
International Journal of Applied Engineering Research
ISSN 0973-4562 Volume 10, Number 12 (2015) pp. 32055-32070
© Research India Publications
http://www.ripublication.com

Monitoring Software Quality Using SPC – An Order
Statistics Approach

K.Sobhana (1)
, Dr. R. Satya Prasad (2) and Ch.Smitha Chowdary (3)

(1) Research Scholar, Department of Computer Science,
Krishna University, Machilipatnam, Andhra Pradesh (India)

E-mail: msobhana@yahoo.com
(2) Associate Professor, Dept. of Computer Science & Engg.,
Acharya Nagarjuna University, Guntur, Andhra Pradesh (India)

E-mail: prof_rsp@gmail.com
(3) Research Scholar, Department Of Computer Science,
Krishna University, Machilipatnam, Andhra Pradesh (India)

E-mail: smitha_csc@yahoo.co.in

ABSTRACT

Software reliability assessment is an important aspect to be considered during
the software development process. Software reliability is the probability that
given software functions work without failure in a specific environment
during a specified time. It can be monitored using Statistical Process
Control(SPC). SPC is a method of quality control that uses statistical methods
to control and monitor a software process and thereby contributes significantly
to the improvement of software reliability. Control charts are widely used SPC
tools to monitor software quality. The proposed model involves estimation of
the parameters of the mean value function and hence these values are used to
develop the control charts. The Maximum Likelihood Estimation (MLE)
method is used to derive the estimators of the distribution. In this paper we
propose a mechanism to monitor software quality based on order statistics of
cumulative observations of time domain failure data using mean value
function of Burr type III distribution based on Non-Homogeneous Poisson
Process.

Keywords- Burr Type III Distribution,, Control Charts, Mean Value
Function, Non-Homogeneous Poisson Process, Order Statistics, Probability
Limits, Statistical Process Control.

32056 K.Sobhana et al

1. INTRODUCTION
Reliability is a primary concern for software developers during software development
process to achieve software quality. As the computer technology has developed
rapidly, computers are used to control safety and critical systems. High quality
software products are mainly needed in those application areas. To determine system
quality, the software reliability must be evaluated carefully[1][2].Many Software
reliability models have been developed to evaluate reliability using software failures
based on assumptions.

The main goal of these models is to fit a theoretical distribution to time-
between-failure data, to estimate the time-to-failure based on software test data, to
estimate software system reliability and to design a stopping rule to determine the
appropriate time to stop testing and to release the software into the market
place[3].There are essentially two types of software reliability models - those that
attempt to predict software reliability from design parameters and those that attempt
to predict software reliability from test data. The first type of models are usually
called "defect density" models and use code characteristics such as lines of code,
nesting of loops, external references, input/outputs, and so forth to estimate the
number of defects in the software. The second type of models is usually called
"software reliability growth" models. These models attempt to statistically correlate
defect detection data with known functions such as an exponential function. If the
correlation is good, the known function can be used to predict future behavior [4].

The software reliability growth model is required to have a good performance
in terms of goodness-of-fit, predictability, and so forth. In order to estimate as well as
to predict the reliability of software systems, failure data need to be properly
measured by various means during software development and operational phases.
Numerous SRGMS have been developed during the last three decades and they can
provide very useful information about how to improve reliability[2].SRGM can be
classified based on the nature of the failure process as Times Between Failures
Models, Failure Count Models, Fault Seeding Models, Input Domain Based Models
[4][5].

We are more concerned about Time Between Failure models that deals with
the random number of software failures in an inter failure time of a developed
software. Software reliability growth model based on time domain data is proposed.
An important class of SRGM that has been widely studied is Non-Homogenous
Poisson Process (NHPP).NHPP models are used in describing failure processes,
providing trends such as reliability growth and fault content [19].

The main issue in the NHPP model is to determine an appropriate mean value
function to denote the expected number of failures experienced up to a certain time
point. Various NHPP SRGMs have been proposed upon various assumptions. Many
of the SRGMs assume that each time a failure occurs, the fault that caused it can be
immediately removed and no new faults are introduced, which is usually called
perfect debugging. Imperfect debugging models have proposed a relaxation of the
above assumption. Our proposed model uses the assumption of perfect debugging.

The unknown parameters of the mean value function in the NHPP model can
be estimated using Maximum Likelihood Estimation (MLE) technique. The

Monitoring Software Quality Using SPC – An Order Statistics Approach 32057

Maximum Likelihood Parameter Estimation is used to determine the parameters that
maximize the probability (likelihood) of the sample data [15]. The mean value
function we considered is the Cumulative distribution function of Burr Type III with
order statistic approach.

To improve the quality of software a quality control method called Statistical
Process Control can be used. This method has been widely used for manufacturing
processes but recently it has been applied to software processes. There are a few
pitfalls in its use of SPC for software[12].The application of SPC mainly involves
understanding the process and the limits, eliminating assignable sources of variation,
monitoring the process using control charts. The main advantage of using SPC over
other quality control methods is it emphasizes on early detection and prevention of
problems, rather than correction of problems after they take place. Control charts are
the key tools that are used in SPC. The proper use of control charts brings stability
and predictability to key processes.

SPC is used in our proposed model and the results exhibited that the failures
are detected at early stages. The main objective is to show that the software reliability
and thereby the quality of a software process can be improved by applying SPC
technique in the software development process [7]. The objective of SPC is to
establish and maintain statistical control over a random process. To achieve this
objective, it is necessary to detect assignable causes of variation that contaminate the
random process. The SPC had proven useful for detecting assignable causes [17].

PROPOSED WORK
A. BURR Type III NHPP Model
NHPP software reliability growth models have been proposed to assess the reliability
of software [13].In these models, the number of software failures display the behavior
of non-homogenous Poisson Process [3][20].These models consider the debugging
process as a counting process characterized by its mean value function. Software
reliability can be estimated once the mean value function is determined. Model
parameters are usually estimated using Maximum Likelihood method.

The various notations used in NHPP model are:
{N(t), t>0} represents the cumulative number of failures by time ‘t’.
m(t) denotes the expected number of software failures by time ‘t’.
‘a’ represents the expected number of software failures eventually detected.
‘b’ denotes the failure detection rate.
λ (t) corresponds to intensity function of software failures [3][10][14][25].

The Assumptions of NHPP Model are:
1. A Software system is subject to failures during execution caused by faults

remaining in the system.
2. All faults are mutually independent from a failure detection point of view.
3. Failure rate of the software depends on the faults remaining in the system.

32058 K.Sobhana et al

4. The number of faults detected at any time is proportional to the remaining
number of faults in the software.

Since the expected number of errors remaining in the system at any time is

finite, m(t) is bounded, non-decreasing function of ‘t’ with the boundary conditions

m(t) =
⎩
⎨
⎧

∞→
=

ta
t

,
0,0

For t≥0 N(t) is known to have a Poisson Probability mass function with

parameters m(t) i.e.,

∞===
−

,,.........2,1,0
!

)]([})({
)(

n
n

etmntNP
tmn

The behavior of software failure phenomena can be illustrated through N(t)

process. Several time domain models exist in the literature which specify that the
mean value function m(t) will be varied for each NHPP process.

In this paper we consider the mean value function of Burr Type III software
reliability growth model as

bctatm −−+=]1[)((1)

where t ∈ (0, ∞), ܿ and b are shape parameters.

Here, we consider the performance given by the Burr Type III software
reliability growth model based on order statistics and whose mean value function is
given by

()() r
bc

itatm −−+=)(1)((2)

Where [m(t)/a] is the cumulative distribution function of Ordered Burr

distribution model

!
)(})({

)(

n
etmntNP

tmn −

==

This is considered as Poisson model with mean ‘a’.

∞→nlim
!

})({
n
eantNP

an −

==

Monitoring Software Quality Using SPC – An Order Statistics Approach 32059

B. Parameter Estimation Based on Inter Failure Times
The mean value function of Order Burr Type III is given by

()() r
bc

itatm −−+=)(1)((3)

The constants a, b and c in the mean value function are called parameters of

the proposed model. To assess the software reliability, it is necessary to compute the
expressions for finding the values of a, b and c. For doing this, Maximum Likelihood
estimation is used whose Log Likelihood function is given by

LLF = r
n

r
i

n

i

tmtLog)()([
1

−∑
=

λ (4)

Differentiating m(t) with respect to ‘t’ we get λ (t)

λ (t) =
)1()1(])(1[*)(+−+ + brcc

i tit
rabc (5)

The log likelihood equation to estimate the unknown parameters a, b, c after

substituting (3) in (4) is given by

LogL= -[a[1+(tn)-c]-b]r+∑
=

+++
n

i

cbar
1

]logloglog[log +

∑
−

− +−++−
n

i
i

c
i tctbr

1

)]log()1())(1log()1([(6)

Differentiating LogL with respect to ‘a’ and equating to 0 (i.e.,)0log =
∂

∂
a

L

we get

r
tna

brc
nr))(1(−+= (7)

Differentiating LogL with respect to ‘b’ and equating to 0 (i.e.,)0log =
∂

∂
b

L

we get

g(b) =))(1log(
))(1(

))(1log(1
12

1

1 −
−

=

− +
+

+++∑ n

br
n

n

i
i t

r
tn

tr
b
n (8)

32060 K.Sobhana et al

Again Differentiating g(b) with respect to ‘b’ and equating to 0 (i.e.,

)0log
2

2

=
∂

∂
b

L

g'(b) =))(1(log.))(1(1212
2

−− +++−
n

br
n ttn

b
n (9)

Differentiating LogL with respect to ‘c’ and equating to 0 (i.e.,)0log =
∂

∂
c

L

we get

g(c) =
))(1(

log)(log)1
)(1

))(1((
1

c
n

nn
i

n

i i

i

t
tctnt

ct
ctr

c
n

−
= +

−−−
−+

−++∑

 (10)

Again Differentiating g(c) with respect to ‘c’ and equating to 0 (i.e.,

)0log
2

2

=
∂

∂
c

L

we get

g'(c) =
2

2

1
2

2

2))(1(
)()log(

))(1(
)())(log1(

c
n

c
nn

n

i
c

i

c
ii

t
ttn

t
ttr

c
n

−

−

=
−

−

+
+

+
+

+− ∑ (11)

The parameters ‘b’ and ‘c’ are estimated by iterative Newton-Raphson Method

using

)('
)(- b = b n1+n

n

n

bg
bg

 (12)

)('
)(- c = c n1+n

n

n

cg
cg

 (13)

Order Statistics
Order Statistics can be used in several applications like data compression, survival
analysis, Study of Reliability and many others [12]. Let X denote a continuous
random variable with probability density function f(x) and cumulative distribution
function F(x), and let (X1, X2, …, Xn) denote a random sample of size n drawn on X.
The original sample observations may be unordered with respect to magnitude. A
transformation is required to produce a corresponding ordered sample. Let (X(1),
X(2), …, X(n)) denote the ordered random sample such that X(1) < X(2) < … < X(n);

Monitoring Software Quality Using SPC – An Order Statistics Approach 32061

then (X(1), X(2), …, X(n)) are collectively known as the order statistics derived from
the parent X. The various distributional characteristics can be known from
Balakrishnan and Cohen [12].

The inter-failure time data represent the time lapse between every two
consecutive failures. On the other hand if a reasonable waiting time for failures is not
a serious problem, we can group the inter-failure time data into non overlapping
successive sub groups of size 4 or 5 and add the failure times with in each sub group.

For instance if a data of 100 inter-failure times are available we can group
them into 20 disjoint subgroups of size 5. The sum total in each subgroup would
denote the time lapse between every 5th order statistic in a sample of size 5. In general
for inter-failure data of size ‘n’, if r (any natural number) less than ‘n’ and preferably
a factor n, we can conveniently divide the data into ‘k’ disjoint subgroups (k=n/r) and
the cumulative total in each subgroup indicate the time between every rth failure. The
probability distribution of such a time lapse would be that of the ordered statistic in a
subgroup of size r, which would be equal to power of the distribution function of the
original variable (m(t)).

The whole process involves the mathematical model of the mean value
function and knowledge about its parameters. If the parameters are known they can be
taken as they are for the further analysis, if the parameters are not known they have to
be estimated using a sample data by any admissible, efficient method of estimation.
This is essential because the control limits depend on mean value function, which in
turn depends on the parameters. If software failures are quite frequent, keeping track
of inter-failure is tedious. If failures are more frequent order statistics are preferable
[12].

C. Monitoring the time between failures using control chart
Software process monitoring is an essential activity that has to be performed during
software process improvement. Monitoring involves measuring a quantifiable
characteristic of software process over time and detecting out anomalies. A process
must be characterized before it is monitored, for example by using upper and lower
threshold values for process performance limits. When the observed performance falls
outside these limits one can understand that there is something wrong in the process.
Statistical process control is an time series analysis technique that has been effective
in manufacturing and recently used in software contexts. It uses control charts as a
tool to establish operational limits for acceptable process variation [13].

Control charts are an essential tool used for continuous quality control.
Control charts monitor processes to show how the process is performing and how the
process and capabilities are affected by changes to the process. This information is
then used to make quality improvements. Control charts are also used to determine the
capability of the process. These charts have data points that are either averages of
subgroup measurements or individual measurements plotted on the x/y axis and
joined by a line. Time is always on the x-axis. These charts have an indicator of the
process performances as average line, Upper Control Limit (UCL), Lower Control
Limit (LCL).

32062 K.Sobhana et al

Control charts are mainly classified as attribute charts and variable charts.
Attribute Control Charts are used to monitor an organization‘s progress at removing
defects that are inherently present in a process. Attribute charts are based on data that
can be grouped and counted as present or not. Attribute charts are also called count
charts and attribute data is also known as discrete data. Examples of attribute charts
are p-charts, np-chart, c-chart, u chart.

Variable charts are based on variable data that can be measured on a
continuous scale.Variables Control Charts monitor process parameters or product
features. A variable‘s measurement can indicate a significant change in process
performance without producing a non-conformance. Variables Control Charts are
more sensitive to change and are more efficient than Attribute Control Charts. Two
primary statistics are measured and plotted on a Variables Control Chart: central
tendency and process dispersion. Examples of variable charts are X-bar, R charts and
multivariate charts. We have named the control chart as Failures Control Chart in
this paper. The said control chart helps to assess the software failure phenomena on
the basis of the given inter-failure time data [16].

D. Distribution of Time Between Failures
For a software system during normal operation, failures are random events caused by,
for example, problem in design or analysis and in some cases insufficient testing of
software. In this paper we applied Burr Type III to time between failures data. This
distribution uses cumulative time between failure data for reliability monitoring.

The equation for mean value function of Burr Type III from equation [1] is

bctatm −−+=]1[)(

Equate the pdf of above m(t) to 0.99865, 0.00135, 0.5 and the respective
control limits are given by.

99865.0]1[=+= −− bc
u tT

5.0]1[=+= −− bc

c tT

00135.0]1[=+= −− bc
l tT

These limits are converted to m(tu), m(tc)and m(tl) form and are used to find

whether the software process is in control or not by placing the points in control
charts.

2. DATA ANALYSIS AND RESULTS
The procedure of a failures control chart for failure software process will be
illustrated with an example here.

Table 1 shows the time between failures of a software product.

Monitoring Software Quality Using SPC – An Order Statistics Approach 32063

Table:1 Software failure data documented in Lyu(1996)

Failure
number

Time Between
Failures(hrs)

Failure
number

Time Between
Failures(hrs)

Failure
number

Time Between
Failures(hrs)

1 3 47 6 93 2930
2 30 48 79 94 1461
3 113 49 816 95 843
4 81 50 1351 96 12
5 115 51 148 97 261
6 9 52 21 98 1800
7 2 53 233 99 865
8 91 54 134 100 1435
9 112 55 357 101 30

10 15 56 193 102 143
11 138 57 236 103 108
12 50 58 31 104 0
13 77 59 369 105 3110
14 24 60 748 106 1247
15 108 61 0 107 943
16 88 62 232 108 700
17 670 63 330 109 875
18 120 64 365 110 245
19 26 65 1222 111 729
20 114 66 543 112 1897
21 325 67 10 113 447
22 55 68 16 114 386
23 242 69 529 115 446
24 68 70 379 116 122
25 422 71 44 117 990
26 180 72 129 118 948
27 10 73 810 119 1082
28 1146 74 290 120 22
29 600 75 300 121 75
30 15 76 529 122 482
31 36 77 281 123 5509
32 4 78 160 124 100
33 0 79 828 125 10
34 8 80 1011 126 1071
35 227 81 445 127 371
36 65 82 296 128 790
37 176 83 1755 129 6150
38 58 84 1064 130 3321
39 457 85 1783 131 1045
40 300 86 860 132 648

32064 K.Sobhana et al

41 97 87 983 133 5485
42 263 88 707 134 1160
43 452 89 33 135 1864
44 255 90 868 136 4116
45 197 91 724
46 193 92 2323

Table: 2 Successive Differences of 4th order mean value function (m(t))

Failure Number 4-Order Cumulative m(t) Successive Difference of m(t)

1 227 9.063012 0.022075
2 444 9.085086 0.016993
3 759 9.10208 0.010183
4 1056 9.112262 0.01888
5 1986 9.131143 0.008645
6 2676 9.139788 0.014252
7 4434 9.15404 0.003805
8 5089 9.157845 0.001571
9 5389 9.159416 0.004595
10 6380 9.164012 0.004163
11 7447 9.168175 0.001652
12 7922 9.169827 0.006829
13 10258 9.176656 0.002236

314 11175 9.178891 0.003027
15 12559 9.181918 0.001834
16 13486 9.183752 0.003189
17 15277 9.186942 0.001737
18 16358 9.188679 0.002814
19 18287 9.191492 0.002942
20 20567 9.194434 0.003958
21 24127 9.198392 0.004047
22 28460 9.202439 0.00315
23 32408 9.205589 0.003601
24 37654 9.20919 0.002605
25 42015 9.211795 0.000158
26 42296 9.211953 0.003125
27 48296 9.215078 0.001746
28 52042 9.216824 0.000619
29 53443 9.217442 0.001285
30 56485 9.218728 0.002392
31 62651 9.22112 0.000807
32 64893 9.221927 0.00362
33 76057 9.225547 0.003461
34 88682 9.229008

Monitoring Software Quality Using SPC – An Order Statistics Approach 32065

Table: 3 Successive Differences of 5th order mean value function(m(t))

Failure Number 5-Order Cumulative m(t) Successive Difference of m(t)

1 342 5.8967019 0.011044
2 571 5.9077458 0.010984
3 968 5.9187302 0.014332
4 1986 5.9330617 0.008513
5 3098 5.9415749 0.009046
6 5049 5.9506206 0.000963
7 5324 5.9515837 0.003258
8 6380 5.9548418 0.003212
9 7644 5.9580537 0.004849
10 10089 5.9629027 0.001462
11 10982 5.9643647 0.002294
12 12559 5.966659 0.002671
13 14708 5.9693304 0.001603
14 16185 5.9709335 0.001543
15 17758 5.9724762 0.002421
16 20567 5.9748968 0.003752
17 25910 5.9786491 0.002004
18 29361 5.9806533 0.003925
19 37642 5.9845787 0.001713
20 42015 5.9862912 0.001201
21 45406 5.9874919 0.001301
22 49416 5.9887927 0.001162
23 53321 5.9899545 0.000876
24 56485 5.9908304 0.001567
25 62661 5.9923972 0.002558
26 74364 5.994955 0.001898
27 84566 5.9968527

Table: 4 4Th and 5th order Parameter Estimates and control limits

Order a b c m(tu) m(tc) m(tL)

4 9.485651 0.099997 0.101228 9.472845 4.742826 0.012806
5 6.1561 0.099996 0.106223 6.147789 3.07805 0.008311

32066 K.Sobhana et al

Figure 1: Failure Control Chart of Table 2

Figure 2: Failure Control Chart of Table 3

3. CONCLUSION
In this paper an SPC technique is applied to sample data with Order Statistic
approach. In order to apply this method the parameters are estimated using MLE of
Burr Type III ordered function. These parameters are used to calculate the limits and
control charts are used on these limits. In the control charts 34 of 4th-order, 27 of 5th-
order samples successive differences were plotted through the estimated mean value
function against the failure number. The graphs have shown out of control signals i.e.,
below the LCL. Hence we conclude that our method of estimation and the control
chart are giving a +ve recommendation for their use in finding out preferable control

UCL 9.47285
CL 4.74283

LCL 0.01281

0.0001

0.0010

0.0100

0.1000

1.0000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

m
(t

) S
uc

es
si

ve
 D

iff
er

en
ce

Failure Number

Failure control chart

UCL 6.14779
CL 3.07805

LCL 0.00831

0.0001

0.0010

0.0100

0.1000

1.0000

1 3 5 7 9 11 13 15 17 19 21 23 25m
(t

)
Su

cc
es

si
ve

 D
iff

er
en

ce

Failure Number

Failure Control Chart

Monitoring Software Quality Using SPC – An Order Statistics Approach 32067

process or desirable out of control signal. By observing the Mean value Control chart
we identified that the failure situation is detected at 3rd point of table-2 for the
corresponding m(t) in 4th-order statistics and at 6th point of table-3 for the
corresponding m(t) in 5th-order statistics, which is below m(tL). It indicates that the
failure process is detected at an early stage. The early detection of software failure
will improve the software quality.

4. REFERENCES

[1] Hong-Wei Liu, Xiao-Zong Yang, Feng Qu, and Yan-Jun Shu, “A General

NHPP Software Reliability Growth Model with Fault Removal Efficiency”,
Iranian Journal of Electrical and Computer Engineering, Vol. 4, No. 2
Summer-Fall 2005.

[2] M. R. Lyu, Handbook of Software Reliability Engineering, McGraw-Hill and
IEEE Computer Society, pp. 27-164, New York, 1996.

[3] Richard Lai, Mohit Garg, ”A Detailed Study of NHPP Software
ReliabilityModels” Journal of Software, Vol. 7, No. 6, June 2012.

[4] Jahir Pasha, S.Ranjitha, Dr. H. N. Suresh, ” Certain Reliability Growth Models
for Debugging in Software Systems, International Journal of Engineering and
Technical Research (IJETR) Volume-2, Issue-4, April 2014

[5] Mohd Razeef and MohsinNazir (2012), ―Software Reliability Growth
Models: Overview and Applications�, Journal of Emerging Trends in
Computing and Information Sciences, VOL. 3, NO. 9, SEP 2012

[6] Maria Teresa Baldassarre, Nicola Boffoli and Danilo Caivano, “Statistical
Process Control for Software: Fill the Gap”, www.intechopen.com, 2010

[7] Sargut.K.U and Demirors.O “Utilization of Statistical Process Control (SPC)
in emergent Software Organization: Pitfalls and Suggestions”, Springer,
Software Quality Journal, 2014

[8] Mutsumi Komuro; Experiences of Applying SPC Techniques to software
development processes; 2006 ACM 1-59593-085-x/06/0005.

[9] Dr.R.Satya Prasad, NGeetha Rani, Prof R.R.L.Kantham, Pareto Type II Based
Software Reliability Growth Model, International Journal of Software
Engineering, Vol (2), 2011.

[10] Goel. A.L and Okumoto. K., (1979). “A Time-dependent error-detection rate
model for software and other performance measures”, IEEE Trans. Reliability,
vol R-28, Aug, pp 206 - 211.

[11] W. Burr, “Cumulative frequency functions, ” Annals of Mathematical
Statistics, vol. 13, pp. 215–232, 1942.

[12] Balakrishnan.N, Clifford Cohen; Order Statistics and Inference; Academic
Press Inc; 1991.

[13] N.Boffoli, G.Bruno, D.Caivano, G.Mastelloni; “Statistical Process Control for
Software: a Systematic Approach”;2008 ACM 978-1-595933-971-5/08/10.

[14] Pham. H., “Handbook of Reliability Engineering”, Springer. 2003.
[15] Hoang Pham, “System Software Reliability”, Springer, 2006.

32068 K.Sobhana et al

[16] M.Xie, T.N. Goh, P. Rajan; Some effective control chart procedures for
reliability monitoring; Elsevier science Ltd, Reliability Engineering and
system safety 77(2002) 143- 150

[17] K.Ramchand H Rao, R.Satya Prasad, R.R.L.Kantham; Assessing Software
Reliability Using SPC – An Order Statistics Approach; IJCSEA Vol.1, No.4,
August 2011.

[18] Florac, W.A., Carleton, A.D., “Measuring The Software Process:” Addison-
wesley Professional, Jul 1999.

[19] Omar Shatnawi, “Discrete Time NHPP Models for Software Reliability
Growth Phenomenon”, The International Arab Journal of Information
Technology, Vol.6, No. 2 April 2009.

[20] Michael R.Lyu 1996a, Handbook of Software Reliability Engineering.
[21] K.Sita Kumari, R.Satya Prasad;Pareto Type II Software Reliability Growth

Model – An Order Statistics Approach; IJCST Vol.2, Issue 4, Jul-Aug 2014.
[22] V.K.Gupta, Gaurav Aggarwal; Software Reliability Growth Model;

IJARCSSE Vol.4, Issue 1, January 2014.
[23] Dr R.Satya Prasad, N.Geetha Rani, Prof R.R.L Kantham;Pareto Type II Based

Software Reliability Growth Model; IJSE Vol.2, Issue 4, 2011.
[24] Hee-cheul Kim., “Assessing Software Reliability based on NHPP using SPC”,

International Journal of Software Engineering and its Applications, vol.7,
No.6 (2013), pp.61-70.

[25] R.Satya Prasad, K.V Murali Mohan, G.Sridevi;Burr Type XII Software
Reliability Growth Model;IJCA Volume 108 No-16 December 2014.

[26] Ch.Smitha Chowdary, Dr R.Satya Prasad, K.Sobhana;Burr Type III Software
Reliability Growth Model;IOSR-JCE Volume17, Issue 1, Jan-Feb 2015.

[27] Dr R.Satya Prasad, K.Ramchand H Rao, Dr R.R.L.Kantham ; “Software
Reliability with SPC” ;International Journal of Computer Science & Emerging
Technologies, Volume 2, Issue 2, April 2011.

Monitoring Software Quality Using SPC – An Order Statistics Approach 32069

5. AUTHOR PROFILE

Mrs. K. Sobhana received MCA from Acharya Nagarjuna University in 2005 and M.
Tech., (Computer Science & Engineering) from Acharya Nagarjuna University in
2010. Now she is pursuing Ph.D., in Computer Science & Engineering from Krishna
University as Part-Time Research Scholar under the guidance of Dr. R.Satya Prasad.
Currently, she is working as a Lecturer at Post Graduate Centre of P.B. Siddhartha
College of Arts & Science, Vijayawada, AP, India. Her research interest lies in
Software Reliability Engineering and Data Mining Artificial Intelligence. She
published two research papers in various international journals.

Dr.R Satya Prasad received Ph.D.degree in Computer Science in the Faculty of
Engineering in 2007 from Acharya Nagarjuna University, Andhra Pradesh, India. He
received gold medal from Acharya Nagarjuna University for his outstanding
performance in master’s degree. He is currently working as Associate Professor in the
department of Computer Science & Engineering, Acharya Nagarjuna University. He
performed various academic roles like practical examiner, project adjudicator,
external member of board of examiners for various universities and colleges in and
around Andhra Pradesh. He received Dr.Abdul Kalam Life Time Achievement Award
for his remarkable achievements in the field of Teaching, Research and Publications.
His current research is focused on Software engineering, Image processing &
Database Management system. He has published several papers in National &
International Journals.

32070 K.Sobhana et al

Mrs. Ch. Smitha Chowdary received MCA from Kakatiya University in 2003 and
M.Tech., (Computer Science & Engineering) from Acharya Nagarjuna University in
2010. Now she is pursuing Ph.D., in Computer Science & Engineering from Krishna
University as Part-Time Research Scholar under the guidance of Dr. R.Satya Prasad.
Currently, she is working as a Lecturer at Post Graduate Centre of P.B.Siddhartha
College of Arts & Science, Vijayawada, AP, India. Her research interest lies in
Software Reliability Engineering, Data Warehousing and Data Mining.

