
International Journal of Applied Engineering Research
ISSN 0973-4562 Volume 10, Number 12 (2015) pp. 32233-32258
© Research India Publications
http://www.ripublication.com

An Efficient Multipath Delay Commutator FFT
Processor for MIMO-OFDM Systems

Mr.S.P.Valan Arasu1, K.Saranya2, Dr.S.Baul Kani3

1Associate Professor & ECE Department,
Dr.Sivanthi Aditanar College of Engineering,Tiruchendur.

2PG Scholar & Dr.Sivanthi Aditanar College of Engineering,Tiruchendur.
3Associate Professor & ECE Department,

Government College of Engineering,Tirunelveli.
1kakkurichi@yahoo.com 2saranlakshmi92@gmail.com

3ramabaulkani@yahoo.co.in

Abstract

Fast Fourier Transform (FFT) is an important transformation used in many
applications of digital signal processing and communication systems. In
orthogonal frequency division multiplexing, Inverse fast Fourier transform
(IFFT) converts the modulated information from frequency domain to time
domain for transmission of radio signals, while FFT gathers samples from the
time domain, transforming them to the frequency domain. With multiple input
multiple output (MIMO) devices, data throughput can be increased
dramatically. Hence MIMO-OFDM systems provide promising data rate and
reliability in wireless communication. The proposed FFT processor uses
multipath delay commutator (MDC) and memory scheduling methods to
handle multiple input streams which results in full utilization in memory
usage. The inputs to the FFT processor are scheduled by using multipath delay
commutator. The proposed memory scheduling scheme can effectively reduce
the computation time for collecting input data of the FFT processor from the
memory. The proposed FFT processor uses floating point arithmetic to
improve the resolution and accuracy. Since, floating point arithmetic takes
little larger computation time, in order to reduce the computation time
pipelined floating point arithmetic is introduced. The proposed FFT processor
is adopted for variable length such as 2048, 1024, 512, 128 for MIMO-OFDM
systems.

IndexTerms-Fast Fourier Transform (FFT), memory scheduling, multiple
input multiple output, orthogonal frequency division multiplexing, pipeline
multipath delay commutator.

32234 Mr.S.P.Valan Arasu et al

I. INTRODUCTION
Fast Fourier Transform algorithms are mathematical simplifications of the Discrete
Fourier Transform (DFT). They exploit symmetries and periodicity in the transform in
order to reduce the number of mathematical computations. There have since been
many variations of this algorithm aimed at reducing the complexity of the DFT
calculations. These families of fast algorithms for computing the DFT are commonly
known as FFT algorithms. Fast Fourier transform (FFT) is a crucial block in
orthogonal frequency division multiplexing (OFDM) systems. OFDM has been
adopted in a wide range of applications from wired-communication modems, such as
digital subscriber lines (xDSL) to wireless-communication modems, such as
IEEE802.11 WiFi, IEEE802.16 WiMAX or 3GPPlong term evolution (LTE), to
process baseband data. Pipeline FFTs are a class of parallel algorithms that contain an
amount of parallelism equal to logrN where N is the number of points for an FFT and
r is the radix. A Pipeline implementation consists of a series of computational blocks
each composed of delay lines, coefficient storage, commutators, multipliers, and
adders. Pipeline FFT processor consists of butterfly unit, twiddle factor multiplication
unit and buffers. Butterfly unit carries out addition and subtraction. Twiddle factor
multiplied into the butterfly unit result. The main structures of pipeline FFT processor
are Single-path Delay Feedback (SDF), Multiple-path Delay Commutator (MDC),
and Single-path Delay Commutator (SDC). Each structure is suitable for application
in some specific areas. For example, the MDC structure is suitable for MIMO
communications, and the SDF structure is suitable for reconfigurable FFT processors.
SDF schemes provide feedback paths to manage partially computed results in each
pipe and to generate seamless output without delay.

II. MDC ARCHITECTURE FOR MIMO FFT/IFFT
In the radix 4 MDC architecture input sequence is divided into four parallel
data streams, and then proper delay of three of four streams butterfly
operation and twiddle factor multiplications are executed. Storage elements
dominate most of the area in conventional MDC architecture. That is, the input
buffering stage for radix-4 based FFT/IFFT needs N/4+ N/2+3N/4 words of memory,
and each computing stage needs 3N/4s words of memory, where s is the stage index.
For a 2048-point MDC FFT/IFFT processor, 5112 words of memory are required. If
MDC is applied in MIMO-OFDM systems, the memory size grows linearly with the
number of data streams. As for the utilization rate of butterflies and multipliers, since
3/4 of the computing time is used to gather the input data, the utilization rate is only
25% in single stream radix-4 MDC FFT/IFFT. However, for MIMO FFT/IFFT, we
found that if the data streams are properly scheduled, the utilization rate can increase
from 25% to 100%. This makes MDC very suitable for MIMO-OFDM systems. As
for the utilization rate of butterflies and multipliers, each one of the four input
symbols after memory scheduling takes 25% of one symbol time for radix-4 butterfly
computation. Consequently one radix-4 butterfly in each pipeline stage can process
four data streams without any idle period, that is, the utilization rate of butterflies and
multipliers is 100%. Furthermore, the radix-8 butterfly at the last stage can be

An Efficient Multipath Delay Commutator FFT Processor 32235

configured as a radix-4 butterfly. With such flexibility, radix-2 computation can be
incorporated at the last radix-8 stage, and thus for any N in power-of-2 fashion can be
computed with this proposed method. Finally, the serial blocks of output symbol
format helps to reduce the memory usage for output sorting and the complexity of the
modules followed by the FFT/IFFT processor. Figure 3 shows the block diagram of
the proposed MIMO FFT/IFFT computing core with N = 2048.

Figure 1. Block diagram of the proposed MIMO FFT Processor

A. Input Memory Scheduling
The goal is to convert the input streams in Fig. 2 (a) to the format in Fig. 2 (b). There
are 12 memory banks at the input stage for converting the parallel input streams into
serial blocks, such that one butterfly at each stage can compute the four data streams
without idle period.

 (a)

32236 Mr.S.P.Valan Arasu et al

 (b)

Figure 2 (a) Initial input order (b) Sorted input order at the output of input
buffer

The 16 memory banks are grouped into four memory sets as shown in Figure 3, that
is, memory sets a, b, c, d which are used to store the input streams, A,B,C,D
respectively. The 16 memory banks are logically grouped into four sets {a1, a2, a3,
a4}, {b1, b2, b3, b4}, {c1, c2, c3, c4}and {d1, d2, d3, d4} as shown in Figure 3. For
the case of N=2048, the memory banks {a1, a2, a3, a4}, {b1, b2, b3, b4}, {c1,c2,c3,
c4},and {d1,d2,d3,d4} store the samples 1th-512th, 513th-1024th,1025th-1536th,1537th-
2048th of the first, the second, the third, and the fourth input streams respectively.

Figure 3. Logic Group of Initial Memory Banks

An Efficient Multipath Delay Commutator FFT Processor 32237

In the first clock cycle, stage 1 radix 4 butterfly process the input data from the
memory bank{a1,a2,a3,a4} i.e stage1 radix 4 butterfly process 0 to N-1 samples of
stream A is shown in figure 4 (a). In the second clock cycle, stage 2 radix 4 butterfly
process the input data from the memory bank{b1,b2,b3,b4} i.e stage2 radix 4 butterfly
process 0 to N-1 samples of stream B shown in figure 4 (b). In the third clock cycle,
stage 3 radix 4 butterfly process the input data from the memory bank{c1,c2,c3,c4}
i.e stage1 radix 4 butterfly process 0 to N-1 samples of stream C is shown in figure 4
(c). In the fourth clock cycle, stage 4 radix 4 butterfly process the input data from the
memory bank{d1,d2,d3,d4} i.e stage 4 radix 4 butterfly process 0 to N-1 samples of
stream D is shown in figure 4 (d).

 (a)

 (b)

32238 Mr.S.P.Valan Arasu et al

 (c)

 (d)

Figure 4. Input memory scheduling (a) Memory Scheduling for stream A Figure
(b) Memory Scheduling for stream B Figure (c) Memory Scheduling for stream
C Figure (d) Memory Scheduling for stream D

B. Butterfly Operations
The proposed FFT/IFFT processor uses radix-4 butterflies as fundamental computing
elements. Each stage adopts the same radix-4 butterfly, while the last stage uses a
radix-8 butterfly which can also be configured as a radix-4 butterfly. As for the
complex multiplications, each radix-4 butterfly needs three multipliers and five real
adders. The last stage uses radix-8/radix-4 butterfly, where the multiplications of
twiddle factor can be realized by constant multipliers. This butterfly is composed by
one radix-4 and four radix-2 butterflies. When a radix-4 instead of a radix-8

An Efficient Multipath Delay Commutator FFT Processor 32239

computation is needed, this butterfly enables only the internal radix-4 computations.
The radix-4 FFT recursively partitions a DFT into four quarter-length DFTs of groups
of every fourth time sample. The radix-4 FFTs require only 75% as many complex
multiplications as the radix-2 FFTs. Figure 5 shows the butterfly diagram for radix-4
FFT. The radix-4 decimation-in-time and decimation-in-frequency Fast Fourier
transforms (FFTs) gain their speed by reusing the results of smaller, intermediate
computations to compute multiple DFT frequency outputs. The length-N DFT can be
computed as the sum of the outputs of four length-N/4 DFTs, of the even-indexed and
odd-indexed discrete-time samples, respectively, where three of them are multiplied
by so-called twiddle factors , , .

Figure 5. Butterfly Diagram for radix-4 FFT

III. COMPLEX MULTIPLIER IN RADIX-4 FFT
Most tedious part in FFT is the complex multiplication. Complex numbers are divided
into two parts real and imaginary.

A. Complex multiplier with 4 multipliers and 2 adders/subtractors
a+jb is a complex number which is multiplied by another complex number c+jd, we
will get

 (a*c)-(b*d)+ j (b*c+ a*d) (1)

There are four multiplication and two additions are involved. It requires larger chip
area in hardware implementation as shown in Figure 6

32240 Mr.S.P.Valan Arasu et al

Figure 6. Complex multiplier with 4 multipliers and 2adders/subtractors

B. Complex multiplier with 3 multipliers and 5 adders/subtractors
Using subexpression elimination method in equation (1)

 (a*c)-(b*d)+ j (b*c+a*d)= (a*c-b*c + b*c-b*d) + j (b*c+b*d-b*d+a*d)

={ (a*c – b*c) + (b*c-b*d)}+ j{ (a*d+b*d) + (b*c-b*d)}

 (a*c)-(b*d)+j (b*c+a*b)= (c* (a-b) + b* (c-d))+j (d* (a+b)+b* (c-d)) (2)

Equation (2) shows b* (c-d) term computed only once, only three real multipliers and
5 adder/subtractors are required instead of four real multipliers and 2
adders/subtractors as shown in figure7.Complex multiplier with four multipliers and
two adders/subtractors requires larger chip area in hardware implementation.
Complex multiplier with three multiplier and adders/subtractors requires smaller chip
area in hardware implementation compared to four multiplier and two
adders/subtractors. As for complex multiplication in FFT processor complex
multiplier with three multiplier and five adders/subtractors are used.

An Efficient Multipath Delay Commutator FFT Processor 32241

Figure 7. Complex multiplier with 3 multipliers and 5 adders/subtractors

IV FLOATING POINT ARITHMETIC
Floating point representation has its advantages of its resolution and accuracy
compared to fixed point number representation. Numbers in the floating point are
represented in the form of bit string. This bit string is combination of sign bit,
mantissa and exponent power. This representation is called IEEE 754 standard. The
single precision of floating Point is shown in figure8.

Figure 8. IEEE 754 single precision floating point format

Floating point number consists of three fields:
1. Sign (S): It is used to denote the sign of the number i.e. 0 represent positive

number and 1 represent negative number.
2. Mantissa (M): Mantissa is part of a floating point number which represents the

magnitude of the number.
3. Exponent (E): Exponent is part of the floating point number that represents the

number of places that the decimal point (or binary point) is to be moved.

Sign Exponent Mantissa

31 30 22 0

1 bit 8 bits 23 bits

32242 Mr.S.P.Valan Arasu et al

A.Steps required to carry out floating point addition/subtraction
1) Allign sign bit,exponent bits,mantissa bits.
2) Compute the sign of the result S=Sx+Sy.
3) The exponent of the operands must be made equal for addition and subtraction.
4) Compare exponents if Ey>Ex Right shift Mx by Ex-Ey, if Ex>Ey Right shift My

by Ey-Ex.
5) Append hidden bit 1 in the msb of the mantissa bits.
6) Add or subtract the mantissa bits to get sum result/subtraction result.
7) Normalize the result, the msb of the result is 1,then right shift result and

increment result exponent otherwise no shift is required.
8) Check result,overflow/underflow, if result mantissa is 0,may need to set the

exponent to zero to return a zero.
9) Round the appropriate number of bits.

Floating point Addition Example:
Consider the floating point addition 1.25+0.25

Append 01 (hidden bit) in the mantissa bits 0101000000000000000000000 (Mx
 larger) 0100000000000000000000000 (My smaller)
Ex>Ey Right shift smaller mantissa by exponential difference we get,
0001000000000000000000000 (Mr)
ADD Mr+Mx
0101000000000000000000000 (Mx)
0001000000000000000000000 (Mr)
--
0110000000000000000000000 (Ms)
Check carry =0
No need to normalize
Remove the hidden bit 01 from (Ms)
exponent=larger exponent
Final Answer:
{0 01111111 10000000000000000000000}=1.50

An Efficient Multipath Delay Commutator FFT Processor 32243

Floating point subtraction example:
Consider the floating point subtraction 1.25-0.25

Append 01 (hidden bit) in the mantissa bits 0101000000000000000000000 (Mx
 larger) 0100000000000000000000000 (My smaller)
Ex>Ey Right shift smaller mantissa by exponential difference we get,
0001000000000000000000000 (Mr)
SUBTRACT Mr-Mx
0101000000000000000000000 (Mx)
0001000000000000000000000 (Mr)

0100000000000000000000000 (Ms)
Check carry =0
No need to normalize
Remove the hidden bit 01 from (Ms)
exponent=larger exponent
Final Answer:
{0 01111111 00000000000000000000000} (1.00)

B. Steps required to carry out Floating point multiplication:
1) Allign sign bit,exponent bits,mantissa bits.
2) Compute the sign of the result Sx xor Sy.
3) Add exponents,biased exponent (Ex)+biased exponent (Ey)-bias.
4) Append hidden bit 1 in the msb of the mantissa bits.
5) MultiplymantissaMx*My.
6) Round the result to the allowed number of mantissabits.
7) Normalize the result, the msb of the result is 1,then right shift result and

increment result exponent otherwise no right shift is required.

Floating point multiplication example:
Consider the floating point multiplication-18*9.5

32244 Mr.S.P.Valan Arasu et al

Sign =Sx^Sy=0^1=1
Append hidden bit 1 in the mantissa bits
100100000000000000000000
 100110000000000000000000
Multiply mantissa bit
10010….0 x 10011 ….0

101010110…….0
remove hidden bit from the result 01010110……
0 Add exponents (Ex+Ey-bias)
10000011 + 10000010
--
100000101-001111111

010000110//normalize the result (10000110)
Final answer:
1 10000110 01010110000000000000000 =-171

C. Pipelined Floating point Arithmetic Unit
Pipelining is a special technique to give the faster output and reduce the delay in the
design. It allows many operations to occur in parallel. Pipelining reduces the critical
path in the circuit hence increases the speed. Generally in Pipelining, each operation
of the stage is performed at each clock pulse and concurrently the output of the
previous stage is given to the next stage so there is no waste of clock pulse in the
pipelining.

An Efficient Multipath Delay Commutator FFT Processor 32245

Figure 9. Pipelined floating point arithmetic unit

 Floating point arithmetic unit is splitted into three parts sign bit module,
exponent module, mantissa module. Pipelining register 1 stores the sign bit of the
operands, pipelining register 2 stores the exponent bit of the operands, pipelining
register 3 stores the mantissa bits of the operands. In the first stage of pipelining
compute the sign bit of the result. In the second stage of pipelining compute the
exponent bit of the result. In the third stage of pipelining compute the mantissa bit of
the result.

V RESULTS AND DISCUSSION
The design was simulated in Xilinix 14.5 & ModelSim 6.3f. This chapter comprises
of the simulation and synthesis results of Radix-4 FFT processor, complex multiplier
with 4 multipliers and 2 adders/subtractors, complex multiplier with 3 multipliers and
5 adders/subtractors, input memory scheduling algorithm and MDC FFT processor
and Floating point arithmetic unit results.

A.Radix-4 FFT Processor Simulation Results
The simulation result of radix-4 4 point FFT processor is shown in Figure 10. In the
simulation result the inputs are x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i and the outputs are
or0, oi0, or1, oi1, or2, or2, oi3, or3. Variables x0r, x1r, x2r, x3r represents the real
part input. Variables x0i, x1i, x2i, x3i represents the imaginary part input. Variables
o0r, o1r, o2r, o3r represents the real part output. Variables o0i, o1i, o2i, o3i represents
the imaginary part output. The input sequence x (n) is {0, 1, 1, 2} and the output
sequence x (k) is{4,-1+j,-2,-1-j }.

32246 Mr.S.P.Valan Arasu et al

Figure 10. Simulation result of Radix 4 FFT Processor

B. Device Utilization Summary of Radix-4 FFT Processor
Device utilization shown in Table 1 depicts the number of registers, LUT’s, slices,
IOs, buffers used by the Radix-4 FFT processor design.

Table 1. Device Utilization Summary of Radix-4 FFT processor

C. Simulation Result of Complex Multiplier with 4 multipliers and 2
adders/subtractors
The simulation result of complex multiplier with 4 multipliers and 2 adders/
subtractors is shown in Figure 11. In the simulation output, the inputs variables are c,
d, e, f, and the output variables are xr, xi. The input complex number 2+1j is
multiplied by another complex number 1+2j the output is 0+j5. xr represent the real
part output and its value is 0. xi represent the imaginary part output and its value is 5.

An Efficient Multipath Delay Commutator FFT Processor 32247

Figure 11. Simulation Result of Complex multiplier with 4 multipliers and 2
adders/subtractors

D. Simulation Result of Complex Multiplier with 3 multipliers and 5
adders/subtractors
The simulation result of complex multiplier with 3 multipliers and 5 adders/
subtractors is shown in Figure 12. In the simulation output, the input variables are c,
d, e, f, and the output variables are xr, xi. The input complex number 2+1j is
multiplied with another complex number 1+2j and the output is 0+j5. xr represent the
real part output and its value is 0. xi represent the imaginary part output and its value
is 5. This is the same as the one obtained in Figure 11but here, only 3 multiplications
are involved instead of 4 multiplications. Complex multiplier with four multiplier and
two adders/subtractors requires larger chip area in hardware implementation. So,
Complex Multiplier with 3 multiplier and 5 adders/subtractors is used to implement
MDC FFT processor.

Figure 12. Simulation Result of Complex multiplier with 3 multipliers and
5adders/subtractors

E. Device Utilization Summary of Complex Multiplier with 4 multipliers and 2
adders/subtractors of Complex Multiplier with 3 multipliers and 5
adders/subtractors
The Device Utilization Summary of Complex Multiplier with 4 multipliers and 2
adders/subtractors and complex multiplier with 3 multipliers and 5 adders/subtractors
are shown in Table 2 and Table 3 respectively. Device utilization summary explains
the number of registers, LUT’s, slices, IOs, buffers used by the Complex Multiplier
with 3 multipliers and 5 adders/subtractors. Compared to Table 2 the number of
devices used in the design decreases. So Complex Multiplier with 3 multipliers and
5adders/subtractors is used in the MDC FFT processor.

32248 Mr.S.P.Valan Arasu et al

Table 2 Device Utilization Summary of Complex Multiplier with 4 multipliers
and 2 adders/subtractors

Table 3. Device Utilization Summary of Complex Multiplier with 3 multipliers
and 5 adders/subtractors

F. Simulation Result of First In First Out
The simulation output of FIFO memory is shown in Figure 13. If we write 16 data
into FIFO memory, we need 16 clock cycles. In the simulation output buf_out
represent the memory output. When reset value is 1 buf_out value is zero. When reset
value is zero memory write operation is taking place. Figure 13 shows the 16 data is
to be written into the FIFO memory. The 16 data value is given by {3, 2, 1, 2, 1, 1, 1,
1, 2, 0, 1, 0, 3, 1, 1, 1}

Figure 13. Simulation result of FIFO

An Efficient Multipath Delay Commutator FFT Processor 32249

G. Simulation Result of Memory Partitioning
The simulation output of memory partitioning is shown in Figure 14. The memory is
divided into 4 memory banks. Memory partitioning scheme reduces the clock cycles
needed for write operation. If we write 16 data means we need 16 clock cycles as
shown in Figure 13. But the memory is divided into 4 memory bank means, we need
only 4 clock cycles to write 16 data. The 16 data is divided into 4 sets. The first 4 data
are stored in the memory bank1. The second 4 data are stored in memory bank2. The
third 4 data are stored in the memory bank 3. The fourth 4 data are stored in the
memory bank 4. This simple memory scheduling scheme is used for MDC FFT
processor.

Figure14.Simulation Result of Memory Partitioning

 In Figure 12, Memory bank1 stores the inputs {3, 2, 1, 2}. Memory bank2 stores
the inputs {1, 1, 1, 1}. Memory bank3 stores the inputs {2, 0, 1, 3}. Memory bank 4
stores the inputs {3, 1, 1, 1}.

Figure 15.Delay report for without memory partitioning

32250 Mr.S.P.Valan Arasu et al

Figure 16.Delay report for with memory partitioning

Table 3.Comparison result of without memory partitioning and with memory
partitioning interms of delay

Parameter Without memory partitioning With memory partitioning
Delay (ns) 2.002 1.431

H. Simulation Result of Input Memory Scheduling
The simulation result of logical group of initial memory banks is shown in Figure 17.
The 16 memory banks are logically grouped into four sets {a1, a2, a3, a4}, {b1, b2,
b3, b4}, {c1, c2, c3, c4}, {d1, d2, d3, d4}. There are four input streams A, B, C, D,
memory banks a1, a2, a3&a4 are used to store the samples of input stream A.
Memory banks b1, b2, b3& b4 is used to store the samples of input stream B.
Memory banks c1, c2, c3& c4 are used to store the samples of input stream C.
Memory banks d1, d2, d3& d4 are used to store the samples of input stream D. For
the case of N=16 the 4 stream input is A stream ={3, 2, 1, 2, 4, 2, 1, 2, 1, 1, 1, 1, 3, 1,
1, 1}, B stream={2, 1, 2, 1, 2, 0, 0, 0, 3, 3, 2, 2, 2, 0, 0, 0}, C stream={4, 2, 1, 2, 3, 3,
1, 2, 4, 1, 1, 1, 1, 3, 2, 2}, D stream = {2, 0, 0, 0, 2, 0, 0, 1, 3, 3, 3, 3, 4, 1, 1, 1}. a1
memory bank stores the samples{3, 2, 1, 2} a2 memory bank stores the samples {4, 2,
1, 2}. a3 memory bank stores the samples {1,1,1,1} a4 memory bank stores the
samples {3, 1, 1, 1} b1 memory bank stores the samples {2, 1, 2, 1} b2 memory bank
stores the samples {2, 0, 0, 0} b3 memory bank stores the samples {3, 3, 2, 2} b4
memory bank stores the samples {2, 0, 0, 0} c1 memory bank stores the samples {4,
2, 1, 2} c2 memory bank stores the samples {3, 3, 1, 2} c3 memory bank stores the
samples {4, 1, 1, 1} c4 memory bank store the samples {1, 3, 2, 2} d1 memory bank
stores the samples {2, 0, 0, 0} d2 memory bank stores the samples {2, 0, 0, 1} d3
memory bank stores the samples {3, 3, 3, 3} d4 memory bank stores the samples {4,
1, 1, 1}

An Efficient Multipath Delay Commutator FFT Processor 32251

Figure 17. Simulation result of input memory scheduling

I. Simulation Result of MDC FFT Processor
The simulation result of MDC FFT processor is shown in Figure 18. In the simulation
result r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16 represent the
output of the radix4 MDC FFT processor. In the first clock cycle, stage one radix 4
FFT processor process input samples of stream A. The inputs of stream A are (3, 2, 1,
2, 4, 2, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1}, and the outputs of stream A are {8, 2, 0, 2, 9, 3, 1, 3,
4, 0, 0, 0, 6, 2, 2, 2}. In figure 18 the outputs are in the 16 bit binary form the first 8
bit represent the imaginary part next 8 bit represent the real part. In the second clock
cycle, stage one radix 4 FFT processor process the input samples of stream B. The
inputs of stream B are {2, 1, 2, 1, 2, 0, 0, 0, 3, 3, 2, 2, 2, 0, 0, 0}, and the outputs of
stream B are {6, 0, 2, 0, 2, 2, 2, 2, 10, 1-j1, 0, 1+1j, 2, 2, 2, 2}. In the third clock
cycle, stage three radix-4 FFT processor process the input samples of stream C. The
inputs of stream C are {4, 2, 1, 2, 3, 3, 1, 2, 4, 1, 1, 1, 1, 3, 3, 2}, and the outputs of C
stream are {9, 3, 1, 3, 9, 2-j1,-1, 2+1j, 7, 3, 3, 3, 9,-2-j1,-1,-2+j1}. In the fourth clock
cycle, stage four radix 4 FFT processor process input samples of stream C. The inputs
of stream D are {2, 0, 0, 0, 2, 0, 0, 1, 3, 3, 3, 3, 4, 1, 1, 1}, and the outputs of D stream
are {2, 2, 2, 2, 3, 2+j1, 1, 2-j1, 12, 0, 0, 0, 7, 3, 3,3}.

32252 Mr.S.P.Valan Arasu et al

Figure 18.Simulation Result of MDC FFT processor

J. Simulation results of unpipelined and pipelined floating point adder
Figure 19 shows the unpipelined floating point addition, variables a, b represent input
and o represent output. The inputs are a=0 0 1 1 11 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 (1.25) b=0 0 1 1 1 1 1 0 1 0
(0.25).The output is o= 0 0 1 1 1 1 1 1 1 1 0
(1.50)

Figure19. Unpipelined floating point addition

An Efficient Multipath Delay Commutator FFT Processor 32253

Figure20. Pipelined floating point addition

 Figure 20 shows the pipelining floating point addition. Pipelined floating point
adder computes sign bit result in the first clock cycle as 0, exponent bit result in the
second clock cycle as 01111111,and mantissa bit result in the third clock cycle as
10000000000000000000000.

Figure 21. Delay report for unpipelined floating point adder

Figure 22. Delay report for pipelined floating point Adder

32254 Mr.S.P.Valan Arasu et al

K. Simulation results of unpipelined and pipelined floating point multiplier
Figure 23 shows the unpipelined floating point subtraction, variables a, b represent
input and o represent output a=0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(1.25),b = 0 0 1 1 1 1 1 0 1 0 (0.25).The
output is o=0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (1.00)

Figure23. Unpipelined floating point subtraction

Figure24. Pipelined floating subtraction

 Figure 24 shows the pipelined floating point subtraction. Pipelined floating point
subtractor computes sign bit result in the first clock cycle as 0, exponent bit result in
the second clock cycle as 01111111and mantissa bit result in the third clock cycle as
00000000000000000000000.

Figure25. Delay report for unpipelined floating point subtractor

An Efficient Multipath Delay Commutator FFT Processor 32255

Figure 26. Delay report for pipelined floating point subtrctor

L. Simulation results of unpipelined and pipelined floating point multiplier
Figure 27 shows the unpipelined floating point addition, variables a, b represent input
and o represent output, a=1 1 0 0 0 0 0 1 1 0 0 1 0
(18), b = 0 1 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (9.5). The output
is o = 1 1 0 0 0 0 1 1 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (-171)

Figure 27.Unpipelined floating point multiplication

Figure28. Pipelined floating point multiplication

 Figure 28 shows the pipelined floating point multiplication. Pipelined floating
point multiplier computes sign bit result in the first clock cycle as 1, exponent bit

32256 Mr.S.P.Valan Arasu et al

result in the second clock cycle ie) 10000110and mantissa bit result in the third clock
cycle ie) 01010110000000000000000

Figure 29. Delay report for unpipelined floating point multiplier

Figure 30. Delay report for pipelined floating point multiplier

An Efficient Multipath Delay Commutator FFT Processor 32257

Table 4.Comparison result of unpipelined &pipelined floating point Arithmetic
unit interms of delay

ARITHMETIC UNIT UnPipelined floatingpoint
arithmetic unit delay (ns)

Pipelined floatingpoint
arithmetic unit delay (ns)

Floating point adder 7.485 3.330
Floating pointsubtractor 7.485 3.330
Floating pointmultiplier 5.524 4.123

CONCLUSION
The proposed FFT processor is simulated using Xilinix 14.5 and ModelSim 6.3f. The
inputs to the FFT processor are scheduled by using Multipath delay commutator
architecture. Conversion from time domain to frequency domain of multiple data
streams are carried out by FFT/IFFT processor with the memory scheduled
architecture. The inputs to the FFT processor are scheduled as a set of memory banks.
By doing so, the computation time is minimized and better resource utilization is
achieved. MDC architecture and memory scheduling are very much suitable for
FFT/IFFT processor in multiple input multiple output OFDM system. The proposed
memory scheduling scheme can effectively reduce the computation time for collecting
input data of the FFT processor from the memory. Floating point representation has
its advantages of its resolution and accuracy compared to fixed point number
representation. The simulation results of pipelined floating point arithmetic shows the
reduction in delay compared to unpipelined floating point arithmetic unit. The results
of these pipelined implementation are to be used in the MDC FFT processor for
various set of simulations in our future work.

REFERENCES

[1] A. Cortes, I. Velez, and J. F. Sevillano, “Radix rk FFTs: Matricial

representation and SDC/SDF pipeline implementation,” IEEE Trans. Signal
Process., vol. 57, 7, pp. 2824-2839, Jul. 2009.

[2] B. Fu and P. Ampadu, ”An area efficient FFT/IFFT processor for MIMO-
OFDM WLAN 802.11n,” J. Signal Process. Syst., vol. 56, no. 1,pp. 59-68, Jul.
2009.

[3] B. G. Jo and M. H. Sunwoo, “New continuous-flow mixed-radix (CFMR) FFT
processor using novel in-place strategy,” IEEE Trans. Circuits Syst. I, Reg.
Papers, vol. 52, no. 5, pp. 1471-1477, Sep. 2002.1024-point FFT processor,”
IEEE J. Solid-State Circuits, vol. 34, no. 3, pp. 380-387, Mar.1999.

[5] C.-L. Hung, S.-S. Long, and M.-T. Shiue, “A low power and variable length
FFT processor design for flexible MIMO OFDM systems,” in Proc. IEEE Int.
Symp. Circuits Syst., May 2009, pp. 705-708

32258 Mr.S.P.Valan Arasu et al

[6] E. E. Swartzlander, W. K. W. Young, and S. J. Joseph,”A radix 4 delay
commutator for fast Fourier transform processor implementation,” IEEE J.
Solid-State Circuits, vol. 19, no. 5, pp. 702-709, Oct. 1984.

[7] Kai-Jiun Yang, Shang-Ho Tsai and Gene C. H. Chuang,” MDC FFT/IFFT
Processor With Variable Length for MIMO-OFDM Systems. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems.vol.21.no.April
2013.

[8] M. S. Patil, T. D. Chhatbar, and A. D. Darji, “An area efficient and low power
implementation of 2048 point FFT/IFFT processor for mobile Wimax,” in
Proc. Int. Conf. Signal Process. Commun., 2010, pp. 1-4.

[9] Samir Palnitkar Verilog HDL A guide to Digital Design and Synthesis
[10] S. He and M. Torkelson, “A new approach to pipeline FFT processor,” in

Proc. IEEE Int. Parallel Process. Symp., Apr. 1996, pp. 766-770.

