
International Journal of Applied Engineering Research

ISSN 0973-4562 Volume 10, Number 12 (2015) pp. 30203-30217

© Research India Publications

http://www.ripublication.com

Shortest Path Algorithms Using Map Reduce For Automatic

Vehicle Location Systems

N. Minni

Department of Computer Science

Avvaiyar Govt College for Women, Karaikal, Puducherry, India

minnimca@yahoo.co.in

N. Rehna

Department of Computer Science

SSS Shasun Jain College, T. Nagar, Chennai, India

rehnamca@yahoo.com

Abstract

Map Reduce is a simple data-parallel programming model designed for

scalability and fault-tolerance and for processing and generating large data

sets. It was initially created by Google [1] for simplifying the development of

large scale web search applications in data centers and has been proposed to

form the basis of a „Data center computer‟ [5]. Many real world tasks are

expressible in this model. In this paper, we introduce a Shortest Path

Algorithm for Automatic Vehicle Location Systems (AVL) using MapReduce

technique. This algorithm computes the shortest route from the current

location to all other cities in the global network. Since the data are distributed

in the cloud We‟ve proposed to develop the shortest path algorithm using map

reduce technique which processes the data parallely. Programs written in this

functional style are automatically parallelized and executed on a large cluster

of commodity machines. This allows programmers without any experience

with parallel and distributed systems to easily utilize the resources of a large

distributed system.

The implementation of MapReduce runs on a large cluster of commodity

machines and is highly scalable. A typical MapReduce computation processes

many terabytes of data on thousands of machines. Programmers find the

system easy to use.

Keywords: Cloud Computing, Map Reduce, Map Reduce Shortest Path

(MRSP) Algorithm , Adjacency List, Automatic Vehicle Location (AVL)

systems. Global Positioning System (GPS)

30204 N. Minni

Introduction

A) Automatic Vehicle Location System (AVL)

Every wonder what the world would be like with little to no congestion, improved

safety and efficiency on all roads? Automated Vehicle Location systems and shortest

path algorithms are steps in this direction. Vehicles equipped with shortest path

algorithms along with AVL technologies are faster, safer, and more efficient than those

without [4]. In the not to distant future most vehicles will be equipped with GPS

tracking technology, but the real market change will be in the access and permission to

use shortest path algorithms and AVL systems [6].

 A current debate is starting on who should be allowed to track, what to track, and

access to shortest path algorithms

B) Shortest Path Algorithms

A shortest path algorithm is a program, or set of directions that can be executed to

provide the shortest path between locations given certain conditions and paths.

Conditions such as traffic density, speed of travel, and others, as well as geographic

obstacles can be factored in to help the algorithm execute and display the shortest

path[9].

 The latest algorithms being developed adjust to conditions and dynamically execute

to give new shortest paths based not only on distance, but also on time. Shortest path

algorithms are essential to improving efficiency and safety in many areas network

navigation such as highway systems and disaster clean-up.

 Algorithms are used for determining time dependent shortest paths in highway

systems given variations in traffic density. Algorithms are used in connection with GPS

tracking technology to provide shortest paths for trucks to follow to specific dumping

areas when cleaning up after a natural or terrorism related disaster [6].

C) Map Reduce Technique

The MapReduce distributed data analysis framework model introduced by Google [1]

provides an easy-to-use programming model that features fault tolerance, automatic

parallelization, scalability and data locality-based optimizations. Due to their excellent

fault tolerance features, MapReduce frameworks are well-suited for the execution of

large distributed jobs in brittle environments such as commodity clusters and cloud

infrastructures [1].

 The MapReduce framework is a programming paradigm for designing parallel and

distributed algorithms [2]. It provides a simple programming interface that is

specifically designed to make it easy for a programmer to design a parallel program

that can efficiently perform a data-intensive computation. Moreover, it is a framework

that allows for parallel programs to be directly translated into computations for cloud

computing environments and server clusters [8].

 Using this model we‟ve developed a MapReduce algorithm for finding shortest

path[3]. Our algorithm computes the shortest paths to all the cities from the current

location.

Shortest Path Algorithms Using Map Reduce For Automatic Vehicle et. al. 30205

 Section 2 describes the basics and working of cloud computing. Section 3 tells the

need for cloud computing and MapReduce. In Section 4, we describe the MapReduce

framework on cloud computing environment. Section 5 briefly explains the graph

representations. Section 6 introduces the concept of parallel breadth first search

technique. Section 7 clearly explains the usage of MapReduce in the proposed work. In

section 8, MRSP algorithm is developed using MapReduce which finds the shortest

paths for AVL systems. Section 9 discusses about the advantages of MapReduce.

Section 10 discusses the conclusions and future works.

Cloud Computing
Cloud computing refers to the provision of computational resources on demand via a

computer network. Cloud computing offers computer application developers and users

an abstract view of services that simplifies and ignores much of the details and inner

workings. A provider's offering of abstracted Internet services is often called "The

Cloud" [5]. Cloud computing is computation, software, data access, and storage

services that do not require end-user knowledge of the physical location and

configuration of the system that delivers the services.

How it works

Instead of installing a suite of software for each computer, we'd only have to load one

application. That application would allow workers to log into a Web-based service

which hosts all the programs the user would need for his or her job. Remote machines

owned by another company would run everything from e-mail to word processing to

complex data analysis programs. It's called cloud computing, and it could change the

entire computer industry [5].

 In a cloud computing system, there's a significant workload shift. Local computers

no longer have to do all the heavy lifting when it comes to running applications. The

network of computers that make up the cloud handles them instead. Hardware and

software demands on the user's side decrease. The only thing the user's computer needs

to be able to run is the cloud computing system's interface software, which can be as

simple as a Web browser, and the cloud's network takes care of the rest.

Need For Cloud Computing and Mapreduce
Cloud computing has been driven fundamentally by the need to process an exploding

quantity of data in terms of exabytes as we are reaching the Zetta Bytes Era. One

critical trend shines through the cloud is Big Data.

 Indeed, it‟s the core driver in cloud computing and will define the future of IT.

When a company needed to store and access more data they had one of two choices.

One option could be to buy a bigger machine with more CPU, RAM, disk space etc.

This is known as scaling vertically. Of Course, there is a limit to how big of a machine

we can actually buy and this does not work when we start talking about internet scale.

The other option would be to scale horizontally. This usually meant contacting some

database vendor to buy a bigger solution. These solutions do not come cheap and

30206 N. Minni

therefore required a significant investment. Today the source of data generated not

only by the users and applications but also “machine- generated” and such data is

exponentially leading the change in the big data space. Dealing with big datasets in

the order of terabytes or even petabytes is a challenging. In cloud computing

environment a popular data processing engine for big data is Hadoop-MapReduce due

to ease-of-use, scalability and failover properties. [10]

Basics of Map Reduce
MapReduce is a framework for processing huge datasets on certain kinds of

distributable problems using a large number of computers, collectively referred to as a

cluster or as a grid [7].

A. Programming Model

The computation takes a set of input key/value pairs, and produces a set of output

key/value pairs. The user of the MapReduce library expresses the computation as two

functions: Map and Reduce. Map, written by the user, takes an input pair and produces

a set of intermediate key/value pairs. The MapReduce library groups together all

intermediate values associated with the same intermediate key I and passes them to the

Reduce function. The Reduce function, also written by the user, accepts an

intermediate key I and a set of values for that key. It merges together these values to

form a possibly smaller set of values. Typically just zero or one output value is

produced per Reduce invocation. The intermediate values are supplied to the user's

reduce function via an iterator. This allows us to handle lists of values that are too large

to fit in memory [1].

 In Fig. 1, mappers are applied to all input key-value pairs, which generate an

arbitrary number of intermediate key-value pairs. Reducers are applied to all values

associated with the same key. Between the map and reduce phases lies a barrier that

involves a large distributed sort and group by [3].

Figure 1: Simplified View of Map Reducee

Shortest Path Algorithms Using Map Reduce For Automatic Vehicle et. al. 30207

B. The MapReduce Framework

The Map and Reduce functions of MapReduce are both defined with respect to data

structured in (key, value) pairs. Map takes one pair of data with a type in one data

domain, and returns a list of pairs in a different domain.

 Map(k1,v1) → list(k2,v2)

 The Map function is applied in parallel to every item in the input dataset. This

produces a list of (k2,v2) pairs for each call. After that, the MapReduce framework

collects all pairs with the same key from all lists and groups them together, thus

creating one group for each one of the different generated keys.

 The Reduce function is then applied in parallel to each group, which in turn

produces a collection of values in the same domain.

 Reduce(k2, list (v2)) → list(v3)

 Each Reduce call typically produces either one value v3 or an empty return, though

one call is allowed to return more than one value. The returns of all calls are collected

as the desired result list.

 Thus the MapReduce framework transforms a list of (key, value) pairs into a list of

values. This behavior is different from the functional programming map and reduce

combination, which accepts a list of arbitrary values and returns one single value that

combines all the values returned by map [1].

C. Parallel map reduce computations

The parallelism of the MapReduce framework comes from the fact that each map or

reduce operation can be executed on a separate processor independently of others [7].

The system automatically schedules map-shuffle-reduce steps and routes data to

available processors, including provisions for fault tolerance.

 The outputs from a reduce step can, in general, be used as inputs to another round

of map-shuffle-reduce steps. Thus, a typical MapReduce computation is described as a

sequence of map-shuffle-reduce steps that perform a desired action in a series of

rounds that produce the algorithm‟s output after the last reduce step.

D. Execution Overview

Fig. 2 shows the overall flow of a MapReduce operation in our implementation [1].

When the user program calls the MapReduce function, the following sequence of

actions occurs.

1. The MapReduce library in the user program first splits the input files into M

pieces. It then starts up many copies of the program on a cluster of machines.

2. One of the copies of the program—the master— is special. The rest are

workers that are assigned work by the master. There are M map tasks and R

reduce tasks to assign. The master picks idle workers and assigns each one a

map task or a reduce task.

3. A worker who is assigned a map task reads the contents of the corresponding

input split. It parses key/value pairs out of the input data and passes each pair to

the user-defined map function. The intermediate key/value pairs produced by

the map function are buffered in memory.

30208 N. Minni

4. Periodically, the buffered pairs are written to local disk, partitioned into R

regions by the partitioning function. The locations of these buffered pairs on

the local disk are passed back to the master who is responsible for forwarding

these locations to the reduce workers.

Figure 2: Execution Overview

5. When a reduce worker is notified by the master about these locations, it uses

remote procedure calls to read the buffered data from the local disks of the map

workers. When a reduce worker has read all intermediate data for its partition,

it sorts it by the intermediate keys so that all occurrences of the same key are

grouped together. The sorting is needed because typically many different keys

map to the same reduce task. If the amount of intermediate data is too large to

fit in memory, an external sort is used.

6. The reduce worker iterates over the sorted intermediate data and for each

unique intermediate key encountered, it passes the key and the corresponding

set of intermediate values to the user‟s reduce function. The output of the

reduce function is appended to a final output file for this reduce partition.

7. When all map tasks and reduce tasks have been completed, the master wakes

up the user program. At this point, the MapReduce call in the user program

returns back to the user code.

 After successful completion, the output of the MapReduce execution is available in

the R output files.

Graph Representations
A graph with n nodes can be represented as an n x n square matrix M, where a value in

cell mij indicates an edge from node ni to node nj . In the case of graphs with weighted

edges, the matrix cells contain edge weights; otherwise, each cell contains either a one

(indicating an edge), or a zero (indicating none). With undirected graphs, only half the

Shortest Path Algorithms Using Map Reduce For Automatic Vehicle et. al. 30209

matrix is used (e.g., cells above the diagonal). For graphs that allow self loops [3], the

diagonal might be populated; otherwise, the diagonal remains empty.

 Fig 3 provides an example of a simple directed graph and its adjacency matrix

representation.

Figure 3: Sample Graph and Its Adjacency Matrix

Parallel Breadth-First Search
One of the most common and well-studied problems in graph theory is the single-

source shortest path problem, where the task is to find shortest paths from a source

node to all other nodes in the graph. The edges can be associated with costs or weights,

in which case the task is to compute lowest-cost or lowest-weight paths. The solution

to these kind of problems are usually solved using the Dijkstra‟s algorithm. this famous

algorithm assumes sequential processing [9]. This paper deals with how to solve this

problem in parallel, and more specifically, with MapReduce.

 It is apparent that parallel breadth-first search is an iterative algorithm, where each

iteration corresponds to a MapReduce job. The first time we run the algorithm, we

discover all nodes that are connected to the source. The second iteration, we discover

all nodes connected to those, and so on. Each iteration of the algorithm expands the

“search frontier" by one hop, and, eventually, all nodes will be discovered with their

shortest distances [3].

Usage of Map Reduce in Proposed work
As this paper is dealt with finding shortest route from one city to all other cities in the

global network, the data we are going to consider is certainly big. The global network

consists of big data sets in terabytes or even petabytes. Hence it becomes necessary to

use MapReduce technique which is a common tool for problem solving in cloud

computing environment.

 The basic idea is to partition a large problem into sub problems. To the extent that

the sub problems are independent they can be tackled in parallel by different workers-

30210 N. Minni

threads in a processor core, cores in a multi-core processor, multiple processors in a

machine, or many machines in a cluster. Intermediate results from each individual

worker are then combined to yield the final output. [3]

 In this paper, we deal with a global network considering a large number of cities

and we apply MapReduce technique in the shortest path algorithm for AVL systems.

The data is given in the form of graph and parallel breadth first search is used as

mentioned earlier. The data may be structured or unstructured. The approach is as

follows.

1. The global network graph is divided into components that are relatively

disjoint. This is known as graph clustering. [3]

2. The divided components (subgraph) are inserted into buckets.

3. Apply the function map() which emits shortest distances to all reachable nodes

on a single bucket and repeats it concurrently for all the buckets in parallel,

storing the result (processing of each bucket) in another set of buckets called

result buckets.

4. Apply the function reduce() on each of these result buckets. This function takes

the input from the result buckets, finds the shortest distant node from the source

node and made permanent. This functionality once again takes place

concurrently.

5. The new node made permanent is considered as source node for the next

iteration.

6. The steps 3, 4 and 5 above are iteratively performed until the shortest routes are

found from source node to all other nodes.

7. The parallel results obtained are combined to yield the final shortest routes in

the global network.

Map Reduce Shortest Path Algorithm
(MRSP Algorithm)

The cloud store billions of cities (nodes) and their distances from their adjacent cities

in the form of adjacency matrices. So, there is a need for an algorithm that gives the

shortest route to the required locations specific to a query.

A. Introduction to MRSP Algorithm

The input to the algorithm is a directed, connected graph G = (V,E) represented with

adjacency lists, w containing edge distances such that w(u, v)≥0, and the source nodes.

 The algorithm begins by first setting distances to all vertices d[v], v є V to ∞,

except for the source node, whose distance to itself is zero. The algorithm maintains Q,

a global priority queue of vertices with priorities equal to their distance values d.

 The algorithm operates by iteratively selecting the node with the lowest current

distance from the priority queue (initially, this is the source node). At each iteration,

the algorithm “expands" that node by traversing the adjacency list of the selected node

to see if any of those nodes can be reached with a path of a shorter distance. The

algorithm terminates when the priority queue Q is empty, or equivalently, when all

nodes have been considered. The algorithm discussed here only computes the shortest

Shortest Path Algorithms Using Map Reduce For Automatic Vehicle et. al. 30211

distances. The actual paths can be recovered by storing “backpointers" for every node

indicating a fragment of the shortest path.

B. Performance Evaluation of MRSPAlgorithm

We need to compute shortest paths for a large set of data that is distributed on several

clusters. Shortest Path can be calculated even faster by using the MapReduce method

which in turn reduces the computation time. This MapReduce algorithm is executed on

all clusters parallely.

 Our MapReduce algorithm is framed using parallel breadth first search technique.

Since Shortest Path is recursively defined, the MapReduce algorithm is given as

iterative procedure. The algorithm begins by first setting distances to all vertices d[v],

v є V to ∞, except for the source node, whose distance to itself is zero. The algorithm

maintains Q, a global priority queue of vertices with priorities equal to their distance

values d.

 Figure 4 provides the pseudo code of the shortest path algorithm using map reduce

Pseudo Code:

class Mapper

method Map(nid n , node N)

 d ← N.Distance

 Emit(nid n ,N)

 for all nodeid m є N.AdjacencyList do Emit (nid m , d + 1)

class Reducer

method Reduce(nid m , [d1, d2,…])

dmin ← ∞

M ← Ø

for all d є counts [d1,d2,…] do

 if IsNode(d) then

M ← d

else if d < dmin then

 dmin ← d

M:Distance ← dmin

Emit(nid m; node M)

Figure 4: Pseudo-code for parallel breath-first search in MapReduce

 In the pseudo code, we use n to denote the node id as integer and N to denote the

node‟s corresponding data structure (adjacency list and distance). The algorithm works

by mapping over all nodes and emitting a key-value pair for each neighbor on the

node‟s adjacency list. The key is the node id of the adjacent node and value is the

distance.

 After shuffle and sort, reducers will receive keys corresponding to the adjacent

nodeids and distances corresponding to all edges leaving that node. The reducer will

find the minimum of these distances and make that corresponding node permanent.

From this node the next iteration will start.

30212 N. Minni

 We implement our MRSP Algorithm for the graph shown in Fig 5. The adjacency

matrix is given in Fig 6.

Figure 5: Interconnected Graph For 5 Cities (Nodes)

Figure 6: Adjacency matrix for fig 5

1) The Map Phase

In the map phase, the mappers emit distances to reachable nodes. The map phase

receives as input the source node and their node‟s structure (adjacency list , distance).

It computes the distances for adjacent nodes and produces the intermediate values, the

adjacent nodes and their distances from the source node.

 Initially all nodes have a distance of ∞. The distance of source node is set to 0.

 In iteration1 node n1 emit distances to its adjacent nodes n2 and n3. The Key value

pairs generated by the map phase are (n2,10) and (n3,5). Similarly all the other nodes

distributes their distances evenly to their outgoing nodes.

2) The Reduce Phase

The reduce phase receives as input the adjacent nodes and their distances The reducers

select the minimum of those nodes currently emitted by the map phase and those

which are not yet made permanant .

 The output of reduce phase is the node with minimum distance. It makes this node

permanent from which the next iteration starts.

 In Iteration 1 of the reduce phase n3 is the node with minimum distance 5. Hence

the node n3 is made permanent which serves as the source node for the map phase in

the next iteration.

Shortest Path Algorithms Using Map Reduce For Automatic Vehicle et. al. 30213

 The nodes that will be expanded next, in order, are n5, n2, and n4. The algorithm

terminates with the end state shown in iteration 4, where we've discovered the shortest

distance to all nodes.

 We iterate the algorithm until there are no more node distances that are ∞. Since the

graph is connected, all nodes are reachable, and all discovered nodes are guaranteed to

have the shortest distances.

 The following fig 7 shows the iterations of MapReduce in computing the Shortest

paths.

Iteration 1:

 Map Reduce

 Source node is n1 Choose minimum node n3

 Emits distances to adjacent and make it permanent.

 nodes n2,n3 n3.distance = 5

 n3.path = n1 → n3

Iteration 2:

 Map Reduce
 Source node is n3 Choose minimum node n5

 Emits distances to adjacent and make it permanent.

 nodes n2,n4,n5 n5.distance = 7

 n5.path = n1 → n3→n5

30214 N. Minni

Iteration 3:

 Map Reduce
 Source node is n5 Choose minimum node n2

 Emits distances to adjacent and make it permanent.

 nodes n4 n2.distance = 8

 n2.path = n1 → n3→n2

Iteration 4:

 Map Reduce
 Source node is n5 Choose minimum node n4

 Emits distances to adjacent and make it permanent.

 nodes n4 n4.distance = 9

 n4.path = n1 → n3→n2→n4

Figure 7: Shows The Four Iterations For The Graph Of Fig 5

 The algorithm ends here since there are no more nodes with distances ∞. We have

found the shortest path to all the other nodes n2,n3,n4,n5 from the source node n1.

 The shortest distances calculated to all adjacent nodes by the map phase are

illustrated in table 1.

Shortest Path Algorithms Using Map Reduce For Automatic Vehicle et. al. 30215

Table 1: Map Phase Emitting Distances To Reachable Nodes

Iteration Source node n2.dist n3.dist n4.dist n5.dist

1 n1 10 5 ∞ ∞

2 n3 8 5 14 7

3 n5 8 5 13 7

4 n2 8 5 9 7

5 n4 No more nodes to visit

 The minimum distance node which is to be made permanent next computed by the

reduce phase is illustrated in table 2.

Table 2: Reduce Phase Choosing Node With Minimum Distance

Iteration n2.dist n3.dist n4.dist n4.dist Node chosen

1 10 5 ∞ ∞ n3

2 8 5 14 14 n5

3 8 5 13 13 n2

4 8 5 9 9 n4

 The shortest distances and their shortest paths of all the nodes(cities) from the

source node is depicted in table3.

Table 3: Shortest Distances and Paths To All The Other Nodes From Source Node n1

Nodes Shortest distances

From the source node n1

Shortest path

From the source node n1

n2 8 n1 → n3→n2

n3 5 n1 → n3

n4 9 n1 → n3→n2→n4

n5 7 n1 → n3→n5

Advantages of Mapreduce

1) Fault tolerance

Fault tolerance is handled via re-execution. The master pings every worker

periodically. If no response is received from a worker in a certain amount of time, the

master marks the worker as failed [1].

 On worker failure, it will detect failure via periodic heartbeats, re-execute

completed and in-progress map tasks, re-execute in progress reduce tasks and task

completion is committed through master.

30216 N. Minni

 When a map task is executed first by worker A and then later executed by worker B

(because A failed), all workers executing reduce tasks are notified of the re-execution.

Any reduce task that has not already read the data from worker A will read the data

from worker B.

 The master writes periodic checkpoints of the master data structures. If the master

task dies, a new copy can be started from the last check pointed state.

2) Parallelism

The map() functions runs in parallel, creating different intermediate values from

different input data sets. The reduce() functions also run in parallel, each working on a

different output key. All values are processed independently[7].

3) Optimizations

Reduce phase can‟t start until map phase is completely finished. A single slow disk

controller can rate-limit the whole process. Master redundantly executes slow-moving

map tasks and uses results of first copy to finish. The Combiner functions can run on

same machine as a mapper. It causes a mini-reduce phase to occur before the real

reduce phase, to save the bandwidth[7].

4) Scalability

The MapReduce programming model and distributed execution platform is described

for easily scaling systems to run efficiently across thousands of commodity machines

on a dedicated high-speed network. The scalability achieved using MapReduce to

implement data processing across a large volume of CPUs with low implementation

costs, whether on a single server or multiple machines, is an attractive proposition

[8].To achieve good scalability, a computer system needs to be able to run many

simultaneous threads of execution in isolation of each other, or at least with minimal

dependency between executions.

Conclusions and Future Work
In this paper, we‟ve presented and analyzed the performance of a MapReduce

application in Shortest Path computation for Automatic vehicle location systems. This

enables us to find out the shortest route from any location to all other cities using

parallel breadth first search technique. This approach helps to make use of the global

data which are provided in the cloud and to process them parallely. So this MRSP

algorithm saves computation time and guarantees quality. We also presented the

fundamentals of MapReduce Programming with the open source framework. This

framework accelerates the processing of large amounts of data through distributed

processes, delivering very fast responses. It can be adopted and customized to meet the

various development requirements and can be scaled by increasing number of nodes

available for processing. The extensibility and simplicity of the frame work are the key

differentiators that make it a promising tool for data processing.

Shortest Path Algorithms Using Map Reduce For Automatic Vehicle et. al. 30217

References

[1] Dean, J., & Ghemawat, S. MapReduce: Simplified Data Processing on

Large Clusters (2004). Google, Inc. Gottfrid, D., 2004.

[2] Google‟s MapReduce programming model Revisited,Ralf Lammel, July

2007.

[3] Data-Intensive Text Processing with MapReduce, Jimmy Lin and Chris

Dyer University of Maryland, College Park Manuscript prepared April 11,

2010

[4] Automatic Vehicle Location Systems, S.A. Mahdavifar, G.R. Sotudeh.,

Heydari, World Academy of Science, Engineering and Technology,2009

[5] Above the Clouds: A Berkeley View of Cloud Computing, Michael

Armbrust,Armando Fox, Rean, Griffith, Anthony D. Joseph, Randy H.

Katz, Andrew Konwinski, Gunho Lee, David A. Patterson, Ariel Rabkin,

Ion Stoica, Matei Zaharia, Electrical Engineering and Computer Sciences,

University of California at Berkeley,February 10, 2009

[6] Automated Vehicle Location using Global Positioning Systems for First

Responders,Mr. Daniel Portillo, Institute for Information Technology

Applications,Technical Report Series February 2008

[7] MapReduce in the Clouds for. Science. Thilina Gunarathne, Tak-Lon Wu,

Judy Qiu, Geoffrey Fox, CloudCom 2010.

[8] Cluster Computing at a Glance Mark Bakery and Rajkumar Buyyaz, July

2010

[9] Boris V. Cherkassky, Loukas Georgiadis, Andrew V. Goldberg, Robert E.

Tarjan, and Renato F. Werneck, Shortest-Path Feasibility

Algorithms: An Experimental Evaluation, in ACM Journal of

Experimental Algorithmics, vol. 14, no. 2, pp. 2.7:1-2.7:37, Association for

Computing Machinery, Inc., 2009

[10] Rabi Prasad Padhy , Big Data Processing with Hadoop-MapReduce in

Cloud Systems , IJ-CLOSER, Feb 2013

[11] http://research.microsoft.com/users/goldberg

http://research.microsoft.com/users/goldberg

30218 N. Minni

