
International Journal of Applied Engineering Research
ISSN 0973-4562 Volume 10, Number 12 (2015) pp. 31871-31882
© Research India Publications
http://www.ripublication.com

Loop Transformation for High Level Synthesis of
Iterative Algorithms

E.S.Preethi and B. Bala Tripura Sundari

Electronics and Communication Department
Amrita Vishwa Vidyapeetham, Coimbatore, India

espreethi.90@gmail.com
Electronics and Communication Department

Amrita Vishwa Vidyapeetham, Coimbatore, India
b_bala@cb.amrita.edu

Abstract

Digital signal processing applications (DSP) algorithms are iterative in nature
and computationally intensive. Such computation-intensive procedures are
represented by recursive equations and dependence graphs (DGs). Loops are
the primary source of parallelism in iterative algorithm. For the purpose of
throughput enhancement, loop transformation methods are commonly used in
high-level synthesis. One of the most effective transformation techniques,
named retiming, is a structural transformation that relocates the delays or
registers in a circuit. This reduces the latency of the circuit without changing
its functionality. Unfolding is another transformation technique used to
improve the throughput of the system which when applied to DSP results in
multiple iterations of the original program. Unfolding the program can also
unearth buried concurrencies, leading to a drop in the iteration period and a
proportionate increase in the throughput. The unfolding transformation is
incorporated along with retimed DG to improve the parallel processing of the
system. In this paper we have automated the modeling of DG and their
transformation using high level language JAVA. The enhanced graphical user
interface (GUI) and superior memory allocation system of JAVA make it
ideal for such an application and for the realization of RTL generation of the
unfolded and retimed DG of the benchmark circuits considered as the next
phase of this work.

Keywords-dependence graph; retiming; unfolding; DSP algorithm; recursive
algorithm; iterative algorithm; transformation technique; high level synthesis

31872 E.S.Preethi and B. Bala Tripura Sundari

I. INTRODUCTION
DSP is perhaps the most critical enabling technology behind the last few decade’s
communication and multi-media revolutions. It is used in numerous real time
applications related with very large scale integration (VLSI) technology, such as
wireless communications, transmission systems, multimedia, digital video, digital
audio and radar systems[1].

DGs [1] are directed graphs that portray the dependency of the computations
in a process. They can show multiple interdependent iterations in a simple manner.
Thus they are ideal candidates to display DSP application flows or algorithms, which
are intrinsically computation-intensive and iterative in nature. The nodes in the graph
represent the combinational logic and the weights denote the propagation delay for the
nodes or the number of register for the edges.

Loops are highly time thirsty parts of a DSP application, making them the
primary target when ramping up the efficiency of a process which is where loop
transformation techniques (LTT) [2] step in. One of the most prevalent LTT is
retiming. It relocates the delays or registers within a path without altering the
functionality. Repositioning the delays or registers helps in minimizing the latency of
the circuit. DSP can also be transformed through the unfolding method. Here multiple
iterations of the same program are related to increase throughput.

In this paper we are integrating the retiming and unfolding LTT. The former
will reduce the latency thereby producing faster response and the latter will unroll the
loops to improve the parallelism of the system. Together they will increase the
throughput of the system. This will be implemented through JAVA programming.

This paper is structured as follows. The Section 2 gives a summary on
literature survey. Section 3 highlights methodologies to transform the DG
representation of DSP circuits to loop transformed circuits. Section 4 describes the
implementation details. Section 5 depicts the results and the last section concludes the
paper.

II. LITERATURE SURVEY
High level synthesis (HLS) is the technique of transforming behavioral description to
a structural level specification. In the behavior description, the input and output
behavior is defined in terms of data transfers and processes without any
implementation details. Structural description maps these operations and data
transfers into combinational functional block and registers on to hardware. The high
level synthesis of DSP algorithms is necessary as it reduces time to market window.
[3]

In HLS flow the conclusion of compilation gives rise to the scheduled
dataflow graph (DFG) which in turn is representative of the application itself. DFGs
transformed through resource allocation and hardware binding. Resource allocation
consists of but is not limited to functional units (FU) and multiplexers. If sharing is
one of the aims of design then hardware binding would involve bundling together
processes in the scheduled data flow to FU’s and then distributing the FU’s through
MUXs [4, 5].

Loop Transformation for High Level Synthesis of Iterative Algorithms 31873

For optimization purposes LTTs are also commonly used in HLS. Various
optimization methods are available in literature [6]. DSP algorithms are repetitive in
nature and periodical iterations must be repeated to execute the computations [7].
Here, iteration period [7] is the minimum time needed for computation and this is
limited by critical path. The critical path maybe transformed through redistribution of
the delays in a manner that conserves the functionality as well. Retiming algorithm is
used to redistribute the delays without altering the functionality.

Retiming or index shift method is a traditional loop transformation techniques
used to parallelize nested loops [9]. The concept behind the index shift method is to
alter the order of precedence of particular statements so that the overall parallelism for
an iteration is increased by the hyper plane method Retiming was originally used to
reduce the loop duration of a synchronous circuit by uniformly allocating registers.

The retiming technique is an appreciated optimization technique in problems
of digital filters which can be represented as data flow graphs and DG. Efficient filter
systems are desirable to decline the overall computation time subsequently scientific
applications can be recursive, non-recursive, and iterative. Retiming transformation
along with other high level transforms like unfolding approach for filters in high level
synthesis aids in increasing the throughput of the filter circuit. Unfolding the program
opens up previously hidden concurrencies which minimizes the iteration period of the
loop thereby maximizing the throughput of implementation.

III. METHODOLOGY
Graphical representations are efficient for exploring and scrutinizing the data flow
properties of DSP circuits and for exploiting the inherent parallelism among the
diverse subtask. More significantly graphical representation can be used to map the
tasks of the DSP algorithm to hardware implementation. This graphical representation
enables the step in high level synthesis for transforming algorithmic representation
into structural implementation. It exhibits all parallelism and data driven properties of
the system and provide an insight into space and time tradeoffs. The DSP applications
can be represented in the form of dependency graphs (DG). The nodes in a DG
symbolize computations and edges signify precedence constraints among nodes. DG
is comprised of computations for every iteration present in an algorithm contains
computations for all the iterations in an algorithm. The interdependencies amongst the
inherited and data reuse features at the nodes in a dataflow graph can be depicted by a
dependence graph.

A. Graph-Theoretic Framework and Attributes
This paper focuses solely on directed graphs. The dependence graph

()tdEVG ,,,= [8] is an edge weighted directed graph. The set of computational nodes
is represented byV , set of edges is denoted by E , t t is a function from V V to a set
of positive integers, representing the computation time of each node and d d is a
function from E to a set of non-negative integers, representing the number of delays
between any two nodes. Traditionally an edge signifies inter-iteration association
when a delay is present and an intra-iteration relation otherwise.

31874 E.S.Preethi and B. Bala Tripura Sundari

The transformation technique ensures that the original functionality of the
circuit is retained and we get a better performance. In this paper we are automating
the dependency graph creation process for various DSP benchmark circuits and then
incorporating the transformation techniques, retiming and unfolding, to improve the
throughput and iteration bound of the circuits.

A high level language enables us to add attributes to the graph. Java is just
such a language with specific advantages over low level languages like C or C++.
Java cuts down on memory usage by removing to the garbage collector, objects that
no longer have any references to them. Due to the above reasons we opted to use
JAVA.

B. Transformation Technique for Loop Algorithm Retiming
Retiming is a loop modification method that is used for altering the positions of delay
components along a path without disturbing the circuits input output features. The
elementary idea is to relocate registers along the paths in the circuit so as to diminish
combinational rippling. Retiming works with a behavioral characterization of the
algorithm, such as a data flow graph and DG. Retiming [8] is a critical tool used to
translate behavioral descriptions of algorithms into physical pathways. It is resorted to
while designing software for programmable DSP’s, during HLS of application-
specific integrated circuits (ASIC’s), and while designing the reconfigurable hardware
such as field-programmable gate arrays (FPGA’s).

A retiming r is a function that reallocates the delays in the original DG
i.e. tdEVG ,,,= , resulting in a new DG tdEVG rr ,,,= such that each iteration
still maintains one execution of each node inG . Delay function varies accordingly to
maintain dependencies, i.e.)(vr corresponds to the delay units pushed into the edges
v → w, and subtracted from the edges u → v, where Gwvu ∈,, .Thus, we have

)()()()(vrurededr −+= for each edge u → v and)()(ldldr = for every cycle Gl ∈ .

Unfolding
Unfolding [9] is an transformation procedure which when applied to the DG generates
a multiple DG relating more than one iteration of the original DG under consideration.
It increases the computational parallelism in a DG by duplicating actors. These are
generally used to process data streams with very high sample rates. Unfolding does
not change the transient behavior of a DG, but modifies the throughput. The notion of
unfolding is the parallel implementation of numerous instances of a specified DG.
Unfolding raises the level of parallelism by introducing copies of an iteration at
multiple points. Unfolding factor f is nothing but the quantity of replicas of the
original loop in an unfolded loop body. In the unfolded graph fG , f number of
copies of the nodes of untransformed DG is introduced. The iteration period P of a
loop is described as the average computation time of iteration. The iteration bound
and loop bound of cyclic DG which is defined as:

Loop Transformation for High Level Synthesis of Iterative Algorithms 31875

C. Iteration Bound and Loop Bound
In a DG, series of linked edges are defined as directed path. For a directed path to be
termed a loop it has to meet two conditions. The first is the presence of identical start
and end nodes. The second is the start node being the exclusive multi executed node
in the path. The aggregate of the delay counts of the edges in a cycle gives the delay
count. Summing up the computation time of the nodes in the loop results in the total
computation time of a cycle. The time prerequisite for carrying out one iteration of the
algorithm gives the iteration period of a loop. Reciprocating the iteration period
results in the iteration rate of the loop. The duration for loop execution depends upon
the precedence relations defined by the edges of DG. The lower bound on the loop
computation time, which is also known as the loop bound [7], [9] is computed by:

Loop Bound =
⎭
⎬
⎫

⎩
⎨
⎧

l

l

w
t (1)

where

lt is the total computation time of a loop and

lw is the total number of delays of the loop

The loop with the maximum loop bound is the critical loop of the DG. The
loop bound of the critical loop is the lower bound on the iteration period of the DSP
program. It is independent of the amount of computing resources available. Iteration
bound of the DG depends on total computation time lt and total number of delays lw
according to the equation below

Iteration Bound
⎭
⎬
⎫

⎩
⎨
⎧

=∞
l

l

w
t

T max (2)

D. Throughput
Throughput [10] of a system is the highest rate at which it can receive and process the
input data.

The throughput for an IIR filter is computed as

AM
sample TT

f
+

≤ 1

 (3)

Throughput for a FIR filter is computed as

AM
sample TT

f
2

1
+

≤
 (4)

31876 E.S.Preethi and B. Bala Tripura Sundari

Where
MT denotes the computation time for the multiplier

AT denotes the computation time for the adder

In this paper we have considered the computation time MT to be 5ns and AT as
2ns.Generally the multiplication time of the circuit is larger than the addition time.

IV. IMPLEMENTATION
A. Modelling of Dependency Graph
We modelled DG for various DSP benchmark circuits through JAVA programming.
The DGs are a convenient form to apply the LTT. Considering a simple second order
IIR filter which has eight nodes and eleven edges, The fig. 1 depicts the DG
representation of the DSP filter.

Fig. 1. Second order IIR filter

The nodes are represented as V0, V1, V2…and V7 respectively and the edges
are those which interconnect these nodes. The delay information of the circuit are
carried by the edges. In Fig.1 there are totally 3 delays. Node 31 VV → has a unit
delay, 21 VV → and 61 VV → have 2 unit delays respectively.

Loop Transformation for High Level Synthesis of Iterative Algorithms 31877

Fig 2. Source graph modelled in JAVA

The fig. 2 represents the DG of a second order IIR filter which was modelled
through JAVA.

B. Application of Retiming Technique
The modelled DG is subjected with the retiming transformation algorithm which
reduces the latency by reallocating the delays. The below Fig depicts the retimed
version of the source graph.

Fig 3. Retimed source graph in JAVA

C. Application of Unfolding Technique
The unfolding transformation algorithm is applied to the modelled DG. We
considered the unfolding factor J= 2. There by the number of nodes in the circuit is

31878 E.S.Preethi and B. Bala Tripura Sundari

doubled and the delays are moved accordingly. This unfolding mechanism increases
the throughput of the system as in a single iteration we are processing several nodes
together.

Fig 4. Unfolded source graph in JAVA

The fig. 5 represents the unfolded version of the second order IIR filter. The
graphs have 16 nodes, which is twice that of the source graph. The edges which carry
the delay information has also been modified according to the unfolding algorithm.
There is an increase in the iteration bound of the circuit as in a single iteration several
output is obtained which in turn increases the throughput of the circuit.

D. Simultaneous Application of Retiming and Unfolding Technique
The parallelism existent among different iterations is the crux upon which LTTs like
retiming and unfolding are based to enhance the performance. Incorporating both the
LTTs we get maximum throughput in the circuit. Below Fig represents the graph in
which both the transformation i.e. unfolding and retiming has been applied to the
second order IIR filter.

Loop Transformation for High Level Synthesis of Iterative Algorithms 31879

Fig 5. Unfolding and retimed graph in JAVA

V. RESULTS
The fig.6 represents the iteration bound for various DSP bench mark circuits after
source graph has undergone unfolding transformation. Unfolding a DG with iteration
bound ∞T transform into a J unfolded DG with iteration bound ∞JT as shown in Fig
6.

Fig. 6. Iteration bound computation

Throughput computation for various DSP benchmark circuits has been
implemented with the formula

AM
sample TT

f
+

≤ 1

31880 E.S.Preethi and B. Bala Tripura Sundari

We have considered the multiplication time as 5ns and addition time as 2ns.
With these assumptions the throughput for different benchmark circuits are
calculated. The Fig 7 represents the computed throughput for the unfolded DG. It
implies there is an improvement in the throughput when unfolding LTT is applied to
various DSP benchmark circuits.

Fig 7. Throughput computation for unfolded DG

Fig. 8. Throughput computation for unfolded and retimed DG

The graph in fig.8 depicts the comparison of throughput for a source DG and
the LTT applied DG. Simultaneous application of retiming and unfolding gives an
increased throughput.

VI. CONCLUSION
The unfolding and retiming transformation techniques are universally employed
procedures to attain instruction-level parallelism and achieve performance gain in
DSP circuits. These algorithm used for different architecture is to reduce the latency

Loop Transformation for High Level Synthesis of Iterative Algorithms 31881

and hence, increase the sampling rate. The experimental results shows that the
performance of the DSP circuits have been improved when both the LTT has been
applied on the benchmark circuits. These have been implemented using JAVA which
can be further utilized to generate RTL. The circuits are proposed to be considered
with additional nodes of several types of additional nodes/blocks can be replaced as
ports, MUXes and programmable elements and architectures therein after LTTS are to
be analyzed to pick up the optimum. In addition depending upon the requirement of
the circuit these can also be extended for several set of input libraries and generating
possible output architectures for the DSP benchmark circuits.

REFERENCE

[1] K.K. Parhi, VLSI Digital Signal Processing System: Design and
Implementation Wiley 2009.

[2] Ville Eerola n, JariNurmi, “High-level parameterizable area estimation
modeling for ASIC designs”, Integration, the VLSI journal, vol.47, pp.461–
475, 2014.

[3] Deepa Yagain and A. Vijaya Krishna, “Design of Synthesizable, Retimed
Digital Filters Using FPGA Based Path Solvers with MCM Approach:
Comparison and CAD Tool”, Hindawi Publishing Corporation VLSI Design
Vol 2014.

[4] Sharad Sinha and Thambipillai Srikanthan, “Dataflow Graph Partitioning for
Area-Efficient High-Level Synthesis with Systems Perspective”, ACM
Transactions on Design Automation of Electronic Systems, Vol. 20, No. 1,
November 2014.

[5] Seokhyun Lee and Kiyoung Choï “Critical-Path-Aware High-Level Synthesis
with Distributed Controller for Fast Timing Closure”, ACM Transactions on
Design Automation of Electronic Systems, Vol. 19, No. 2, March 2014.

[6] C. E. Leiserson and J. B. Saxe, “Retiming synchronous circuitry,
”Algorithmica, vol. 6, no. 1–6, pp. 5–35, 1991.

[7] Ali Shatnawi, “Computing the Loop Bound in Iterative Data Flow Graphs
Using Natural Token Flow” World Academy of Science, Engineering and
Technology International Journal of Computer, Information, Systems and
Control Engineering Vol.1, No.10, 2007.

[8] Liu, Z. Shao, M. Wang, M. Guo, and J. Xue, “Optimally Maximizing
Iteration-Level Loop Parallelism”, IEEE Trans. Parallel and Distributed
Systems, vol. 23, no. 3, March 2012.

[9] Jos´e L. Ayala, David Atienza, Marisa L´opez-Vallejo, J. M. Mend´ıas, R.
Hermida, C. A. L´opez-Barrio, “Optimal Loop-Unrolling Mechanisms and
Architectural Extensions for an Energy-Efficient Design of Shared Register

31882 E.S.Preethi and B. Bala Tripura Sundari

Files in MPSoCs” Proceedings of the Innovative Architecture for Future
Generation High-Performance Processors and Systems (IWIA’05), 2005.

[10] Alessio Bonfietti, Michele Lombardia, Michela Milano, Luca Benini
“Maximum-throughput mapping of SDFGs on multi-core SoC platforms”,
Journal of Parallel Distributed. Computing. Vol.73, pp 1337–1350, 2013.

