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Abstract 
 

Graph Mining is becoming one of the most dominant fields of research. There 
are plenty methods to index, re-index and to search the features throughout the 
index but still from the literature study there is no specific frame work which 
can sum up all three so that indexing and updating the index with new feature  
can be done in consistent intervals according to the arrival of new features. 
PLANO is the frame work which has the latest algorithms to look into the data 
and index. In this paper, Time and Memory efficiency of the proposed 
algorithms in the PLANO framework is tested statistically and compared with 
the existing algorithms memory and time usage. 
 
Keywords: Graph, Graph Mining, Graph Indexing 

 
 
1. Introduction 
Irrespective of the geographical locations of the users, the birth of World Wide Web 
in 80’s has been rooted in dominant as one of the data generation medium. In the 
recent days, Internet has become as the once of the cheapest medium to gather 
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required information and to publish information throughout the globe.  Web mining 
can be defined as the discovery and analysis of useful information from the WWW 
data. It can be categorized into Web Content, Web Structure and Web Usage Mining. 
Several forms of representing data are available in structured and semi-structured 
form which can be modeled as graph. Using graphs as a strong method to model 
complex data, various disciplines have been recognized by various researchers in 
domains such as chemical, computer vision, image and object retrieval, and machine 
learning. 

If Internet is modeled into a graph, then graph would be in the never ending 
structure of  infinity because it is completely the composition of  relationships and 
connections. Of the various sub domains of graph mining like Graph Classification, 
Graph Clustering etc, this paper primarily focus on the Graph Indexing. 

This paper is organized as follows: we introduce Lieterature Survey in Section 
II. Then we present the set of related work in section III. In section IV, we first 
introduce the complete overview of the architecture. Then in section V, we have given 
the experimental proof for phase III. Finally, we conclude this paper in Section VI. 

 
 

2. Literature Survey 
A. Classic Algorithms of Phase: I 
There are bounties of indexing methods for graph databases. There are various types 
of data and each type has to be more selective in processing the particular kind of 
data. Algorithms like Day light [4], AnMol [5] are for structured data, where as Data 
Guides [6], T-index [7], Index Fabric[8], APEX [9] are for semi structured and XML 
data. These are the few varieties or types of algorithms concentrating on particular 
types of data. There are hands full of indexing techniques for various graph models. 
GraphDB [10] and SUBDUE [11] concentrates on query processing from a large 
graph database while it automatically provides the relevant sub graphs. Of the various 
methods of indexing one of the dominant is GraphGrep[12] which works on the basis 
of paths of the graph. Consider if the paths in a graph are huge, the performance of the 
index will definitely be degraded. To overcome this, a graph based approach named 
gIndex [13] is reported. 
 
B. Classic Algorithms of Phase: 2 
A(k) – index [14] uses the k-bisimilarity to make use of similar patterns in a semi 
strucured graph database. Every path in a tree is treated as string and it is stored in 
Patricia trie by Index Fabric[15]. Washio and Matoda [16] introduced graph based 
data mining to mine the graph databases. The frequent sub graphs have to be analyzed 
for which Inokuchi et al. [18] and Vanetik et.al [17] have used Apriori-based 
algorithm. For the generation of sub graphs other than algorithms Yan and Han [19] 
and Borgelt and Berthold [20] have applied pattern growth approach. 
 
C. Classic Algorithms of Phase: 3 
In Frequent subgraph mining, there are various algorithms like AGM [22], FSG [16], 
and gSpan [23], go after by Path-Join, MoFa, FFSM, SPIN, Gaston but here in this 
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phase a new algorithm is proposed, tested  and compared with the classical LEAP 
algortihm. 
 
 
3. Related Works [Comparing the Classic and the Latest Contributions] 
The algorithms VFG index [Valorous Frequent Graph] [2] and BIGFMA [BON 
Iterative Graph Feature Mining Algorithm] [3] used in phase: I & II were proposed by 
the very same authors. 
 
A. Phase I 
The most recent and the improved algorithm for graph indexing is FG-index, which is 
enhanced to VFG-index [2] (Valorous Frequent Graph index) algorithm. 

 
Fig. 1 Working of Phase: I 

 
 

 Fig. 1 gives the complete overview of how the index is constructed by VFG 
index algorithm initially. Once the query is obtained, it is checked with the index and 
then irredundant sub graph are retrieved with reference to the previously constructed 
index. 

The phase I of this work is happening by two sub phases. 
 
Index Construction 
As a preprocessing step, the algorithm scans throughout the graph database and 
extracts the selected features in the graph database say G according to the minimum 
support. These extracted set of features are initially sorted and sequentially arranged 
with a weighted preferences for indexing through Dijkstra algorithm for shortest path 
among the extracted features so that graph index are done. 
 
-----------------------------------------------------------------------Index Construction 
-----------------------------------------------------------------------Input: 
D - Graph Database 
F - The set of Frequent Graphs 
δ - The frequency tolerance factor or minimum support. 
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T - Candidate set 
IDA – id –Array 
GA – Graph Array 
-----------------------------------------------------------------------Output: The Edge-index – 
VFG Index. 
----------------------------------------------------------------------- 
// Scan the dataset and extract the features with minimum support so that the shortest 
path can be found by Dijkstra algorithm// 
 
1. Sort F s.t. ∀g1, g2 ∈ F, g1 is ordered before g2 if g1 ≺ g2; 
2. Let T = F and Ti be the set of FGs that consist of i edges; 
3.  for each i = 1, 2, . . . do 
4.   for each g ∈ Ti do 
5.    for each g′ ∈ Ti+1 do 
6.     if (g ⊂ g′) 
7.    if (freq(g′) ≥ (1 −δ) · freq(g)) 
8.      T ← T − {g}; 
9.    break; /∗ go to Line 10 ∗/ 
10.  if (g ∈ T ) 
11.  Store g in the first free entry in the GA; 
12.   for each distinct edge e in g do 
13.    if (e /∈ EA) 
14.    Add e to the EA; 
15. Add the ID of g to IDA(count (e, g), size(g), e); 
16.  for each g ∈ (F − T ) do//Dijsters algorithm 
17.  Find g’s closest FG, supergraph, g; 
18.  Add g to the nested Index of g′; 
19.   for each infrequent distinct edge e in D do 
20.   Add e and De to Edge-index; 
----------------------------------------------------------------------- 
The entire algorithm can be interpreted by dividing the algorithm into three parts by 
the lines of codes: 
Lines 1-9 =>computation of T (ie) Candidate set generation 
Lines 10-18 => working of VFG-index 
Lines 19-20=>  creation of Edge-index 
----------------------------------------------------------------------- 
 
Example: 
Let G- Graph database, F- set of all feature from G. say for graph feature f€F, G (f) be 
the set of graphs containing the feature f,  then G(f) = {gi/f⊆ gi, gi€G). 
This is an example taken from AIDS antiviral screening database. 
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(i) (ii)  (iii)  
 

Fig. 2 A Sample Database 
 

 
 

Fig. 3 A Sample Query 
 
 

Assume a query say fig. 3, it checks out the bonding type c, c-c, c-c-c in the index. 
We get a subset of all three in Fig. 2 as sub graphs incase if taken with the bonding. 
 
Query Processing 
Once the query is obtained, it searches all the features relevant to the given query in 
the index to generate the candidate set which contains all the extracted features. 
Cq – set of candidate set 
Cq = q(f) ∩F(f) ∀f⊆q and f€F --------------------- (2) 
----------------------------------------------------------------------- 
Query Processing 
----------------------------------------------------------------------- 
Input: The index and a query q. 
E- set of all edges 
IDA – id Array 
GA – Graph Array 
 
Output: Dq. 
----------------------------------------------------------------------- 
1. Let E be the set of distinct edges in q; 
2.  for each i = size(q), size(q) + 1, . . . do 
3.   for each e ∈ E do 
4.   C(e) ← Uj ≥count(e,q) IDA(j, i, e)_; 
5. Sort C(e) in ascending order; 
6. Intersect C(e), ∀e ∈ E, until an ID is obtained; 
7.  if (g in GA[ID] is a supergraph of q) 
8.   if (g = q) 
9.   Return Dg; 
10.   else 
11. Return FG-Query with g’s nested IGA and q as input; 
12.  else 
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13.  Go to Line 6 and continue the intersection; 
----------------------------------------------------------------------- 
Line (2-11) => Graphs that have the same size as q until a super graph of q is found 
----------------------------------------------------------------------- 
 

If the intersection of the features does not obtain any the subgraph or no super 
graph of q is found for the current i, FG-Query increments i by 1 (Line 2) and 
continues a new round of iteration to search a super graph of q. 

In [2], the existing FG index is tested with the AIDS dataset and the 
improvement in memory and time complexity with a newly proposed algorithm VFG 
index (valorous Frequent Graph Index) is provided as outcome. 
 
B. Phase II 
The mine-at-once and iterative mining are very good combination of framework that 
alleviates the low-support frequent subgraph mining bottleneck. In usual, the Mine-at-
once algorithms often first obtain all frequent subgraphs and then mine the indexing 
features out of them. To prevent missing any important feature, frequent features are 
mined with a very low minimum support, e.g., 0.01|D|, although most of the selected 
features have much higher support. The time for frequent subgraph mining dominates 
the overall mining time. To overcome this bottleneck of feature mining, we first run 
the mine-at-once algorithm with a higher minimum support (0.1|D|), then run the 
iterative feature mining algorithm to identify the missing features that are important. 

Iterative Graph Feature Mining is one of the dominant properties which are 
focused in this phase. Let us consider a graph database D and a graph index with a 
feature set P0 of size n − 1, find a new graph feature p, p ∈ P0 such that the expected 
verification cost would be Tverif (≈ Tresp), which will be proportional to ∑ ∀ unique 
q |C(q)| ・ Pr(q), is minimized with the new feature set {p, P0} indexed, where C(q) 
is the candidate set of the query q. 

To distinguish the candidate set generated by using feature set P0 from that by 
{p, P0}, a new parameter P is added in C(q,P), where P is the graph-feature set that is 
used to obtain the candidates C(q). The objective function is used as the saving of the 
number of isomorphism tests (isomorphism-test saving) after bringing the new feature 
p into the feature set P0: 

 
gain(p, P0) =  ∀ ∑ q ୳୬୧୯୳ୣ  (|C(q,P0)| − |C(q, {p, P0})|) Pr(q). 

 
To minimize the expectation of the verification cost Tverf (≈ response time 

Tresp), the new feature should be selected as the one maximizing the isomorphism-
test saving, p = argmax gain(p, P0). 

From the frequentist point of view, |C(q,P0)| = |D| ・PrD(maxSub(q,P0)), 
where PrD(maxSub(q)) is the probability of graphs in the dataset D containing all 
features in maxSub(q). Pr(q) is the probability of a query graph isomorphic to q. And 
PrD(maxSub(q)) = Pr(g ∈ D s.t. g ⊃ maxSub(q)). It is hard to estimate the distribution 
of Pr(q), PrD(maxSub(q,P0)) and PrD(maxSub(q, {p, P0})). Hence a a practical 
approach is used for calculating the objective function over the graph database D and 
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a training query log Q: 
 

gain(p, P0) = 1 /|Q|∑ ሾ|Cሺq, P0ሻ|  െ  |Cሺq, ሼp, P0ሽሻ|ሿ ୯∈Q  
 

Since the objective function of a feature p only relates to the query q = p and 
queries for which p is a maximal subgraph given that {p, P0} is indexed, the 
irrelevant queries are not considered while calculating the objective function. The 
queries that have a maximal subgraph p by the minimal super queries of p are taken 
into consideration. 

MinSup Query is another key term playing its vital role in this phase. Consider 
a query set Q and a subgraph feature p ∈ P, a graph q ∈ Q is a minimal super query of 
the feature p if and only if the feature p is a maximal subgraph feature of q. 

 
minSup(p,Q) = {q ∈ Q|p ∈ maxSub(q,P)} 

 
Therefore, 

 
gain(p, P0) = 1|Q|  ∑ |Cሺq, P0ሻ  െ  Cሺq, ሼp, P0ሽሻ|୯∈୫୧୬S୳୮ሺ୮,Qሻ  + 1/ |Q| ∑ Iሺp ൌ୯∈Q  qሻ |Cሺq, P0ሻ| 

 
where,  I is the indicator function: I(p = q) = 1 iff p is isomorphic to q. 

Various iterative algorithms like Branch and Bound algorithm, Query 
grouping, TK algorithm are discussed of which the latest approach is Iterative Graph 
Feature Mining Algorithm which extract features from the updated data and they are 
be indexed. 

 

 
 

Fig. 4 Working of Phase II 
 
 

In [1] it is clearly given in the future work that one can consider the 
development of algorithms that estimate the objective function instead of calculating 
it precisely, which can further enhance the speed of an iterative mining algorithm. 
This is concentrated on so that a new algorithm Bon Iterative Graph Feature Mining 
Algorithm (BIGFMA) [3] is developed. This is how the flow of the algorithm moves 
on: 
 
BON Iterative Graph Feature Mining 
Input: Current featuresP, Queries Q 

Graph 
Data BIGFMA

New
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Output: The optimum feature p∗ 
----------------------------------------------------------------------- 
 
1: p∗ = null 
2: for each feature p in all enumerated subgraphs do 
3:  if gain(p∗, P0) is not precisely calculated then 
4:   if Upp(gain(p, P)) < Low(p∗, P) then 
5:   Continue 
6:   else if Low(gain(p, P)) < Upp(p∗, P) then 
7:   p∗ = p 
8:   else 
9:   Calculate gain(p∗, P) 
10:   end if 
11:  end if 
12:  if gain(p∗, P0) is precisely calculated then 
13:   if Upp(gain(p, P)) < gain(p∗, P) then 
14:   Continue 
15:   else if Low(gain(p, P)) > gain(p∗, P) then 
16:   p∗ = p 
17:   else 
18:   Calculate gain(p, P), compare with gain(p∗, P) 
19:   end if 
20:  end if 
21: end 
----------------------------------------------------------------------- 
Lines (2-9) =>calculation of the gain for the new features. 
Lines (12-18) => The feature gain which exceeds the set value of objective function 
are taken out as the newly updated features from the updated data. 
----------------------------------------------------------------------- 
 

For each feature extracted a weight is given such that the only the features 
with particular weight are taken into account and added into the index. The two most 
dominant objectives measure would be G- test and Information gain. Here the 
objective function gain is calculated for the algorithm. These are the values through 
which the new features are extracted from the updated data. 

In [3], the existing BON iterative algorithm is tested with the AIDS and E-
Molecule datasets such that the improvement in memory and time complexity with a 
newly proposed algorithm BIGFMA (BON Iterative Graph Feature Mining 
Algorithm) is provided as outcome. 
 
C. Phase: III 
In phase I, data was indexed by VFG-index algorithm; on the arrival of updates data 
gets upgraded. In phase II, updated data are analysed by BIGFMA such that the new 
features are extracted from the updated data. In this phase, the right features have to 
be inserted into the right position in the index without performance degradation. 
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The flow of the sequence Phase III is as follows in fig. 5. 
 

 
 

Fig. 5 Working of Phase III 
 
 

The structure of CLEAP is explored by two mining concepts which is the 
extension LEAP search algorithm. Structural leap search, and frequency-descending 
mining, both are related to specific properties in pattern search space. Initially the 
existing branch-and-bound method only performs “vertical" pruning. In a graph if the 
upper bound and its descendants is less than the most significant pattern mined, the 
whole branch below g could be pruned. To improve the efficiency can the pruning be 
done horizontally? Yes, this is possible. This is called prune by structural proximity: 
Interestingly, many branches in the pattern search tree exhibit strong similarity not 
only in pattern composition, but also in their frequencies and their significance. 

When a complex objective function is considered, pattern frequency is often 
put aside and never used in existing solutions.  

If all of sub graphs patterns are ranked according to their frequency, 
significant graph patterns often have a high rank. This is where the phenomenon 
frequency association into picture. An iterative frequency-descending mining method 
is used find the right feature. This makes the minimum frequency threshold 
exponentially, making the proposed algorithm to improve the efficiency of capturing 
significant graph pattern candidates. The discovered candidates can then be taken as 
seed patterns to identify the most significant one.  An examination of an increasingly 
important mining problem in graph data and the proposal of a general approach for 
significant graph pattern mining with objective functions are the core properties 
which the CLEAP algorithm to perform in an improved format.  

These structural proximity and frequency association are used in the existing 
LEAP study. The very same is improved and demonstrated that the widely adopted 
branch-and-bound search is not fast enough, thus when the very same is tested with 
the proposed; it showed improvement in information gain and sketched a new picture 
on scalable graph pattern discovery. 
 
CLEAP search 
Input: Graph dataset D, 
Output: Optimal graph pattern g¤. 
1: S = f1-edge graph g; 
2: g* = �; F(g*) = -∞; 
3: while S ≠ do 
4: choose g from S, S = S \ f{g}; 

INDEXED 
DATA 

UPDATED 
INDEX 

NEW 
FEATURE

CLEAP
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5: if g was examined then 
6: continue; 
7: if F(g) > F(g*) then \\ Structural leap 
8: g* = g; 
9: if  F(g) < F(g*) then 
10: continue; 
11: S = S Ų { g’ / g’ = g . e}; \\frequency-descending compared 
12: return g* = g**; 
-----------------------------------------------------------------------  
 

The principle of LEAP is not to mine the most significant graph pattern in one 
shot. Instead, it first iteratively derives significant patterns with increasing objective 
score. In the second shot, it usually runs branch-and-bound search to discover the 
most significant one where unpromising branches will be cut quickly. With this new 
mining framework, the existing algorithm is able to capture the optimal pattern in a 
faster way but however when it comes to CLEAP it performance faster than the 
existing Branch and Bound and LEAP. This phase implementations is as follows. 
 
 
4. Experimental Results For Phase: III 
Dataset Information: 
AIDS dataset 
The dataset is NCI AIDS antiviral, donated Jun Feng , Laura Lurati , Haojun Ouyang , 
Tracy Robinson ,  Yuanyuan Wang , Shenglan Yuan , S. Stanley Young, J. Chem. Inf. 
Comput. Sci., 43 (5),1463 -1470, 2003. 10.1021/ci034032s S0095-2338(03)04032-0. 
Three classes (B)donated on July 29, 2004 completely consist of 29374 row numbers. 

The Methodological overview of the PLANO framework is as follows. 
 

 
 

Fig:6 Iterative Indexing Plano Frame Work 
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4.7 Statistical Analysis 
 

Table: 1 Centralized Memory Management table 
 

 Existing Proposed 
FG/VFG-Index Index Construction 2.5214 1.8001 

Query Processing 2.101 1.4201 
IGFMA/BIGFMA AIDS dataset 1.995 1.4990 

E-Molecule dataset 2.512 1.6600 
LEAP/CLEAP 2.411 1.912 

 
Table: 2 Centralized Time Management table 

 
 Existing Proposed 
FG/VFG-Index IndexConstruction 9.754 7.120 

Query Processing 0.031 0.021 
IGFMA/BIGFMA AIDS dataset 7.615 6.401 

E-Molecule dataset 7.403 6.019 
LEAP/CLEAP 4.421 4.222 

 
 

To prove the efficiency of PLANO framework, all the existing results both 
memory and time are taken into a single consideration and the all the proposed 
algorithms results are considered on the other hand. 

So we frame the following tables for existing algorithm results and proposed 
algorithms results: 
 
 
Existing Algorithm results 
 

Table: 3 Centralized Memory Scores table 
 

X [Memory] Y [Time]
2.5214 9.754 
2.101 0.031 
1.995 7.615 
2.512 7.403 
2.411 4.421 

 
Table: 4.11 Centralized Time Management table Proposed Algorithm results 

 
X [Memory] Y [Time]

1.8001 7.120 
1.4201 0.021 
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1.4990 6.401 
1.6600 6.019 
1.912 4.222 

 
Memory usage scores chart 

 

 
 

Figure: 7 comparing the memory scores of existing and proposed algorithm 
 
 

The line chart compares the memory usage of both existing and proposed 
algorithms. The proposed algorithms consume less memory than all other existing 
algorithms. 
 
 
Time Management scores chart 

 

 
 

Figure: 8 comparing the time scores with existing and proposed algorithm 
 
 

The line chart compares the time taken by both existing and proposed 
algorithms. The proposed algorithms consumes less time than all other existing 
algorithms. 
 
 
Regression Definition 
A regression is a statistical analysis assessing the association between two variables. 
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It is used to find the relationship between two variables. 
Regression Formula 
Regression Equation(y) = a + bx  
Slope(b) = (NΣXY - (ΣX)(ΣY)) / (NΣX2 - (ΣX)2) 
Intercept(a) = (ΣY - b(ΣX)) / N 
where  
              x and y are the variables. 
              b = The slope of the regression line  
              a = The intercept point of the regression line and the y axis.  
              N = Number of values or elements  
              X = Memory Score 
              Y = Time Score 
              ΣXY = Sum of the product of Memory and Time Scores 
              ΣX = Sum of Memory Scores 
              ΣY = Sum of Time Scores 
              ΣX2 = Sum of square Memory Scores 
 
For Existing Algorithms 
Slope b = 6.93608 
Y intercept = -10.16424 
Regression Equation => -10.164+6.936x ------- (1) 
Substituting x=2.5214, 2.101, 1.995, 2.512, 2.411 in the above equation (1), the 
values of y would be 7.324, 4.4085, 3.673, 7.259, 6.559 
For Proposed Algorithms 
Slope b = 6.40926 
Y intercept = -5.87149 
Regression Equation:  => -5.871+6.409x ------- (2) 
Substituting x=1.8001, 1.4201, 1.4990, 1.6600, 1.912 in the above equation (2), the 
values of y would be 5.666, 3.230, 3.636, 4.768, 6.383 
 
Plotting the equations (1) and (2) on the graph: 

 

 
 

Figure:9 Regression curve for Existing and Proposed algorithms 
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From the figure 9, we can strongly conclude that the PLANO framework 
acquire less memory and time than the classical algorithms which were used for 
indexing and searching throughout the graph. 
 
 
5. Conclusion 
The complete research work comprises of the flow of data into an orderly arranged 
indexed sequence so that they can be retrieved for the concerned query. Initially, raw 
data is processed with the VFG index algorithm; their results are compared with the 
already existing most dominant algorithm FG index. This phase has two process, 
Index construction and Query processing.  In Index construction, data are scanned and 
the features are extracted from the graph so that they are arranged as index. On arrival 
of a query, index is checked throughout and the sub graphs with specific features of 
the query are extracted and provided as output. 

The memory and time complexity are tested for this working such that their 
results are compared with existing. Now there is an index for data, but when data gets 
updated this data is scanned through the iterative algorithm and the new proposed 
BIGFM algorithm took less memory and time complexity than the other classic 
iterative algorithms. This very same algorithm is tested with very two datasets so as to 
test the scalability and the working efficiency. During both the environment, the 
proposed algorithm performed better and came up with the updated features from the 
updated data. So as to insert this data into right place into the index, the search 
algorithm LEAP is tested. A new improved algorithm CLEAP is proposed and tested 
such the results stood tall better than the existing search algorithm. 

From Figure:9 we can say that the proposed algorithms are giving improved 
results in both memory usage and time. From the literature survey, it is also said 
found that there is no existing framework for indexing. Extending on with the results, 
here we finally make this into a new frame work which can index and alters the index 
when updates come into data. 

Alas, we say that PLANO is the only latest framework with improved latest 
algorithms which could effectively index data and provide improved results. 
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