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Abstract 
 

Fast Fourier Transform (FFT) is an important transformation used in many 
applications of digital signal processing and communication systems. In 
orthogonal frequency division multiplexing, Inverse fast Fourier transform 
(IFFT) converts the modulated information from frequency domain to time 
domain for transmission of radio signals, while FFT gathers samples from the 
time domain, transforming them to the frequency domain. With multiple input 
multiple output (MIMO) devices, data throughput can be increased 
dramatically. Hence MIMO-OFDM systems provide promising data rate and 
reliability in wireless communication. The proposed FFT processor uses 
multipath delay commutator (MDC) and memory scheduling methods to 
handle multiple input streams which results in full utilization in memory 
usage. The inputs to the FFT processor are scheduled by using multipath delay 
commutator. The proposed memory scheduling scheme can effectively reduce 
the computation time for collecting input data of the FFT processor from the 
memory. The proposed FFT processor uses floating point arithmetic to 
improve the resolution and accuracy. Since, floating point arithmetic takes 
little larger computation time, in order to reduce the computation time 
pipelined floating point arithmetic is introduced. The proposed FFT processor 
is adopted for variable length such as 2048, 1024, 512, 128 for MIMO-OFDM 
systems. 
 
IndexTerms-Fast Fourier Transform (FFT), memory scheduling, multiple 
input multiple output, orthogonal frequency division multiplexing, pipeline 
multipath delay commutator. 
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I. INTRODUCTION 
Fast Fourier Transform algorithms are mathematical simplifications of the Discrete 
Fourier Transform (DFT). They exploit symmetries and periodicity in the transform in 
order to reduce the number of mathematical computations. There have since been 
many variations of this algorithm aimed at reducing the complexity of the DFT 
calculations. These families of fast algorithms for computing the DFT are commonly 
known as FFT algorithms. Fast Fourier transform (FFT) is a crucial block in 
orthogonal frequency division multiplexing (OFDM) systems. OFDM has been 
adopted in a wide range of applications from wired-communication modems, such as 
digital subscriber lines (xDSL) to wireless-communication modems, such as 
IEEE802.11 WiFi, IEEE802.16 WiMAX or 3GPPlong term evolution (LTE), to 
process baseband data. Pipeline FFTs are a class of parallel algorithms that contain an 
amount of parallelism equal to logrN where N is the number of points for an FFT and 
r is the radix. A Pipeline implementation consists of a series of computational blocks 
each composed of delay lines, coefficient storage, commutators, multipliers, and 
adders. Pipeline FFT processor consists of butterfly unit, twiddle factor multiplication 
unit and buffers. Butterfly unit carries out addition and subtraction. Twiddle factor 
multiplied into the butterfly unit result. The main structures of pipeline FFT processor 
are Single-path Delay Feedback (SDF), Multiple-path Delay Commutator (MDC), 
and Single-path Delay Commutator (SDC). Each structure is suitable for application 
in some specific areas. For example, the MDC structure is suitable for MIMO 
communications, and the SDF structure is suitable for reconfigurable FFT processors. 
SDF schemes provide feedback paths to manage partially computed results in each 
pipe and to generate seamless output without delay. 
 
 
II. MDC ARCHITECTURE FOR MIMO FFT/IFFT 
In the radix 4 MDC architecture input sequence is divided into four parallel 
data streams, and then proper delay of three of four streams butterfly 
operation and twiddle factor multiplications are executed. Storage elements 
dominate most of the area in conventional MDC architecture. That is, the input 
buffering stage for radix-4 based FFT/IFFT needs N/4+ N/2+3N/4 words of memory, 
and each computing stage needs 3N/4s words of memory, where s is the stage index. 
For a 2048-point MDC FFT/IFFT processor, 5112 words of memory are required. If 
MDC is applied in MIMO-OFDM systems, the memory size grows linearly with the 
number of data streams. As for the utilization rate of butterflies and multipliers, since 
3/4 of the computing time is used to gather the input data, the utilization rate is only 
25% in single stream radix-4 MDC FFT/IFFT. However, for MIMO FFT/IFFT, we 
found that if the data streams are properly scheduled, the utilization rate can increase 
from 25% to 100%. This makes MDC very suitable for MIMO-OFDM systems. As 
for the utilization rate of butterflies and multipliers, each one of the four input 
symbols after memory scheduling takes 25% of one symbol time for radix-4 butterfly 
computation. Consequently one radix-4 butterfly in each pipeline stage can process 
four data streams without any idle period, that is, the utilization rate of butterflies and 
multipliers is 100%. Furthermore, the radix-8 butterfly at the last stage can be 
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configured as a radix-4 butterfly. With such flexibility, radix-2 computation can be 
incorporated at the last radix-8 stage, and thus for any N in power-of-2 fashion can be 
computed with this proposed method. Finally, the serial blocks of output symbol 
format helps to reduce the memory usage for output sorting and the complexity of the 
modules followed by the FFT/IFFT processor. Figure 3 shows the block diagram of 
the proposed MIMO FFT/IFFT computing core with N = 2048. 

 

 
 

Figure 1. Block diagram of the proposed MIMO FFT Processor 
 

A. Input Memory Scheduling 
The goal is to convert the input streams in Fig. 2 (a) to the format in Fig. 2 (b). There 
are 12 memory banks at the input stage for converting the parallel input streams into 
serial blocks, such that one butterfly at each stage can compute the four data streams 
without idle period. 

 

 
 

 (a) 
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 (b) 
 

Figure 2 (a) Initial input order (b) Sorted input order at the output of input 
buffer 
 
 
The 16 memory banks are grouped into four memory sets as shown in Figure 3, that 
is, memory sets a, b, c, d which are used to store the input streams, A,B,C,D 
respectively. The 16 memory banks are logically grouped into four sets {a1, a2, a3, 
a4}, {b1, b2, b3, b4}, {c1, c2, c3, c4}and {d1, d2, d3, d4} as shown in Figure 3. For 
the case of N=2048, the memory banks {a1, a2, a3, a4}, {b1, b2, b3, b4}, {c1,c2,c3, 
c4},and {d1,d2,d3,d4} store the samples 1th-512th, 513th-1024th,1025th-1536th,1537th-
2048th of the first, the second, the third, and the fourth input streams respectively. 

 

 
 

Figure 3. Logic Group of Initial Memory Banks 
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In the first clock cycle, stage 1 radix 4 butterfly process the input data from the 
memory bank{a1,a2,a3,a4} i.e stage1 radix 4 butterfly process 0 to N-1 samples of 
stream A is shown in figure 4 (a). In the second clock cycle, stage 2 radix 4 butterfly 
process the input data from the memory bank{b1,b2,b3,b4} i.e stage2 radix 4 butterfly 
process 0 to N-1 samples of stream B shown in figure 4 (b). In the third clock cycle, 
stage 3 radix 4 butterfly process the input data from the memory bank{c1,c2,c3,c4} 
i.e stage1 radix 4 butterfly process 0 to N-1 samples of stream C is shown in figure 4 
(c). In the fourth clock cycle, stage 4 radix 4 butterfly process the input data from the 
memory bank{d1,d2,d3,d4} i.e stage 4 radix 4 butterfly process 0 to N-1 samples of 
stream D is shown in figure 4 (d). 

 

 
 (a) 

 
 (b) 
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 (c) 

 
 (d) 

 
Figure 4. Input memory scheduling (a) Memory Scheduling for stream A Figure 
(b) Memory Scheduling for stream B Figure (c) Memory Scheduling for stream 
C Figure (d) Memory Scheduling for stream D 
 
 
B. Butterfly Operations 
The proposed FFT/IFFT processor uses radix-4 butterflies as fundamental computing 
elements. Each stage adopts the same radix-4 butterfly, while the last stage uses a 
radix-8 butterfly which can also be configured as a radix-4 butterfly. As for the 
complex multiplications, each radix-4 butterfly needs three multipliers and five real 
adders. The last stage uses radix-8/radix-4 butterfly, where the multiplications of 
twiddle factor can be realized by constant multipliers. This butterfly is composed by 
one radix-4 and four radix-2 butterflies. When a radix-4 instead of a radix-8 
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computation is needed, this butterfly enables only the internal radix-4 computations. 
The radix-4 FFT recursively partitions a DFT into four quarter-length DFTs of groups 
of every fourth time sample. The radix-4 FFTs require only 75% as many complex 
multiplications as the radix-2 FFTs. Figure 5 shows the butterfly diagram for radix-4 
FFT. The radix-4 decimation-in-time and decimation-in-frequency Fast Fourier 
transforms (FFTs) gain their speed by reusing the results of smaller, intermediate 
computations to compute multiple DFT frequency outputs. The length-N DFT can be 
computed as the sum of the outputs of four length-N/4 DFTs, of the even-indexed and 
odd-indexed discrete-time samples, respectively, where three of them are multiplied 
by so-called twiddle factors , , . 

 

 
 

Figure 5. Butterfly Diagram for radix-4 FFT 
 
 

III. COMPLEX MULTIPLIER IN RADIX-4 FFT 
Most tedious part in FFT is the complex multiplication. Complex numbers are divided 
into two parts real and imaginary. 
 
A. Complex multiplier with 4 multipliers and 2 adders/subtractors 
a+jb is a complex number which is multiplied by another complex number c+jd, we 
will get 
 
 (a*c)-(b*d)+ j (b*c+ a*d)   (1) 
 
There are four multiplication and two additions are involved. It requires larger chip 
area in hardware implementation as shown in Figure 6 

 



32240  Mr.S.P.Valan Arasu et al 

 
 

Figure 6. Complex multiplier with 4 multipliers and 2adders/subtractors 
 
 

B. Complex multiplier with 3 multipliers and 5 adders/subtractors 
Using subexpression elimination method in equation (1) 
 
 (a*c)-(b*d)+ j (b*c+a*d)= (a*c-b*c + b*c-b*d) + j (b*c+b*d-b*d+a*d) 
 
={ (a*c – b*c) + (b*c-b*d)}+ j{ (a*d+b*d) + (b*c-b*d)} 
 
 (a*c)-(b*d)+j (b*c+a*b)= (c* (a-b) + b* (c-d))+j (d* (a+b)+b* (c-d))   (2) 
 
Equation (2) shows b* (c-d) term computed only once, only three real multipliers and 
5 adder/subtractors are required instead of four real multipliers and 2 
adders/subtractors as shown in figure7.Complex multiplier with four multipliers and 
two adders/subtractors requires larger chip area in hardware implementation. 
Complex multiplier with three multiplier and adders/subtractors requires smaller chip 
area in hardware implementation compared to four multiplier and two 
adders/subtractors. As for complex multiplication in FFT processor complex 
multiplier with three multiplier and five adders/subtractors are used. 
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Figure 7. Complex multiplier with 3 multipliers and 5 adders/subtractors 
 
 

IV FLOATING POINT ARITHMETIC 
Floating point representation has its advantages of its resolution and accuracy 
compared to fixed point number representation. Numbers in the floating point are 
represented in the form of bit string. This bit string is combination of sign bit, 
mantissa and exponent power. This representation is called IEEE 754 standard. The 
single precision of floating Point is shown in figure8. 

 

 
 

Figure 8. IEEE 754 single precision floating point format 
 
 

Floating point number consists of three fields: 
1.  Sign (S): It is used to denote the sign of the number i.e. 0 represent positive 

number and 1 represent negative number. 
2.  Mantissa (M): Mantissa is part of a floating point number which represents the 

magnitude of the number. 
3.  Exponent (E): Exponent is part of the floating point number that represents the 

number of places that the decimal point (or binary point) is to be moved. 

Sign Exponent Mantissa

31 30 22 0

1 bit 8 bits 23 bits
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A.Steps required to carry out floating point addition/subtraction 
1) Allign sign bit,exponent bits,mantissa bits. 
2) Compute the sign of the result S=Sx+Sy. 
3) The exponent of the operands must be made equal for addition and subtraction. 
4) Compare exponents if Ey>Ex Right shift Mx by Ex-Ey, if Ex>Ey Right shift My 

by Ey-Ex. 
5) Append hidden bit 1 in the msb of the mantissa bits. 
6) Add or subtract the mantissa bits to get sum result/subtraction result. 
7) Normalize the result, the msb of the result is 1,then right shift result and 

increment result exponent otherwise no shift is required. 
8) Check result,overflow/underflow, if result mantissa is 0,may need to set the 

exponent to zero to return a zero. 
9) Round the appropriate number of bits. 
 
Floating point Addition Example: 
Consider the floating point addition 1.25+0.25 

 

 
 

Append 01 (hidden bit) in the mantissa bits 0101000000000000000000000 (Mx 
 larger) 0100000000000000000000000 (My smaller) 
Ex>Ey Right shift smaller mantissa by exponential difference we get, 
0001000000000000000000000 (Mr) 
ADD Mr+Mx 
0101000000000000000000000 (Mx) 
0001000000000000000000000 (Mr) 
------------------------------------------------------------------------ 
0110000000000000000000000 (Ms) 
Check carry =0 
No need to normalize 
Remove the hidden bit 01 from (Ms) 
exponent=larger exponent 
Final Answer: 
{0 01111111 10000000000000000000000}=1.50 
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Floating point subtraction example: 
Consider the floating point subtraction 1.25-0.25 

 

 
 

Append 01 (hidden bit) in the mantissa bits 0101000000000000000000000 (Mx 
 larger) 0100000000000000000000000 (My smaller) 
Ex>Ey Right shift smaller mantissa by exponential difference we get, 
0001000000000000000000000 (Mr) 
SUBTRACT Mr-Mx 
0101000000000000000000000 (Mx) 
0001000000000000000000000 (Mr) 
--------------------------------------------------------- 
0100000000000000000000000 (Ms) 
Check carry =0 
No need to normalize 
Remove the hidden bit 01 from (Ms) 
exponent=larger exponent 
Final Answer: 
{0 01111111 00000000000000000000000} (1.00) 
 
B. Steps required to carry out Floating point multiplication:  
1) Allign sign bit,exponent bits,mantissa bits.  
2) Compute the sign of the result Sx xor Sy.  
3) Add exponents,biased exponent (Ex)+biased exponent (Ey)-bias. 
4)  Append hidden bit 1 in the msb of the mantissa bits.  
5) MultiplymantissaMx*My.  
6) Round the result to the allowed number of mantissabits.  
7) Normalize the result, the msb of the result is 1,then right shift result and 

increment result exponent otherwise no right shift is required. 
 
Floating point multiplication example:  
Consider the floating point multiplication-18*9.5 
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Sign =Sx^Sy=0^1=1  
Append hidden bit 1 in the mantissa bits  
100100000000000000000000  
 100110000000000000000000  
Multiply mantissa bit  
10010….0 x 10011 ….0 
----------------------------------------------------------------------- 
101010110…….0  
remove hidden bit from the result 01010110…… 
0 Add exponents (Ex+Ey-bias)  
10000011 + 10000010 
---------------------------------------------------------------- 
100000101-001111111 
 
010000110//normalize the result (10000110)  
Final answer:  
1 10000110 01010110000000000000000 =-171 
 
C. Pipelined Floating point Arithmetic Unit 
Pipelining is a special technique to give the faster output and reduce the delay in the 
design. It allows many operations to occur in parallel. Pipelining reduces the critical 
path in the circuit hence increases the speed. Generally in Pipelining, each operation 
of the stage is performed at each clock pulse and concurrently the output of the 
previous stage is given to the next stage so there is no waste of clock pulse in the 
pipelining. 
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Figure 9. Pipelined floating point arithmetic unit 
 
 

 Floating point arithmetic unit is splitted into three parts sign bit module, 
exponent module, mantissa module. Pipelining register 1 stores the sign bit of the 
operands, pipelining register 2 stores the exponent bit of the operands, pipelining 
register 3 stores the mantissa bits of the operands. In the first stage of pipelining 
compute the sign bit of the result. In the second stage of pipelining compute the 
exponent bit of the result. In the third stage of pipelining compute the mantissa bit of 
the result. 
 
 
V RESULTS AND DISCUSSION 
The design was simulated in Xilinix 14.5 & ModelSim 6.3f. This chapter comprises 
of the simulation and synthesis results of Radix-4 FFT processor, complex multiplier 
with 4 multipliers and 2 adders/subtractors, complex multiplier with 3 multipliers and 
5 adders/subtractors, input memory scheduling algorithm and MDC FFT processor 
and Floating point arithmetic unit results. 
 
A.Radix-4 FFT Processor Simulation Results 
The simulation result of radix-4 4 point FFT processor is shown in Figure 10. In the 
simulation result the inputs are x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i and the outputs are 
or0, oi0, or1, oi1, or2, or2, oi3, or3. Variables x0r, x1r, x2r, x3r represents the real 
part input. Variables x0i, x1i, x2i, x3i represents the imaginary part input. Variables 
o0r, o1r, o2r, o3r represents the real part output. Variables o0i, o1i, o2i, o3i represents 
the imaginary part output. The input sequence x (n) is {0, 1, 1, 2} and the output 
sequence x (k) is{4,-1+j,-2,-1-j }. 
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Figure 10. Simulation result of Radix 4 FFT Processor 
 
 

B. Device Utilization Summary of Radix-4 FFT Processor 
Device utilization shown in Table 1 depicts the number of registers, LUT’s, slices, 
IOs, buffers used by the Radix-4 FFT processor design. 

 
Table 1. Device Utilization Summary of Radix-4 FFT processor 

 

 
 
 

C. Simulation Result of Complex Multiplier with 4 multipliers and 2 
adders/subtractors 
The simulation result of complex multiplier with 4 multipliers and 2 adders/ 
subtractors is shown in Figure 11. In the simulation output, the inputs variables are c, 
d, e, f, and the output variables are xr, xi. The input complex number 2+1j is 
multiplied by another complex number 1+2j the output is 0+j5. xr represent the real 
part output and its value is 0. xi represent the imaginary part output and its value is 5.  
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Figure 11. Simulation Result of Complex multiplier with 4 multipliers and 2 
adders/subtractors 
 
D. Simulation Result of Complex Multiplier with 3 multipliers and 5 
adders/subtractors 
The simulation result of complex multiplier with 3 multipliers and 5 adders/ 
subtractors is shown in Figure 12. In the simulation output, the input variables are c, 
d, e, f, and the output variables are xr, xi. The input complex number 2+1j is 
multiplied with another complex number 1+2j and the output is 0+j5. xr represent the 
real part output and its value is 0. xi represent the imaginary part output and its value 
is 5. This is the same as the one obtained in Figure 11but here, only 3 multiplications 
are involved instead of 4 multiplications. Complex multiplier with four multiplier and 
two adders/subtractors requires larger chip area in hardware implementation. So, 
Complex Multiplier with 3 multiplier and 5 adders/subtractors is used to implement 
MDC FFT processor. 

 

 
 

Figure 12. Simulation Result of Complex multiplier with 3 multipliers and 
5adders/subtractors 
 
E. Device Utilization Summary of Complex Multiplier with 4 multipliers and 2 
adders/subtractors of Complex Multiplier with 3 multipliers and 5 
adders/subtractors 
The Device Utilization Summary of Complex Multiplier with 4 multipliers and 2 
adders/subtractors and complex multiplier with 3 multipliers and 5 adders/subtractors 
are shown in Table 2 and Table 3 respectively. Device utilization summary explains 
the number of registers, LUT’s, slices, IOs, buffers used by the Complex Multiplier 
with 3 multipliers and 5 adders/subtractors. Compared to Table 2 the number of 
devices used in the design decreases. So Complex Multiplier with 3 multipliers and 
5adders/subtractors is used in the MDC FFT processor. 
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Table 2 Device Utilization Summary of Complex Multiplier with 4 multipliers 
and 2 adders/subtractors 

 

 
 

Table 3. Device Utilization Summary of Complex Multiplier with 3 multipliers 
and 5 adders/subtractors 

 

 
 
F. Simulation Result of First In First Out 
The simulation output of FIFO memory is shown in Figure 13. If we write 16 data 
into FIFO memory, we need 16 clock cycles. In the simulation output buf_out 
represent the memory output. When reset value is 1 buf_out value is zero. When reset 
value is zero memory write operation is taking place. Figure 13 shows the 16 data is 
to be written into the FIFO memory. The 16 data value is given by {3, 2, 1, 2, 1, 1, 1, 
1, 2, 0, 1, 0, 3, 1, 1, 1} 

 

 
 

Figure 13. Simulation result of FIFO 
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G. Simulation Result of Memory Partitioning 
The simulation output of memory partitioning is shown in Figure 14. The memory is 
divided into 4 memory banks. Memory partitioning scheme reduces the clock cycles 
needed for write operation. If we write 16 data means we need 16 clock cycles as 
shown in Figure 13. But the memory is divided into 4 memory bank means, we need 
only 4 clock cycles to write 16 data. The 16 data is divided into 4 sets. The first 4 data 
are stored in the memory bank1. The second 4 data are stored in memory bank2. The 
third 4 data are stored in the memory bank 3. The fourth 4 data are stored in the 
memory bank 4. This simple memory scheduling scheme is used for MDC FFT 
processor. 

 

 
 

Figure14.Simulation Result of Memory Partitioning 
 

 In Figure 12, Memory bank1 stores the inputs {3, 2, 1, 2}. Memory bank2 stores 
the inputs {1, 1, 1, 1}. Memory bank3 stores the inputs {2, 0, 1, 3}. Memory bank 4 
stores the inputs {3, 1, 1, 1}. 

 

 
 

Figure 15.Delay report for without memory partitioning 
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Figure 16.Delay report for with memory partitioning 
 

Table 3.Comparison result of without memory partitioning and with memory 
partitioning interms of delay 
 

Parameter Without memory partitioning With memory partitioning 
Delay (ns) 2.002 1.431 

 
 
H. Simulation Result of Input Memory Scheduling 
The simulation result of logical group of initial memory banks is shown in Figure 17. 
The 16 memory banks are logically grouped into four sets {a1, a2, a3, a4}, {b1, b2, 
b3, b4}, {c1, c2, c3, c4}, {d1, d2, d3, d4}. There are four input streams A, B, C, D, 
memory banks a1, a2, a3&a4 are used to store the samples of input stream A. 
Memory banks b1, b2, b3& b4 is used to store the samples of input stream B. 
Memory banks c1, c2, c3& c4 are used to store the samples of input stream C. 
Memory banks d1, d2, d3& d4 are used to store the samples of input stream D. For 
the case of N=16 the 4 stream input is A stream ={3, 2, 1, 2, 4, 2, 1, 2, 1, 1, 1, 1, 3, 1, 
1, 1}, B stream={2, 1, 2, 1, 2, 0, 0, 0, 3, 3, 2, 2, 2, 0, 0, 0}, C stream={4, 2, 1, 2, 3, 3, 
1, 2, 4, 1, 1, 1, 1, 3, 2, 2}, D stream = {2, 0, 0, 0, 2, 0, 0, 1, 3, 3, 3, 3, 4, 1, 1, 1}. a1 
memory bank stores the samples{3, 2, 1, 2} a2 memory bank stores the samples {4, 2, 
1, 2}. a3 memory bank stores the samples {1,1,1,1} a4 memory bank stores the 
samples {3, 1, 1, 1} b1 memory bank stores the samples {2, 1, 2, 1} b2 memory bank 
stores the samples {2, 0, 0, 0} b3 memory bank stores the samples {3, 3, 2, 2} b4 
memory bank stores the samples {2, 0, 0, 0} c1 memory bank stores the samples {4, 
2, 1, 2} c2 memory bank stores the samples {3, 3, 1, 2} c3 memory bank stores the 
samples {4, 1, 1, 1} c4 memory bank store the samples {1, 3, 2, 2} d1 memory bank 
stores the samples {2, 0, 0, 0} d2 memory bank stores the samples {2, 0, 0, 1} d3 
memory bank stores the samples {3, 3, 3, 3} d4 memory bank stores the samples {4, 
1, 1, 1} 
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Figure 17. Simulation result of input memory scheduling 
 
 

I. Simulation Result of MDC FFT Processor 
The simulation result of MDC FFT processor is shown in Figure 18. In the simulation 
result r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16 represent the 
output of the radix4 MDC FFT processor. In the first clock cycle, stage one radix 4 
FFT processor process input samples of stream A. The inputs of stream A are (3, 2, 1, 
2, 4, 2, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1}, and the outputs of stream A are {8, 2, 0, 2, 9, 3, 1, 3, 
4, 0, 0, 0, 6, 2, 2, 2}. In figure 18 the outputs are in the 16 bit binary form the first 8 
bit represent the imaginary part next 8 bit represent the real part. In the second clock 
cycle, stage one radix 4 FFT processor process the input samples of stream B. The 
inputs of stream B are {2, 1, 2, 1, 2, 0, 0, 0, 3, 3, 2, 2, 2, 0, 0, 0}, and the outputs of 
stream B are {6, 0, 2, 0, 2, 2, 2, 2, 10, 1-j1, 0, 1+1j, 2, 2, 2, 2}. In the third clock 
cycle, stage three radix-4 FFT processor process the input samples of stream C. The 
inputs of stream C are {4, 2, 1, 2, 3, 3, 1, 2, 4, 1, 1, 1, 1, 3, 3, 2}, and the outputs of C 
stream are {9, 3, 1, 3, 9, 2-j1,-1, 2+1j, 7, 3, 3, 3, 9,-2-j1,-1,-2+j1}. In the fourth clock 
cycle, stage four radix 4 FFT processor process input samples of stream C. The inputs 
of stream D are {2, 0, 0, 0, 2, 0, 0, 1, 3, 3, 3, 3, 4, 1, 1, 1}, and the outputs of D stream 
are {2, 2, 2, 2, 3, 2+j1, 1, 2-j1, 12, 0, 0, 0, 7, 3, 3,3}. 
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Figure 18.Simulation Result of MDC FFT processor 
 

J. Simulation results of unpipelined and pipelined floating point adder 
Figure 19 shows the unpipelined floating point addition, variables a, b represent input 
and o represent output. The inputs are a=0 0 1 1 11 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 (1.25) b=0 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
(0.25).The output is o= 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
(1.50) 

 

 
 

Figure19. Unpipelined floating point addition 
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Figure20. Pipelined floating point addition 
 
 

 Figure 20 shows the pipelining floating point addition. Pipelined floating point 
adder computes sign bit result in the first clock cycle as 0, exponent bit result in the 
second clock cycle as 01111111,and mantissa bit result in the third clock cycle as 
10000000000000000000000. 

 

 
 

Figure 21. Delay report for unpipelined floating point adder 
 

 
 

Figure 22. Delay report for pipelined floating point Adder 
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K. Simulation results of unpipelined and pipelined floating point multiplier 
Figure 23 shows the unpipelined floating point subtraction, variables a, b represent 
input and o represent output a=0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
(1.25),b = 0 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (0.25).The 
output is o=0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (1.00) 

 

 
 

Figure23. Unpipelined floating point subtraction 
 

 
 

Figure24. Pipelined floating subtraction 
 

 Figure 24 shows the pipelined floating point subtraction. Pipelined floating point 
subtractor computes sign bit result in the first clock cycle as 0, exponent bit result in 
the second clock cycle as 01111111and mantissa bit result in the third clock cycle as 
00000000000000000000000. 

 

 
 

Figure25. Delay report for unpipelined floating point subtractor 
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Figure 26. Delay report for pipelined floating point subtrctor 
 
L. Simulation results of unpipelined and pipelined floating point multiplier 
Figure 27 shows the unpipelined floating point addition, variables a, b represent input 
and o represent output, a=1 1 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
(18), b = 0 1 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (9.5). The output 
is o = 1 1 0 0 0 0 1 1 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (-171) 

 

 
 

Figure 27.Unpipelined floating point multiplication 
 

 
 

Figure28. Pipelined floating point multiplication 
 

 Figure 28 shows the pipelined floating point multiplication. Pipelined floating 
point multiplier computes sign bit result in the first clock cycle as 1, exponent bit 
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result in the second clock cycle ie) 10000110and mantissa bit result in the third clock 
cycle ie) 01010110000000000000000 

 

 
 

Figure 29. Delay report for unpipelined floating point multiplier 
 

 
 

Figure 30. Delay report for pipelined floating point multiplier 
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Table 4.Comparison result of unpipelined &pipelined floating point Arithmetic 
unit interms of delay 
 

ARITHMETIC UNIT UnPipelined floatingpoint 
arithmetic unit delay (ns) 

Pipelined floatingpoint  
arithmetic unit delay (ns) 

Floating point adder 7.485 3.330 
Floating pointsubtractor 7.485 3.330 
Floating pointmultiplier 5.524 4.123 

 
 
CONCLUSION 
The proposed FFT processor is simulated using Xilinix 14.5 and ModelSim 6.3f. The 
inputs to the FFT processor are scheduled by using Multipath delay commutator 
architecture. Conversion from time domain to frequency domain of multiple data 
streams are carried out by FFT/IFFT processor with the memory scheduled 
architecture. The inputs to the FFT processor are scheduled as a set of memory banks. 
By doing so, the computation time is minimized and better resource utilization is 
achieved. MDC architecture and memory scheduling are very much suitable for 
FFT/IFFT processor in multiple input multiple output OFDM system. The proposed 
memory scheduling scheme can effectively reduce the computation time for collecting 
input data of the FFT processor from the memory. Floating point representation has 
its advantages of its resolution and accuracy compared to fixed point number 
representation. The simulation results of pipelined floating point arithmetic shows the 
reduction in delay compared to unpipelined floating point arithmetic unit. The results 
of these pipelined implementation are to be used in the MDC FFT processor for 
various set of simulations in our future work. 
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