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Abstract 
 

Graph coloring is a classical NP-Complete combinatorial optimization 

problem and it is widely applied in different engineering applications. This 
paper explores the effectiveness of applying heuristics and recursive 

backtracking strategy to solve the coloring assignment of a graph G. The 

proposed method applies heuristics through recursive backtracking to obtain 

the approximate solution to χ(G), the minimum number of colors needed to 
color the vertices of G. The proposed heuristics splits V(G) into higher degree 

and lower degree vertices such that the search space is reduced when calling 

the recursive backtracking algorithm for the higher degree vertices first. The 

performance of this approximation method is evaluated using some well 
known benchmark graphs and the results are presented.   

 

Keywords: Graph coloring, heuristics, backtracking, NP-Complete 
 

 

Introduction 
An undirected simple graph G is defined as G: (V, E), which consists of the vertex set 
V(G): {v1, v2, …, vn} and an edge set E(G): {e1, e2, …, em} such that every edge is 

incident with the unique end vertices  (vi, vj). The adjacency matrix of G is defined as 

A(G) which is an n × n symmetric binary matrix where Aij = 1 if there is an edge 

between the vertices vi and vj and also called the adjacent vertices; and Aij = 0, 
otherwise.  
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     The smallest number of colors, χ(G) required to color V(G) with no two adjacent 
vertices assigned with the same color is a Graph Coloring Problem (GCP) [2]. When 

G is a simple graph then obtaining χ(G) takes the solution space of n! using the 

approximation methods. GCP is used in different applications such as register 
allocation, scheduling, channel assignment and noise reduction [3] etc. GCP is a NP-

hard problem, hence there is no method devised to solve it in a polynomial time [1]. 

Hence a fast and effective approximation algorithm is required to find χ(G) because of 

its NP-completeness. Approximation to GCP is found using some of the existing 
methods such as genetic algorithms [4], [5], [6], [10], [11], [12], [13], [14], branch-

and-bound, branch-and-cut, and backtracking algorithms [7], [8], [9]. 

     This paper presents new heuristics based recursive backtracking method to find the 

value of χ(G) and χ(G) coloring assignment of a given G. Initially the backtracking 
procedure splits the vertices of G into two sets: higher degree vertices and lower 

degree vertices. The higher degree vertices are initially colored and then lower degree 

vertices are colored using the proposed recursive backtracking procedure. This 

procedure has been tested with some benchmark graphs such as queen, Mycielski, 
huck.col, jean.col, games120.col, miles250.col, david.col, anna.col and the results are 

obtained to be effective. 

 

 

Heuristics and Recursive Backtracking 
The colors of a given graph G is denoted in the integer set {1, 2, ..., c} and the 

solutions are given by the color[i] such that 1≤ i ≤ n. The recursive backtracking 
algorithm CCOLORING is developed using recursion and heuristic strategies and 

presented in Algorithm 1 and Algorithm 2. The state space tree is also constructed 

with degree (c+1) with the height of (n+1). Clearly all the level i nodes have c 

offsprings corresponding to the c feasible assignments to color[i], 1≤ i ≤ n. The leaf or 
terminal nodes are at level n+1. Figure 2 depicts the state space coloring search tree 

when n = c = 3. 

Algorithm 1:  Finding all c colorings of G 

Algorithm CCOLORING (k) 
// Recursive schema of backtracking  

// V(G) assigns 1, 2, ... , c such that adjacent vertices are assigned distinct colors 

// the subscript of the next vertex to assign color is k 

// c, n, color[i] are global integers 
{ 

  Repeat the following operation: 

  Produce all valid values of color[k]; 

 Call NEXTCOLVALUE(k);  // assign a right color to color[k] 
 If (color[k] = 0) then exit;  // new color is impossible 

 If (k-n = 0) then 

   Print(color[i]);  //  maximum c integers are assigned to V(G) 

 Else 
  Call CCOLORING(k + 1); 

Loop repeat; 
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 } 
 

     Algorithm CCOLORING (k) is begun by setting the color[i], 1≤ i ≤ n is initialized 

to 0. Then the statement call CCOLORING (1) is invoked. 
     Algorithm NEXTCOLVALUE produces the possible colors for color[k], after 

defining color[1] through color[k – 1]. The control logic of CCOLORING picks an 

element from the set of possibilities repeatedly and assigns it to color[k] with the 

recursive call of the designed CCOLORING algorithm. 
 

Algorithm 2: Generating a Next Color 

Algorithm NEXTCOLVALUE (k) 

// color[1], color[2], …, color[k-1] is assigned integers in [l, c] with nearby            
// vertices have dissimilar integers. A value for color[k] is determined in the range 

// [0, c].  

// assigning color[k] to the next maximum color. Otherwise color[k] = 0. 

{ 
 Repeat the following operation: 

 color[k] = (color[k]+1) % (c + 1)  // next maximum color 

 If (color[k] = 0) then return;   // all integers are exhausted 

 For j=1 to n do // check if this color is distinct from adjacent colors 
  If (A[k, j] = 1) then    

  If (color[j] = color[k]) then exit;  

 If (j-n = 1) then return;    

Loop Repeat;       
} 

 

 
 

Figure 1: A simple graph - G with n=4 
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Figure 2: State space search tree – all possible C COLORINGS of G where c=3 

 

     Figure 1 shows a simple graph with n = 4 vertices. The tree which is generated by 

the algorithm CCOLORING is shown in Figure 2. Every path to a leaf represents a 
coloring using at most c = 3 colors. There are 12 solutions exist with exactly c = 3 

colors. 

 

 

Computational Complexity Analysis 
The computational complexity of the proposed graph coloring algorithm is analyzed 

and presented. 
     Theorem 1: The computational complexity of CCOLORING is Θ(n.cn). 

     Proof: The computing time of the proposed coloring method is analyzed by 

computing the number of internal nodes present in state space search tree. Clearly the 

total number of nodes in that tree is 

     c0+ c1+ c2+… cn-1 

     Every internal node requires O(cn) computational complexity in the 

NEXTCOLVALUE method to evaluate the offsprings to assign valid assignments of 

integers. Thus the overall computing time is given by 

     c1+ c2+… cn) = (cn+1-1)/(c-1) = Θ(n.cn) 

     Hence the computational complexity of the proposed method is Θ(n.cn). 
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Simulation and Results on Some Benchmark Graphs 
The proposed method is simulated on some of the benchmark graphs using Intel Core 

i5-2450M 2.5GHz with Turbo boost up to 3.1GHz system in Java JDK 1.7 

environment.  Algorithm has been implemented using JAVA language and the results 
are tabulated.  

 

 
 

     Table I shows the computation of χ(G) on some of the benchmark graphs. The 
following conclusions are drawn from this simulation: 

1. The proposed heuristics and recursive backtracking obtains the exact solution. 

2. V(G) is split into higher degree and lower degree vertices such that the 

coloring task is simplified when calling the recursive backtracking algorithms 
for higher degree vertices first. 

3. When n increases, χ(G) also increases for some benchmark graphs.  

4. Graph instances affects the computational complexity of the recursive 

backtracking. 
5. Space complexity is increased while computational time is reduced. 

 

 

Conclusion 
The new heuristics using recursive backtracking technique to solve graph coloring is 

presented in this paper. The heuristics splits V(G) into higher degree and lower degree 

vertices such that the search space is reduced when the recursive backtracking 
algorithm is initially applied for higher degree vertices. The simulation is conducted 

on several benchmark graphs to evaluate its computational complexity. The simulated 

results of this proposed algorithm are presented. The proposed heuristics and 

recursive backtracking obtains the exact solution for most of the benchmark graphs. 
When n increases, χ(G) also increases for some benchmark graphs, which results in a 

near optimal performance of this coloring algorithm. Graph instances affects the 

computational complexity of the recursive backtracking. Space complexity is 

increased while computational time is reduced by applying the proposed heuristics. 
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