. Scheduling in manufacturing 
systems is typically associated with allocating a set of jobs on a set of machines in 
order to achieve some objectives [1]. It is a decision making process that concerns the 
allocation of limited resources to a set of tasks for optimizing one or more objectives 
[2]. In manufacturing scheduling, Job-shop is a system that process n number of tasks 
on m number of machines. In this type of environment, products are made to order 
and in a low volume. Usually, these orders are differ in term of processing 
requirements, materials needed, processing time, processing sequence and setup times 
[3,4]. Job-shop problems are widely known as a NP-hard problem. Nowadays, search 
algorithms based on branch and bound methods and several approximation algorithms 
have been developed [5,6]. However, result from the branch and bound method 
sometimes is really unpredictable and requires a lot of time. It depends on the size of 
the problem [7]. Thus, schedulers are usually satisfied with an acceptance result 
which is not far from optima. Genetic algorithm is a search techniques that are widely 
used in industries [8,9]. A schedule is a suitable plan which generally tells the things 
that are made to happen; it shows us a plan for the timing of certain actions and 
answers the question, “When will a particular event take place” [10,11]. In language 
of industry, scheduling is a technique to order the jobs in a particular sequence. There 
are variety of sequencing rules which are followed in the industries such as first in 
first out basis, priority basis, job size basis and processing time basis etc [12,13]. 

The sequence is adapted which gives optimal or near optimal solution. Also 
scheduling is concerned with allocating limited resources to tasks to optimize certain 
objective functions [14]. Each task may have a certain priority level, an earliest 
possible starting time and a due date. In all the scheduling problems, the number of 
jobs and the number of machines are assumed to be finite [15]. The following 
approaches will be used to solve the job shop problem. With universal fixture system 
we can easily move the part to the most appropriate machine at the correct time and 
with minimal disruption. 
 
 
Research Methodology 
Planning and scheduling are distinctly different activities. The plan defines what must 
be done and restrictions on how to do it, the schedule specifies both how and when it 
will be done. The plan or schedule refers to the estimates of time and resource for 
each activity, as well as the precedence relationships between activities and other 
constraints. The schedule refers to the temporal assignments of tasks and activities 
required for actual execution of the plan. Job is a piece of work that goes through the 
series of operations. Shop is a place for manufacturing or repairing of goods or 
machinery. Scheduling is a decision process aiming to deduce the order of processing. 
Job shop scheduling problem means jobs to be processed on shop floor within specific 
time. JSSP is a very tough to solve. It is a very complex problem to solve. JSP is a 
working area where n jobs to be processed on m set of machines with many tasks. In 
JSP the machine order can be different for each job so it becomes complex and agile 
to get the optimal solution. 
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So genetic algorithm is used for our research study to attain the following objectives 
in job shop scheduling: 

i. To minimize the makespan of the jobs, i.e., minimization of the maximum 
completion time and to minimize the processing cost. 

ii. To minimize the maximal machine workload, i.e., the maximum working time 
spent at any machine. This objective is to prevent a solution from assigning 
too much work on a single machine and to keep the balance of work 
distribution over the machines. 

iii. To minimize the total workload, which represents the total working time 
assigned over all machines. This objective is of interest if 
machine efficiency differ. 

 
 
Genetic Algorithm 
Genetic algorithms are evolutionary search techniques used to identify approximate 
solutions for optimization problems. They represents a computer simulation of a 
population of abstract representation called chromosomes of the candidate solutions 
called individuals to an optimization problem that evolves toward better solutions. 
The algorithm starts with a complete or partial randomly generated population. The 
evolution is simulated in generations. Each individual in this population has attached 
a fitness function that represents the individual performance based on a number of 
criteria. The new population is obtained from the old population by following three 
important steps: selecting the best individuals to become parents, performing 
crossover on the parents to obtain new individuals, and performing mutation to some 
very few individuals. The selection of individuals that will become parents is an 
important stage of the algorithm. Based on the fitness function value attached to each 
candidate, the individuals are chosen to become parents in order to increase the 
solution’s quality. 
 
 
Crossover and Mutation 
Crossover operation is a genetic operator that aims to obtain the propagation of the 
best genetic material. The two chosen parents are combined and the resulted 
individuals are included in the new generation in order to increase the population 
performance. The mutation is represented by a chromosome modification applied to 
one or more genes. Figure 1 shows the schematic representation of genetic algorithm 
flow chart. 
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Fig.1. Genetic algorithm flow chart 
 
 

Problem Description 
The classical job-shop scheduling problem, J//Cmax is defined as follows: we are 
given a set of m machines {M1... Mm} and a set of n jobs {J1... Jn}. 

Each job Jj, j=1,...,n, consists of a sequence of mj operations O1j,..., Omj,j, 
where Oij is an operation of job Jj to be processed on machine mij for a given 
uninterrupted processing time pij, where m(ij) i+ j≠1, for i=1,...,mj, j=1,...,n. The 
operations of each job must be processed in the given sequence. 

Each machine Mi, i=1,...,m, can process at most one operation at a time, and at 
most one operation of each job Jj, j=1,...,n, can be processed at a time. Let Cij be the 
completion time of operation Oij. The objective is to get a schedule that minimizes 
the maximum completion time Cmax=max i,j Cij. A schedule is an allocation of a 
single time interval for each operation. 
 
 
Encoding – Preference List Based Representation 
How to encode solutions to chromosomes to ensure feasible solutions is a key issue 
for genetic algorithms. The preference list-based representation is used in our 
algorithm. In this encoding method the operations are arranged in a certain order. The 
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sequence of operations of a job must stay intact also in the encoded solution. Table 1 
shows a 5×5 instance; scheduled for achieve the smallest possible makespan. 

 
Table 1 5*5 Job shop production scheduling input data’s for problem solving 

 
Jobs Processing machines Processing times 

Process Orders Process Orders 
1 2 3 4 5 1 2 3 4 5 

J1 M/C M1 M/C M2 M/C M3 M/C M4 M/C M5 32 78 56 40 15
J2 M/C M1 M/C M3 M/C M2 M/C M5 M/C M4 58 80 39 15 40
J3 M/C M2 M/C M1 M/C M5 M/C M3 M/C M4 90 85 75 30 11
J4 M/C M2 M/C M1 M/C M4 M/C M5 M/C M3 66 50 30 22 45
J5 M/C M1 M/C M3 M/C M2 M/C M5 M/C M4 76 49 57 28 25

 
 

From the Table 1, the operation sequence for each job 
J1(J1 M1 32) (J1 M2 78) (J1 M3 56) (J1 M4 40) (J1 M5 15) 
J2(J2 M1 58) (J2 M3 80) (J2 M2 39) (J2 M5 15) (J2 M4 40) 
J3(J3 M2 90) (J3 M1 85) (J3 M5 75) (J3 M3 30) (J3 M4 11) 
J4(J4 M2 66) (J4 M1 50) (J4 M4 30) (J4 M5 22) (J4 M3 45) 
J5(J5 M1 76) (J5 M3 49) (J5 M2 57) (J5 M5 28) (J5 M4 25) 

 
Job J1 must first be processed on machine M1 for 32 units. After that on 

machine M2 for 78 units and after that on machine M3 for 56 units and after that on 
machine M4 for 40 units and the last machine is M5 for 15 units. Similarly goes for 
the other four jobs. The schedule for this instance is encoded into a string, where the 
position of the operation in the string plays an important role. Operations are ordered 
with the help of a randomizer. Therefore it is important to use a reliable randomizer. 
String making in our case looks like this: 

 
a) A list of first operations of all jobs is made. 

((J1 M1 32) (J2 M1 58) (J3 M2 90) (J4 M2 66) (J5 M1 76)) 
 
b)  One operation is chosen randomly from the list of first operations. That is (J5 

M1 76). The operation is taken from the corresponding job and inserted into 
the string. 
J1 (J1 M1 32) (J1 M2 78) (J1 M3 56) (J1 M4 40) (J1 M5 15) 
J2 (J2 M1 58) (J2 M3 80) (J2 M2 39) (J2 M5 15) (J2 M4 40) 
J3 (J3 M2 90) (J3 M1 85) (J3 M5 75) (J3 M3 30) (J3 M4 11) 
J4 (J4 M2 66) (J4 M1 50) (J4 M4 30) (J4 M5 22) (J4 M3 45) 
J5 (J5 M3 49) (J5 M2 57) (J5 M5 28) (J5 M4 25) 
String: 
((J5 M1 76)) 
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c)  Again a list of first operations of all the jobs is made. An operation is 
randomly selected from the list. That is (J3 M2 90). This operation is taken 
from the corresponding job and inserted as second operation in the string. 
J1 (J1 M1 32) (J1 M2 78) (J1 M3 56) (J1 M4 40) (J1 M5 15) 
J2 (J2 M1 58) (J2 M3 80) (J2 M2 39) (J2 M5 15) (J2 M4 40) 
J3 (J3 M1 85) (J3 M5 75) (J3 M3 30) (J3 M4 11) 
J4 (J4 M2 66) (J4 M1 50) (J4 M4 30) (J4 M5 22) (J4 M3 45) 
J5 (J5 M3 49) (J5 M2 57) (J5 M5 28) (J5 M4 25) 
String: 
((J5 M1 76) (J3 M2 90)) 

 
d)  The procedure is repeated until all the operations from the jobs are transferred 

into the string. If the procedure would be continued until the end, the string 
could look like this: 
((J5 M1 76) (J3 M2 90) (J4 M2 66) (J1 M1 32) (J2 M1 58) (J2 M3 80) (J5 M3 
49) (J1 M4 40) (J2 M4 40) (J5 M5 28) (J1 M5 40) (J4 M1 50) (J3 M1 85) (J1 
M2 78) (J3 M5 75) (J2 M2 39) (J5 M2 57) (J1 M3 56) (J3 M3 30) (J4 M4 30) 
(J5 M4 25) (J4 M3 45) (J4 M5 22) (J3 M4 11) (J2 M5 15)) 

 
Job operations in the string still have the same processing order, but now they 

are mixed together. The string making is left to coincidence; it is possible to make a 
lot of versatile strings organisms which are necessary for the initial population. 
 
 
String Evaluation 
The feasibility is maintained throughout the searching process. Only feasible strings 
represent a solution to our problem. In our case the goal lies in the time optimization 
of schedules, we are interested in the makespan and processing order on the machines. 
For that reason, gantt charts are used for string evaluation and it is done step by step 
with adding operations one after another. The gantt chart and the makespan depend 
only upon the order in the string. In our case the operations are added directly from 
the string, from the left side to the right side. The operations which are at the 
beginning of the string have a higher processing priority than those at the end. This 
means, the gantt chart and the makespan depend only upon the order in the string. 
The operation order in the string is according to the precedence constrains. Otherwise 
the evaluation would give a false value. The gantt chart for our string is shown in 
fig.2. Numerical form of gantt chart is shown in Table 2. Table 3 shows the best 
possible schedule-1 sequence obtained from genetic operators with string evaluation 
method. 
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Fig.2. Best possible schedule-1 gantt chart for 5x5 instance string evaluation 
 

Table 2 Machine output schedules in numerical form 
 

Machines Output schedule sequences in numerical form 
M1 (0 J5 76) (76 J1 108) (108 J2 166) (166 J4 216) (216 J3 301) 
M2 (0 J3 90) (90 J4 156) (363 J1 441) (441 J2 480) (480 J5 537) 
M3 (166 J2 246) (246 J5 295) (441 J1 497) (497 J3 527) (527 J4 572) 
M4 (108 J1 148) (246 J2 286) (286 J4 316) (537 J5 562) (562 J3 573) 
M5 (295 J5 323) (323 J1 363) (363 J3 438) (572 J4 594) (594 J2 609) 

 
Table 3 Job shop production scheduling (5*5) sequence results obtained from 
genetic operators with string evaluation method for jobs based on processing 
orders 
 

Jobs Processing order Machine No. Start Time Finish Time 
J1 1 M1 76 108 
J1 2 M4 108 148 
J1 3 M5 323 363 
J1 4 M2 363 441 
J1 5 M3 441 497 
J2 1 M1 108 166 
J2 2 M3 166 246 
J2 3 M4 246 286 
J2 4 M2 441 480 
J2 5 M5 594 609 
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J3 1 M2 0 90 
J3 2 M1 216 301 
J3 3 M5 363 438 
J3 4 M3 497 527 
J3 5 M4 562 573 
J4 1 M2 90 156 
J4 2 M1 166 216 
J4 3 M4 286 316 
J4 4 M3 527 572 
J4 5 M5 572 594 
J5 1 M1 0 76 
J5 2 M3 246 295 
J5 3 M5 295 323 
J5 4 M2 480 537 
J5 5 M4 537 562 

 
 
Genetic Operators 
Genetic operators are used for solving a certain problem depends on the encoding 
method. The only genetic operation, which is independent from encoding, is selection. 
In our algorithm the tournament selection is used. Its purpose is to maintain the core 
of good solutions intact. This is done with transferring good solutions from one 
generation to the next one. The crossover operation often produces infeasible 
offspring, which are difficult to repair. The only genetic operation besides selection, 
which is used in our algorithm, is permutation. The permutation is based on switching 
operations inside the organism. The organism which will be permutated is chosen 
with the selection. The permutation procedure is described and shown on our string 
from Table 1: 
 
a) A random operation is chosen from the string; let’s say (J5 M1 76). 

String: 
((J5 M1 76) (J3 M2 90) (J4 M2 66) (J1 M1 32) (J2 M1 58) (J2 M3 80) (J5 M3 
49) (J1 M4 40) (J2 M4 40) (J5 M5 28) (J1 M5 40) (J4 M1 50) (J3 M1 85) (J1 
M2 78) (J3 M5 75) (J2 M2 39) (J5 M2 57) (J1 M3 56) (J3 M3 30) (J4 M4 30) 
(J5M4 25) (J4 M3 45) (J3 M4 11) (J4 M5 22) (J2 M5 15)) 

 
b) In our case, the right border is represented by the operation (J2 M3 85) and the 

left border is presented by the beginning of the string. In the string, the space 
between the borders is marked with square brackets. 
String: 
([(J5 M1 76) (J3 M2 90) (J4 M2 66) (J1 M1 32) (J2 M1 58)] (J2 M3 80) (J5 
M3 49) (J1 M4 40) (J2 M4 40) (J5 M5 28) (J1 M5 40) (J4 M1 50) (J3 M1 85) 
(J1 M2 78) (J3 M5 75) (J2 M2 39) (J5 M2 57) (J1 M3 56) (J3 M3 30) (J4 M4 
30) (J5 M4 25) (J4 M3 45) (J3 M4 11) (J4 M5 22) (J2 M5 15)) 
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c)  A random position between the brackets is chosen where the operation (J5 M1 
76) is inserted: let us say in front of (J4 M2 66). 
String: 
((J3 M2 90) (J5 M1 76) (J4 M2 66) (J1 M1 32) (J2 M1 58) (J2 M3 80) (J5 M3 
49) (J1 M4 40) (J2 M4 40) (J5 M5 28) (J1 M5 40) (J4 M1 50) (J3 M1 85) (J1 
M2 78) (J3 M5 75) (J2 M2 39) (J5 M2 57) (J1 M3 56) (J3 M3 30) (J4 M4 30) 
(J5 M4 25) (J4 M3 45) (J3 M4 11) (J4 M5 22) (J2 M5 15)) 

 
This procedure randomly changes the chosen organism, which also changes 

the solution which the organism represents. Because there is often necessary to switch 
more than one operation in the organism, it is possible to repeat the whole procedure 
over and over. Table 4 presents the 5*5 output instance for possible schedule-1. 
 
Table 4 Overall process sequencing output for 5*5 possible schedule-1 obtained 
from genetic operators with string evaluation method 
 

Processing sequence 
for  

possible schedule-1 

Job processing with respect to their machines and processing 
times 

1,2,3,4,5 (J5 M1 76), (J3 M2 90), (J4 M2 66), (J1 M1 32), (J2 M1 58) 
6,7,8,9,10 (J2 M3 80), (J5 M3 49), (J1 M4 40), (J2 M4 40), (J5 M5 28) 

11,12,13,14,15 (J1 M5 40), (J4 M1 50), (J3 M1 85), (J1 M2 78), (J3 M5 75) 
16,17,18,19,20 (J2 M2 39), (J5 M2 57), (J1 M3 56), (J3 M3 30), (J4 M4 30) 
21,22,23,24,25 (J5 M4 25), (J4 M3 45), (J3 M4 11), (J4 M5 22), (J2 M5 15) 

 
 

The 5*5 Job instance made up of 25 operations. The number of possible 
schedules S (solutions) can be calculated with Eq. (1). 

S = (n!) m         (1) 
 

Where, 
n = Total number of jobs 
m = Total number of machines 
For the 5*5 job instance case we get 
S = (5!)5 

= 24883200000 
S5*5 ≈ 24 million possible schedules. 

 
 
GA with Matlab Simulation for Solving Job Shop Scheduling Problems 
This section further focuses on solving a specific scheduling problem for job shop in 
industrial environment using genetic algorithm (GA) in Matlab simulation. The 
schedule is planned for job shop activities used in the industries. This Matlab 
simulation provided results in the form of job sequence, start and finish time for each 
activity considering the processing times. 
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Task Parameters of GA 
i) Values of function domain must be transformed to the code strings. 
ii) Do not directly transform task parameters, but their coded form. 
iii) Lead searching, coming out not from one point, but from some population of 

points. 
iv) Use only fitness function, but do not use derivative or other auxiliary 

information. 
 
Design Principles of GA 
Coding or Representation 
String with all parameters 
• Design alternative  individual (chromosome) 
• Single design choice  gene 
• Design objectives  fitness 
 
Fitness function (Parent selection) 
• Too strong fitness selection bias can lead to sub-optimal solution. 
• Always keep the best one 
• Too little fitness bias selection results in unfocused and meandering search 
 
Reproduction Operators 
Crossover 
• Two parents produce two offspring. 
• There is a chance that the chromosomes of the two parents are copied 

unmodified as offspring. 
• There is a chance that the chromosomes of the two parents are randomly 

recombined (crossover) to form offspring. 
• Generally the chance of crossover is between 0.6 and 1.0. 
• Generating offspring from two selected parents 
• Single point crossover 
• Two point crossover (Multi point crossover) 
• Uniform crossover 
 
Mutation 
• There is a chance that a gene of a child is changed randomly. 
• Generally the chance of mutation is low. 
 
Convergence (When to stop) 
• After many generations, average fitness has converged, but no global 

maximum is found; not sufficient difference between best and average fitness. 
• Relatively super-fit individuals dominate population 
• Population converges to a local maximum. 
 
Input and output parameters 
Step 1: Input parameters 
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Step 1.1 No. of Jobs 
Step 1.2 No. of Machines 
Step 1.3 No. of Operations 
Step 1.4 Machine Sequence for each jobs 
Step 1.5 Processing Time for each operation of each job on each machine. 
Step 1.6 Completion Time of each job 
Step 1.7 Due time for each job as per priority 
Step 2: Output Parameters 
Step 2.1 Near optimal schedule (makespan value) 
Step 2.2 Optimal job sequence 
Step 2.3 Tardiness (Earliness and Lateness) 
 
GA Parameters used while encoding Matlab 
NIND=40; (Number of individuals) 
MAXGEN=200; (Maximum number of generations) 
GGAP=1; (Generation gap) 
XOVR=0.8; (Crossover) 
MUTR=0.009; (Mutation) 
 
Processing Time 
T= [32 78 56 40 15; 
58 80 39 15 40 ; 
90 85 75 30 11; 
66 50 30 22 45; 
76 49 57 28 25 
]; 
 
Processing Machine 
M=[ 1 2 3 4 5; 
1 3 2 5 4; 
2 1 5 3 4; 
2 1 4 5 3; 
1 3 2 5 4 
]; 
 
GA with Matlab Simulation Results 
Figure 3 shows the Gantt chart i.e.machine versus time chart for our 5*5 scheduling 
problem. In this chart processing times are plotted in X-axis and processing machines 
are plotted in Y-axis. By using this chart we can find out the overall production 
scheduling results with respect to each machines for each jobs. From the Gantt chart 
we obtain the output for 5*5 job shop scheduling. For the best possible schedule-2 
(see Table 5) for machine wise schedule results based on priority level, (see Table 6) 
for job wise schedule results based on processed orders. 
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Fig.3. Matlab simulation best possible schedule-2 Gantt chart results 
 

Table 5 Job shop production scheduling (5*5) sequence results obtained from 
Matlab simulation results for machines based on priority level 
 

Machines Process Priority Job No. Process No Start Time Finish Time 
M1 1 J2 1 0 58 
M1 2 J1 1 58 90 
M1 3 J5 1 90 166 
M1 4 J3 2 166 251 
M1 5 J4 2 338 388 
M2 1 J3 1 0 90 
M2 2 J1 2 90 168 
M2 3 J5 3 215 272 
M2 4 J4 1 272 338 
M2 5 J2 3 338 377 
M3 1 J2 2 58 138 
M3 2 J5 2 166 215 
M3 3 J1 3 215 271 
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M3 4 J3 4 326 356 
M3 5 J4 5 444 489 
M4 1 J1 4 271 311 
M4 2 J3 5 356 367 
M4 3 J5 5 367 392 
M4 4 J4 3 392 422 
M4 5 J2 5 459 499 
M5 1 J3 3 251 326 
M5 2 J5 4 326 354 
M5 3 J1 5 354 369 
M5 4 J4 4 422 444 
M5 5 J2 4 444 459 

 
Table 6 Job shop production scheduling (5*5) sequence results obtained from 
Matlab simulation results for jobs based on processing orders 
 

Jobs Process No. Machine No. Start Time Finish Time 
J1 1 M1 58 90 
J1 2 M2 90 168 
J1 3 M3 215 271 
J1 4 M4 271 311 
J1 5 M5 354 369 
J2 1 M1 0 58 
J2 2 M3 0 58 
J2 3 M2 338 377 
J2 4 M5 444 459 
J2 5 M4 459 499 
J3 1 M2 0 90 
J3 2 M1 166 251 
J3 3 M5 251 326 
J3 4 M3 326 356 
J3 5 M4 356 367 
J4 1 M2 272 338 
J4 2 M1 338 388 
J4 3 M4 392 422 
J4 4 M5 422 444 
J4 5 M3 444 489 
J5 1 M1 90 166 
J5 2 M3 166 215 
J5 3 M2 215 272 
J5 4 M5 326 354 
J5 5 M4 367 392 
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Matlab simulation schedules are conducted for five different types of jobs on 
five different machines. Each types of the jobs are consists of five different tasks. So 
twenty five possible output processing sequences are listed in Table 7. 
 
Table 7 Overall process sequencing output for 5*5 obtained from GA with 
Matlab simulation method 
 

Processing sequence for  
possible schedule-2 

Job processing with respect to their machines  
and processing times 

1,2,3,4,5 (J2 M1 58), (J3 M2 90), (J1 M1 32), (J2 M3 80), (J5 M1 76) 
6,7,8,9,10 (J1 M2 78), (J3 M1 85), (J5 M3 49), (J1 M3 56), (J5 M2 57) 

11,12,13,14,15 (J3 M5 75), (J4 M2 66), (J1 M4 40), (J5 M5 28), (J3 M3 30) 
16,17,18,19,20 (J4 M1 50), (J2 M2 39), (J3 M4 11), (J1 M5 15), (J5 M4 25) 
21,22,23,24,25 (J4 M4 30), (J4 M5 22), (J2 M5 15), (J4 M3 45), (J2 M4 40) 

 
 
Benchmarking Results 
The problem is to find a suitable fitness function for a chromosome evaluation to get a 
solution for job shop scheduling problems. This suggests a new reasonable fitness 
function using GA techniques to evaluate population chromosomes efficiently. This 
technique used to give reward to the good chromosome and to apply a penalty on the 
bad chromosome. In order to approve the validity of the fitness function, another 
fitness function should be tested to get the results and compare the results with new 
fitness function results. Fitness Function that determine the fitness value according to 
the condition-action instances. Comparative analysis should be conducted and the 
comparison of various benchmark instance results are tabulated (see Table 8). Figure 
4 shows the graphical representation of jobs priority level, maximum job completion 
time (Cmax) and maximum job waiting time for the possible schedules 1 and 2 
comparison by using genetic operators with string evaluation method versus GA with 
Matlab simulation method respectively. 

 
Table 8 Comparison of Benchmark Instances 

 
Instances Number of 

individuals 
Max. Number 
of generations 

Crossover 
Rate 

Mutation 
rate 

Total 
Possible 

Schedules 
2*2 15 25 0.50 0.08 4 
3*3 25 75 0.70 0.05 216 
4*4 35 150 0.75 0.02 331776 
5*5 40 200 0.80 0.009 24 million 
6*6 55 250 0.85 0.008 1.39×1017 
7*7 70 300 0.90 0.007 8.26×1025 
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Fig.4. Graphical representation of genetic operators with string evaluation 
method versus GA in Matlab simulation method, (Cmax) and Maximum job 
waiting time 
 
 
Conclusion 
In this paper, we presented the genetic algorithm in Matlab R2009b simulation that 
are capable of finding good solutions for job shop production scheduling problem. 
Hence genetic operators with string evaluation method output schedule-1 is more 
machine idle time and maximum job completion time (Cmax) with an overall 
processing time of 0 to 609 units. Meanwhile GA with matlab simulation method 
output schedule-2 attain moderate machine idle time and maximum job completion 
time (Cmax) with an overall processing time of 0 to 499 units. Hence matlab 
simulation output effectively shows the smallest possible make span schedules to 
reduce the target of machine idle time and maximum job completion time (Cmax) 
effectively. So matlab output best possible schedule-2 is accepted due to shortest path 
for more efficiency. This algorithm would be an upgrade to a hybrid algorithm. 
Quality of final solution depends on the initial population and pure chance. So that 
search procedure has to be repeated several times for a specific problem. 
 
So genetic algorithm is proved for matlab simulation to attain the following aspects 
effectively in job shop production industries by considering the following aspects: 
i)  Make span of the job minimization: Maximum job completion time is 

minimized (Cmax) and processing cost is also minimized. 
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ii)  Minimization of maximal machine work load: Maximum working time spent 
at any machine is minimized and equal work load is distributed for all 
machines. 

iii)  Minimization of total machine work load: Total processing time for all work 
assigned machines is reduced so total machine idle time is decreased. 

iv)  GA with Matlab simulation: It is also applicable for all recommended 
complicated job shop scheduling problems for all types of industries. 

 
 
Future Scope 
Also, research papers are classified based on various criteria of GA such as its 
parameter selection, computer resource usage, hybridization and enhancement from 
the past work. These days further work is being continuously performed in developing 
new hybrid GA algorithms by using various methods such as combination of GA or 
other optimizing methods thus developing better results than these results are again 
rectified counter checked and taken best results out of many using methods like 
Design of Experiment (DoE) and many more, which finally identify future research 
scope in this widely growing area. 
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