
International Journal of Applied Engineering Research
ISSN 0973-4562 Volume 10, Number 12 (2015) pp. 32103-32112
© Research India Publications
http://www.ripublication.com

Efficient Content Sorage And Just In Time Retrieval
In Cloud

S.Sageengrana#1, P.Ponnaruvi #2, G.Tamilmani #3 and K. Rajathi

Department of Computer Science and Engineering
#1, #2, #3 Assistant professor

#1, #2Vel Tech High Tech Dr.RangarajanDr.Sakunthala Engineering College
#3Vel Tech Technical University

No.60 Avadi-VelTech Road, Chennai-600 062, TamilNadu, India
granadhas@gmail.com,, taman.maya@gmail.com, goldfallz@gmail.com

k.rajathimtech@gmail.com

Abstract

The size of the databases used in today’s enterprises has been growing at
exponential rates day by day. Simultaneously, the need to process and analyze
the large volumes of data for business decision making has also increased.
Storing a lot of content in the cloud extends waiting time and increases search
time. Distributed file systems (Hadoop) are key building blocks for cloud
computing applications based on the Map Reduce programming paradigm. It
efficiently solves this problem. In this paper proposes an efficient content
storage and retrieval based on keyword ranking and BIDD(Bitmap Index
Database Design) technique in distributed environment. Proposed keyword
ranking first extract nouns than give ranks for each extracted noun. BIDD
techniques based on bitmap representations are known to improve query
response time in a large environment. Hbase (database) of Hadoop is used to
store the large content. This paper reports the experimental work on large
content storage and its optimal solution using Hadoop database, Hadoop
Distributed File System (HDFS) for storage and using parallel processing to
process large data sets using Map Reduce programming framework.

I. INTRODUCTION
In this electronic age, increasing number of organizations are facing the problem of
explosion of data and the size of the databases used in today’s enterprises has been
growing at exponential rates. Data is generated through many sources like business
processes, transactions, social networking sites, web servers, etc. and remains in
structured as well as unstructured form [2]. It is not possible for single or few

32104 S.Sageengrana et al

machines to store or process this huge amount of data in a finite time period.
Processing or analyzing the huge amount of data or extracting meaningful information
is a challenging task.

II RELATED WORK
Large amount of content stored in distributed environment. If there is an increase in
the level of content it’s also increase the delay of content retrieval. If content is stored
properly only then it is possible to retrieve content just in time. The research work is
reviewed in two subsections. In the first subsection, we provide a review of related
work on the keyphrase extraction from large content. Bitmap indices in second
subsection which is the focus of parallel processing.

A. KEYWORD EXTRACTION
Keyphrases extraction and Bit map table creation are the two important
methodologies for efficient content storage and retrieval. [6]Keywords provide a
concise and precise high-level summarization of a document. An important feature for
document retrieval, classification, topic search and other tasks even if full text search
is available. Introduced kea algorithm for automatic keyphrase extraction based on
keyphrase assignment and keyphrase extraction[8]. Calculating the correlation
between words of each document, to determine the keywords that give out the fields
of interest of each document content[3]. An information theoretic explanation of tf.idf
is given by [9]. In [10] 4 different features are used for keyword extraction: term
frequency, collection frequency, relative position of the (first occurrence of) the word
in the text, and number of times a term is used as keyword. In this paper we propose a
keyphrases extraction based on noun base noun is reflect whole meaning of particular
sentence so its provide suitable keywords for a particular document.

B. INDEXING STRUCTURE
Indexing is the optimal method for improving the speed of returns on queries without
adding additional hardware. In[1] μ-Tree is a higher efficiency index. The μ-Tree is
improvement of B+-tree for flash memory. In recent years, numerous tree-based
indexes (e.g., distributed Btree index [7], [4] and distributed R-tree index [8], [5])
have been proposed for Cloud systems. These indexing schemes offer good query
performance, but are not space efficient and costly to maintain. This is because 1) the
index size is usually proportional to, sometimes even larger than the data size itself; 2)
to support various types of queries, a large number of indexes have to be built on
different attributes, incurring more overhead. Due to the fact that data volume is
extremely large in the Cloud, building indexes for these data yield unacceptable cost,
as a large number of compute nodes have to be purchased to maintain the indexes.
Therefore, to provide scalable data retrieval service in the Cloud, we need to re-
examine how indexes should be designed. In this paper, we propose BIDD (Bitmap
Index for Database Design), a specialized bitmap indexe for a large-scale data store.
BIDD is built on top of the underlying DFS(Distributed File System), and adopts a set
of techniques to make bitmap indexes more scalable. Only one MapReduce job is

Efficient Content Sorage And Just In Time Retrieval In Cloud 32105

required to build the indexes for the columns of one table. Compared to tree-based
indexes, BIDD can be built/rebuilt very efficiently.

III PROPOSED WORK
The proposed work is solves the problem of large content storage and retrieval in
cloud. Fig 1: illustrate how keyword methodology and BIDD is embedded into
existing data storage system. Our goal is to develop efficient system for store large
content.

The BIDD index contains three modules (update handler, index tracker
process, index handler). BIDD interacts with external system like HadoopDB(Hbase).
The index tracker processor is build and maintain the BIDD. When data are imported
into the system, the index manager create the index. To handle infrequent update by
update handler. When a query is enter the query handler process the query.

The keyword extraction four modules (content preprocessing, morphological
analyzer, NP extraction, ranked keyword). The content pre processing stage remove
all numerical, stop words, stemming etc.. Morphological analyzer split the sentence
like verb, noun, adverb etc.. NP extraction only extracts nouns from splited sentence.
Last stage of keyword extraction is Ranking the keyword based on TF*IDF value.

Base on the content similarity it’s creating distributed learning object. Both the
BIDD and the imported data stored in the DFS.

NOUN PHRASE EXTRACTION
The first and foremost step in efficient content storage is keyword extraction from
document collection.

Fig 1: System design

32106 S.Sageengrana et al

Keywords provide a concise and precise high-level summarization of a
document. They therefore constitute an important feature for document retrieval,
classification, topic search and other tasks even if full text search is available. Fig 2
shows various steps for extract keywords from text document. The document is first
converted into a text document if document is not in.txt format. In the pre processing
stage, removal of the symbols, numerical values and stemming take place.
Morphological analysis split each sentence based on verb, noun, adverb etc.. Finally
only nouns are extracted from divided sentence and are ranked. Because nouns have a
all information about particular sentence.

Morphological analysis is a Part-Of-Speech Tagger (POS Tagger) that read a
text in some language and assigns parts of speech to each word (and other token),
such as noun, verb, adjective, etc..

Fig.2 Keyword Extraction

This tagger output is useful to extract only nouns from collection of words.
Keyword is arranged based on the priority value.It is helpful during the search time
avoid to search entire table. Based on Term Frequency and Inverse Term Frequency
the extracted nouns are prioritized. It compares the frequency of keyphrase’s used in a
particular document and collection of document.

Efficient Content Sorage And Just In Time Retrieval In Cloud 32107

The TFxIDF for phrase P in document D is,

The freq(P, D) is the number of times P occurs in D, size(D) is the number of

words in D, df(p) is the number of documents containing Pin the global corpus and N
is the size of the global corpus. All extracted keywords are arranged in descending
order of value. D is a document, D.W is a particular word in a document

Algorithm 1(document D, word W)

1. if D is a document then
2. build the morphological analyzer

3. else
4. if f(D.W) is noun then
5. Rank the keyword(strategy 2)

6. else

7. if f(D.W) is verb then
8. Remove the verb(strategy 3)

9. else
10. if (D.W) is numeric then
11. Remove the numeric(strategy 4)

12. else
13. No keyword is extracted

BIDD OVERVIEW
A Bitmap index is a special kind of index that stores the bulk of its data as bit array
(bitmaps) and answers most queries by performing bitwise logical operations on these
bitmaps..

a) Dynamic index formation
The pattern based index formation helpful to reduce the search time. Patterns are
having two keyword group. Each keyword group maintains particular keyword related
all the materials.

The pattern formation based on keyphrase priority. This index table is creating
dynamically based on content storage. The table 1.1(a) explains about pattern based

32108 S.Sageengrana et al

dynamic index formation, Attribute A is set of the bitmap vector p{p0, p1, p2,
…….pn-1}. k is the number of keywords extracted(k0, k1, k2, ….kn).A bit at position
i in the bitmap vector is set to 1 if the record at position i in the indexed table is
satisfied

Mapping table formed dynamically based on result of pattern formation. It is
helpful to identify the correct keyword group from pattern. The result of the pattern
based index table mapped to mapping table find out the correct keyword group. Fig 3
explain the overview structure of mapping table and pattern table. Single bitmap
index table maintain keyword group and point to the Meta data file location.

Consider user keyword is stack the following algorithm process this keyword
then give a meta data files

Fig 3: pattern and mapping table

Efficient Content Sorage And Just In Time Retrieval In Cloud 32109

Fig 4: Group finder table

VI. EXPREMENT AND RESULT
The fist experiment was text preprocessing, count the number of words occur within a
set of large sized document and extract the ranked keywords. The automatic keywords
extraction involves reducing a text document or a larger corpus of multiple documents
into a read whole document than find out important information. Fig 5: result compare
auto keyword with manually selected keyword.

32110 S.Sageengrana et al

Fig 5: Automatic keyword extraction

The second experiment was BIDD storage in Hadoop(Hbase) database and
Mysql database. The evaluation fig 6: result shows Store less amount of content in
database the mysql is give good performance than Hbase but storage of content is
increase the Hbase give good performance.

Efficient Content Sorage And Just In Time Retrieval In Cloud 32111

Fig 6: query performance and scalability

V. CONCLUSION
Our BIDS index is storage efficient and easy to maintain, which makes it more
scalable. In this paper, a keyword extraction, bitmap based indexing scheme, BIDD,
Hadoop database is proposed to manage large amount of data in the Cloud. Our
keyword extraction BIDD index is storage efficient and easy to maintain, which
makes it more scalable. In the future, the query operators are transformed into a set of
bit-wise AND/OR operators, which can be handled more efficiently and Metadata
management in HDFS and load balance in hadoop data nodes is to be concentrated.

REFERENCE

[1] Junhua Fang, Hanhu Wang, Mei Chen Dan Ma, “A Self-adaptive Improved μ-

Tree Index Structure for Flash-based DBMS” International Conference on
Systems and Informatics (ICSAI) 2012

[2] Impetus white paper, March, 2011, “Planning Hadoop/NoSQL Projects for
2011” by Technologies, Available:http://www.techrepublic.com/
whitepapers/planninghadoopnosql-projects-for-2011/2923717, March, 2011.

[3] Saber Heni, Ridha Ejbali “A Neural Principal Component Analysis for text
based documents keywords extraction” 3rd International Conference on Next
Generation Networks and Services, 2011

32112 S.Sageengrana et al

[4] S. Wu, D. Jiang, B. C. Ooi, and K.-L. Wu, “Efficient b-tree based indexing for
cloud data processing, ” Proc. VLDB Endow., vol. 3, no. 1, pp. 1207–1218,
2010.

[5] J. Wang, S. Wu, H. Gao, J. Li, and B. C. Ooi, “Indexing multidimensional
data in a cloud system, ” in SIGMOD, 2010, pp. 591–602.

[6] Ian H. Witten, Gordon W. Paynter, Eibe Frank, Carl Gutwin and Craig G.
Nevill-Manning, “KEA: Practical Automatic Keyphrase Extraction”,
International Conference on Communication and Information Technology,
2008

[7] M. K. Aguilera, W. Golab, and M. A. Shah, “A practical scalable distributed
b-tree, ” VLDB, 2008.

[8] C. Mouza and W. Litwin, “Sd-rtree: A scalable distributed rtree, ” in ICDE,
2007, pp. 296–305.

[9] A. N. Aizawa, “An information-theoretic perspective of tf-idf measures, ” Inf.
Process. Manage., vol. 39, no. 1, pp. 45–65, 2003.

[10] E. Frank, G. W. Paynter, I. H. Witten, C. Gutwin, “Domain-specific keyphrase
extraction, ” in IJCAI, T. Dean, Ed. Morgan Kaufmann, 1999, pp. 668–673.

