International Journal of Applied Engineering Research

ISSN 0973-4562 VVolume 10, Number 10 (2015) pp. 25939-25944
© Research India Publications

http://www.ripublication.com

Solution to Graph Coloring Problem Using Heuristics and
Recursive Backtracking

Raja Marappan,
Department of Computer Applications,
SASTRA University,
Thanjavur - 613401, India
e-mail: raja_csmath@cse.sastra.edu
Gopalakrishnan Sethumadhavan,
Department of Computer Applications,
SASTRA University,
Thanjavur - 613401, India
e-mail: sgk@mca.sastra.edu

Abstract

Graph coloring is a classical NP-Complete combinatorial optimization
problem and it is widely applied in different engineering applications. This
paper explores the effectiveness of applying heuristics and recursive
backtracking strategy to solve the coloring assignment of a graph G. The
proposed method applies heuristics through recursive backtracking to obtain
the approximate solution to x(G), the minimum number of colors needed to
color the vertices of G. The proposed heuristics splits V(G) into higher degree
and lower degree vertices such that the search space is reduced when calling
the recursive backtracking algorithm for the higher degree vertices first. The
performance of this approximation method is evaluated using some well
known benchmark graphs and the results are presented.

Keywords: Graph coloring, heuristics, backtracking, NP-Complete

Introduction

An undirected simple graph G is defined as G: (V, E), which consists of the vertex set
V(G): {v1, V2. ..., v} and an edge set E(G): {e1, €2, ..., em} Such that every edge is
incident with the unique end vertices (v, v;). The adjacency matrix of G is defined as
A(G) which is an n x n symmetric binary matrix where A;; = 1 if there is an edge
between the vertices v; and v; and also called the adjacent vertices; and Ajj = 0,
otherwise.

25940 Raja Marappan

The smallest number of colors, y(G) required to color V(G) with no two adjacent
vertices assigned with the same color is a Graph Coloring Problem (GCP) [2]. When
G is a simple graph then obtaining x(G) takes the solution space of n! using the
approximation methods. GCP is used in different applications such as register
allocation, scheduling, channel assignment and noise reduction [3] etc. GCP is a NP-
hard problem, hence there is no method devised to solve it in a polynomial time [1].
Hence a fast and effective approximation algorithm is required to find y(G) because of
its NP-completeness. Approximation to GCP is found using some of the existing
methods such as genetic algorithms [4], [5], [6], [10], [11], [12], [13], [14], branch-
and-bound, branch-and-cut, and backtracking algorithms [7], [8], [9].

This paper presents new heuristics based recursive backtracking method to find the
value of ¥(G) and x(G) coloring assignment of a given G. Initially the backtracking
procedure splits the vertices of G into two sets: higher degree vertices and lower
degree vertices. The higher degree vertices are initially colored and then lower degree
vertices are colored using the proposed recursive backtracking procedure. This
procedure has been tested with some benchmark graphs such as queen, Mycielski,
huck.col, jean.col, games120.col, miles250.col, david.col, anna.col and the results are
obtained to be effective.

Heuristics and Recursive Backtracking
The colors of a given graph G is denoted in the integer set {1, 2, ..., c} and the
solutions are given by the color[i] such that 1< i < n. The recursive backtracking
algorithm CCOLORING is developed using recursion and heuristic strategies and
presented in Algorithm 1 and Algorithm 2. The state space tree is also constructed
with degree (c+1) with the height of (n+1). Clearly all the level i nodes have c
offsprings corresponding to the c feasible assignments to color[i], 1< i< n. The leaf or
terminal nodes are at level n+1. Figure 2 depicts the state space coloring search tree
whenn=c=3.
Algorithm 1: Finding all c colorings of G
Algorithm CCOLORING (k)
/I Recursive schema of backtracking
II'V(G) assigns 1, 2, ..., ¢ such that adjacent vertices are assigned distinct colors
/1 the subscript of the next vertex to assign color is k
I c, n, color[i] are global integers
{
Repeat the following operation:
Produce all valid values of color[K];
Call NEXTCOLVALUE(K); //assign a right color to color[k]
If (color[K] = 0) then exit; // new color is impossible
If (k-n = Q) then
Print(color[i]); /I maximum c integers are assigned to V(G)
Else
Call CCOLORING(k + 1);
Loop repeat;

Solution To Graph Coloring Problem Using Heuristics and Recursive et. al. 25941

}

Algorithm CCOLORING (k) is begun by setting the color[i], 1< 1< n is initialized
to 0. Then the statement call CCOLORING (1) is invoked.

Algorithm NEXTCOLVALUE produces the possible colors for color[k], after
defining color[1] through color[k — 1]. The control logic of CCOLORING picks an
element from the set of possibilities repeatedly and assigns it to color[k] with the
recursive call of the designed CCOLORING algorithm.

Algorithm 2: Generating a Next Color
Algorithm NEXTCOLVALUE (k)
/I color[1], color[2], ..., color[k-1] is assigned integers in [l, c] with nearby
/I vertices have dissimilar integers. A value for color[k] is determined in the range
1[0, c].
/1 assigning color[K] to the next maximum color. Otherwise color[k] = 0.

Repeat the following operation:
color[k] = (color[k]+1) % (c + 1) /[next maximum color
If (color[k] = 0) then return; /I all integers are exhausted
Forj=1tondo /I check if this color is distinct from adjacent colors
If (A[K, j] =1) then
If (color[j] = color[k]) then exit;
If j-n = 1) then return;
Loop Repeat;
¥

Figure 1: A simple graph - G with n=4

25942 Raja Marappan

3
) OO ONENO

| 3 I 2 2 3 I 2 2 3 |

3
O O O O O 0 QO O O O O

2/ \z 2| 2{\3 3 I (:4
OO OO0 0 OO O

Figure 2: State space search tree — all possible C COLORINGS of G where ¢=3

Figure 1 shows a simple graph with n = 4 vertices. The tree which is generated by
the algorithm CCOLORING is shown in Figure 2. Every path to a leaf represents a
coloring using at most ¢ = 3 colors. There are 12 solutions exist with exactly ¢ = 3
colors.

Computational Complexity Analysis
The computational complexity of the proposed graph coloring algorithm is analyzed
and presented.

Theorem 1: The computational complexity of CCOLORING is ®(n.c").

Proof: The computing time of the proposed coloring method is analyzed by
computing the number of internal nodes present in state space search tree. Clearly the
total number of nodes in that tree is

mdel =+ e+ e M

Every internal node requires O(cn) computational complexity in the
NEXTCOLVALUE method to evaluate the offsprings to assign valid assignments of
integers. Thus the overall computing time is given by

Ehind = n(ch+ P) = (€ -1)/(c-1) = On.c")

Hence the computational complexity of the proposed method is ®(n.c").

Solution To Graph Coloring Problem Using Heuristics and Recursive et. al. 25943

Simulation and Results on Some Benchmark Graphs

The proposed method is simulated on some of the benchmark graphs using Intel Core
i5-2450M 2.5GHz with Turbo boost up to 3.1GHz system in Java JDK 1.7
environment. Algorithm has been implemented using JAVA language and the results
are tabulated.

Table I COMPUTATION OF »(G) ON BENCHMAERE GEAPHS

Graph Graph (G) I\-'[lmmum color

No obtained in the

Graph Tvpe Instances #(G) proposed method
1 queen> 5 col n=25; m=320 5 5
2 queent 6 col n=36; m=580 7 7
3 queen? 7. col n=49: m=952 7 7
4 gueeng 8.col n=64; m=1456 9 9
3 myciel5 col n=47: m=236 6 6
6 myvciel6_col n=95: m=755 7 7
7 huck._col n=74; m=301 11 11
8 jean.col n=E80; m=254 10 10
9 dawvid.col n=287; m=406 11 11
10 games120.col n=120;: m=638 9 9

Table I shows the computation of x(G) on some of the benchmark graphs. The
following conclusions are drawn from this simulation:

1. The proposed heuristics and recursive backtracking obtains the exact solution.

2. V(G) is split into higher degree and lower degree vertices such that the
coloring task is simplified when calling the recursive backtracking algorithms
for higher degree vertices first.
When n increases, ¢(G) also increases for some benchmark graphs.
4. Graph instances affects the computational complexity of the recursive

backtracking.
5. Space complexity is increased while computational time is reduced.

w

Conclusion

The new heuristics using recursive backtracking technique to solve graph coloring is
presented in this paper. The heuristics splits V(G) into higher degree and lower degree
vertices such that the search space is reduced when the recursive backtracking
algorithm is initially applied for higher degree vertices. The simulation is conducted
on several benchmark graphs to evaluate its computational complexity. The simulated
results of this proposed algorithm are presented. The proposed heuristics and
recursive backtracking obtains the exact solution for most of the benchmark graphs.
When n increases, x(G) also increases for some benchmark graphs, which results in a
near optimal performance of this coloring algorithm. Graph instances affects the
computational complexity of the recursive backtracking. Space complexity is
increased while computational time is reduced by applying the proposed heuristics.

25944

Raja Marappan

References

[1]
[2]
[3]

[4]
[5]
[6]

[7]
[8]
[9]

[10]

[11]

[12]

[13]

[14]

Garey, M. R. and Johnson, D. S., Computers and Intractability: Guide
to the Theory of NP-Completeness, Freeman, San Francisco, 1979.
Tommy R. Jensen, Bjarne Toft, Graph Coloring Problems, Wiley-Inter
science, 1995.

Noise Reduction in VLSI Circuits using Modified GA Based Graph
Coloring - International Journal of Control and Automation, Vol. 3, No. 2,
June, 2010.

A. Hertz, and D. E Werra. “Using tabu search techniques for graph
coloring”, Computing Vol. 39, No. 4, pp. 345-351, 1987.

C. Fleurent and J. A. Ferland. “Genetic and hybrid algorithms for graph
coloring”, Annals of Operations Research, 63, pp. 437-463, 1995.

C. L.Mumford. “New order-based crossover for the graph coloring
problem”, T. P. Runarsson et al. (Eds.): PPSN LX, vol. 4193, pp. 80-88,
2006.

Anuj Mehrotra and Michael A. Trick. A column generation approach for
graph coloring. INFORMS Journal on Computing, 8(4):344—-354, 1996.
Isabel Méndez-Diaz and Paula Zabala. A branch-and-cut algorithm for
graph coloring. Discrete Applied Mathematics, 154(5):826-847, 2006.

R. Monasson. On the analysis of backtrack procedures for the coloring of
random graphs. In E. Ben-Naim, H. Frauenfelder, and Z. Toroczkali,
editors, Complex Networks, pages 235-254. Springer, 2004.

Lixia Han and Zhanli Han, A Novel Bi-objective Genetic Algorithm for
the Graph Coloring Problem, 2010 Second International Conference on
Computer Modeling and Simulation.

Tamas Szép and Zoltan Adam Mann, Graph coloring: the more colors, the
better?, CINTI 2010, 11th IEEE International Symposium on
Computational Intelligence and Informatics, 18-20 November, 2010,
Budapest, Hungary.

Raja Marappan, Gopalakrishnan Sethumadhavan, A new genetic algorithm
for graph coloring, In CIMSim2013, 5" International Conference on
Computational Intelligence, Modelling and Simulation, Seoul, South
Korea, pages 49-54, 2013.

Gopalakrishnan Sethumadhavan, Raja Marappan, A Genetic Algorithm for
Graph Coloring using Single Parent Conflict Gene Crossover and
Mutation with Conflict Gene Removal Procedure, 2013 IEEE International
Conference on Computational Intelligence and Computing Research,
India, pages 350-355, 26-28 December 2013.

Raja Marappan, Gopalakrishnan Sethumadhavan, Solution to Graph
Coloring Problem using Evolutionary Optimization through Symmetry-
Breaking Approach, International Journal of Applied Engineering
Research, 2015, Research India Publications.

