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Abstract 
 

Composite materials are beginning to find a foothold in the modern industrial 

environment owing to their ever increasing applications. In this research work, 

LM-13 Aluminium alloy matrix was reinforced with Fly ash (5 wt.%) and 

varying percentage of Silicon Carbide particulates (0 wt.%, 5 wt.% & 10 

wt.%) to fabricate the hybrid composites with the help of Stir casting 

equipment. The composites were subjected to continuous turning in a CNC 

lathe with the help of carbide inserts and the experiments were conducted 

based on the L27 Taguchi orthogonal array design. The turning operation was 
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conducted at various levels of cutting parameters such as depth of cut, feed 

and speed. The effect of these machining parameters on Material Removal 

Rate (MRR) and Surface Roughness (SR) of the hybrid composites was 

studied using Taguchi Method. Signal-to-noise (S/N) ratio analysis and Grey 

Relational Analysis were performed to determine the optimal setting of 

machining parameters that result in maximum MRR and minimum SR. 

Analysis of Variance (ANOVA) was used to study the influence of process 

parameters and their interactions on the multiple responses, which showed that 

feed was the most significant factor influencing the responses.  

 

Keywords: Hybrid Aluminium Matrix Composites, Material Removal Rate, 

Surface Roughness, Design of Experiments, Taguchi, Grey Relational 

Analysis. 

 

 

Introduction 
The term “composite” refers to a material system which constitutes distinct 

constituents (reinforcements) dispersed in a continuous phase (matrix). The composite 

material has characteristics that are different from the characteristics of its 

constituents [1]. In Aluminium Matrix Composites (AMCs), one of the constituent is 

aluminium/aluminium alloy, which functions as the matrix phase and the other 

constituent which is dispersed in the matrix is the reinforcement. The reinforcements 

are in the form of particulates or fibres. The major advantages of AMCs are improved 

strength, improved stiffness, reduced density, improved thermal conductivity, 

controlled thermal expansion coefficient and improved abrasion and wear resistance 

[1]. AMCs are being used increasingly in numerous structural, non-structural and 

functional applications in different engineering sectors. They give both improved 

performance and also have economic and environmental benefits. Industries which 

are currently enjoying the added benefits of AMCs are the automotive and aerospace 

sector. They are especially used in hot reciprocating parts such as pistons where hot 

strength and resistance to thermal stresses are a prerequisite. The unique thermal 

properties of AMCs such as metallic conductivity with coefficient of expansion that 

can be tailored down to zero, add to their prospects in aerospace and avionics [2]. 

     LM-13 Aluminium alloy is mainly used for applications where thermal stresses are 

high since it can withstand higher temperatures and loads and has good wear 

resistance properties. AMCs which are reinforced with Silicon Carbide (SiC) have 

enhanced specific strength, lower thermal expansion coefficient, higher thermal 

conductivity and higher wear resistance compared to the matrix material [3,4]. Fly ash 

which mainly consists of refractory oxides like silica, alumina, and iron oxides has 

low density. It can be mixed with aluminium alloy to reduce overall weight and 

density of the composites [5]. The cost of fly ash is also much lower than most other 

reinforcing materials and as well as the matrix aluminium. Therefore the usage of the 

low cost fly ash particulates in aluminium alloy has the potential to reduce the cost of 

hybrid AMC products. The incorporation of fly ash also increases the hardness and 

wear resistance of composites [5]. The incorporation of several different types of 
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reinforcements into a single matrix has led to the development of hybrid composites. 

The reason for using stir casting method to fabricate composites was to achieve 

uniform distribution of reinforcements and also due to the fact that it is economical 

[6,7]. 

     Since AMCs contain certain amount of hard and abrasive ceramic reinforcements, 

they are considered to be one of the most difficult materials to machine [8,9]. 

Improving the machinability of AMCs and developing machining data are the most 

promising ways to convince designers and manufacturers to use AMCs in their 

applications. The prominent quality indicator for machined products is Surface 

Roughness (SR). In many critical applications, achieving the desired surface quality is 

of great importance for the effective use of the product [10]. Material Removal Rate 

(MRR) is a key indicator of productivity in the turning operation. Another major 

challenge in turning of AMCs is the lack of machining data for all possible 

combination of reinforcements. Investigation of mechanical and machinability 

properties of SiC particle reinforced AMCs was conducted by many researchers 

[11,12,13,14]. It has been reported in the literature that during turning process, 

parameters like Depth of Cut (DOC), feed and cutting speed, influence the MRR and 

SR [15,16,17]. 

     Design of Experiments (DOE) is a powerful analysis tool for modelling and 

analysing the influence of multiple control factors on the performance output. DOE 

approach using Taguchi technique can be used for process optimization and to 

determine the optimal combination of factors for a given response [18]. Taguchi's 

Signal-to-Noise (S/N) ratios, which are logarithmic functions of desired output, serve 

as objective functions for optimization, help in data analysis and prediction of 

optimum results [19]. It helps in predicting the extent to which the parameters affect 

the response. Analysis of Variance (ANOVA) is used to determine the influence of 

individual machining parameters on the responses and as well as their interactions.  

     Taguchi method is designed to optimize single response characteristic. The higher-

the-better performance for one factor may affect the performance because another 

factor may demand lower-the-better characteristics. Hence, multi-response 

optimization characteristics are complex. Grey relational analysis [20] is an efficient 

tool for such multi-response analysis. Grey relational analysis owes its origin to grey 

system theory. Grey system theory formulated by Deng [20,21] is used to study the 

unascertained problems with limited data but poor information. In Grey Relational 

Analysis, black represents having no information and white represents having all 

information. A grey system has a level of information between black and white. This 

analysis can be used to represent the grade of correlation between two sequences so 

that the distance of two factors can be measured discretely. When the experiments 

are ambiguous or when the experimental method cannot be carried out exactly, grey 

analysis helps to compensate for the shortcomings in statistical regression. Grey 

Relation Analysis is an effective means of analyzing the relationship between 

sequences with less data and can analyze many factors that can overcome the 

disadvantages of statistical methods [22]. 

     Based on the literature review, LM-13 Aluminium alloy was chosen as the matrix 

in this research work. SiC and fly ash particulates were chosen as reinforcements. 



25894  Dr. S. Venkat Prasat 

However, limited information is available regarding the optimization of process 

parameters in turning Aluminium-SiC-fly ash hybrid composites using statistical 

methods. In this investigation, the Taguchi approach followed by Grey Relational 

Analysis is applied to solve the multi-response optimization in turning Aluminium-

SiC-fly ash hybrid composites. ANOVA was used to determine the contribution of 

each parameter and their interactions on the turning process. 

 

 

Experimental Details  
 

Materials  

LM-13 Aluminium alloy (Al-Si12Cu) has been used as the matrix material in this 

investigation. LM-13 alloy is generally used for piston, pulleys (sheaves) and for 

other engine parts operating at elevated temperatures. It has the advantage of good 

resistance to wear, good bearing properties, a low coefficient of thermal expansion 

and good machinability. The alloy has a density of 2.7 g/cm
3
. The chemical 

composition of LM-13 aluminium alloy is listed in Table 1. SiC and fly ash 

particulates were used as reinforcements. SiC particulates were used owing to better 

strength and thermal properties, and fly ash was used for its lower density and 

hardness improvement properties. The spherical fly ash particles contain both solid 

precipitators and hollow cenospheres. The particle density of SiC and fly ash were 

3.21 g/cm
3
 and 2.04 g/cm

3
, respectively. Fly ash particles with a size range of 53-75 

μm were used. The average particle size of the reinforcement SiC was 30 μm.  

 

Table 1: Chemical Composition of LM-13 Aluminium Alloy 

 

Element Cu Fe Pb Mg Mn Ni Si Sn Ti Zn Al 

% by 

weight 
0.7-1.5 1.0 0.1 

0.8-

1.5 
0.5 1.5 

10.0-

13.0 
0.1 0.2 0.1 Remainder 

 

Fabrication of Hybrid Composites using Stir Casting 

The hybrid composite was prepared with the help of stir casting equipment as shown 

in the Figure 1. The reinforcement particles were first preheated at a temperature of 

600-800ºC for a few hours so that the volatile substances were removed. The LM-13 

alloy was placed in the crucible at the bottom of the furnace and melted by heating it 

to around 750ºC. The melt was agitated with a stirrer and Magnesium ribbons were 

added to remove the slag. Fly ash and SiC particles were then added and stirred for 

duration of 10 minutes until the particles were homogeneously distributed in the 

matrix. The molten mixture was then poured into the moulds which were also 

preheated and allowed to cool down and solidify. The composite samples were 

removed after solidification. 
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Figure 1: Stir Casting Equipment 

 

     Hybrid composite sample which are cylindrical in shape were cast with varying 

weight percentage of SiC (0 wt.%, 5 wt.% and 10 wt.%) and a fixed weight 

percentage (5 wt.%) of fly ash. Table 2 shows the composition of the various 

composite samples. The samples were machined to produce cylindrical specimens 

each measuring 75mm in length and 20mm in diameter. A total of 9 specimens for 

each composition was fabricated using stir casting equipment so that they could be 

utilized for the 27 different experiments. 

 

Table 2: Composition of the Hybrid Composite Samples 

 

Sample 

Number 

LM-13 Aluminium 

alloy (wt.%) 
Fly ash (wt.%) Silicon Carbide (wt.%) 

1 95 5 NIL 

2 90 5 5 

3 85 5 10 

 

Turning of Hybrid Composites and Design of Experiments (DOE) 

These hybrid composite specimens were then subjected to turning operation in a CNC 

lathe at various levels of DOC, feed and speed for a constant duration of 2 minutes 

and 45 seconds. Carbide tipped tool was used for turning operation, because the 

composites are comparatively harder than conventional materials and also due to the 

fact that these tools have the capacity to withstand the high temperatures encountered 

during the high speed turning operation. The experimental setup for turning of hybrid 
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composites using CNC lathe is shown in Figure 2. The sequence in which the 

experiments were to be conducted was determined based on Taguchi's Method. This 

is essentially a 4-Factor and 3-Level design as it has 4 input variables and with 3 

different levels. The input variables are composition, DOC, feed, speed and the 

responses are MRR and SR. The various levels of input parameters are shown in 

Table 3. An L27 orthogonal array was selected for this work and it has 27 rows and 

13 columns. The photomacrograph of the cylindrical hybrid composite specimens 

after the turning operation is shown in Figure 3. 

 

 
 

Figure 2: Experimental setup for Turning Hybrid Composites using CNC Lathe 

 

 
 

Figure 3: Photomacrograph of the Hybrid Composite Specimens after Turning 

operation 
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Measurement of MRR and SR 

MRR and SR of the machined samples are the performance characteristics which are 

used to evaluate the machining quality in this study. The initial mass of the samples 

was measured using an accurate weighing scale and the final mass was measured after 

the turning operation. The machining time was kept constant for all the samples at 2 

minutes and 45 seconds. The difference between the initial and final mass gave the 

mass loss in gram. MRR is defined as the ratio of mass of the work material removed 

to the machining time. MRR for each experiment was calculated using the following 

expression: 

                        (1) 

     The unit in which MRR is measured is g/min. 

     SR was measured in micrometers (µm) with the help of a surface roughness meter 

as shown in Figure 4. 

 

 
 

Figure 4: Measurement of Surface Roughness using Surface Roughness Tester 

 

S/N Analysis, Grey Relational Analysis and ANOVA 

S/N ratio measures how the response varies relative to the nominal or target value 

under different noise conditions. The objective of determining S/N ratio is to develop 

processes that are insensitive to noise. The S/N ratio characteristics can be classified 

into three categories, namely, „smaller is better‟, „larger is better‟ and „nominal is 

best‟ characteristic. 

     For MRR, 'Larger is Better' characteristic is chosen to determine S/N Ratio: 

                            (2) 

     where y is the observed data (MRR) and n is the number of observations. 

     For SR, 'Smaller is Better' characteristic is chosen to determine S/N Ratio: 

                        (3) 
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     where y is the observed data (SR) and n is the number of observations. 

     Multi-response optimization of machining parameters for the hybrid composites 

was performed using Grey Relational Analysis. The overall evaluation of the multiple 

process responses (MRR and SR) is based on the grey relational grade. The relative 

contribution of each control factor on the overall measured multiple responses is 

obtained by ANOVA. Basically, ANOVA compares two types of variances: the 

variance within each sample and the variance between different samples. It uses a 

mathematical technique known as the sum of squares to quantitatively examine the 

deviation of the average mean of the factors that affect the response from the overall 

experimental mean response. MINITAB 15.2 software was used for the analyses of 

the experimental data. 

 

 

Results and Discussion 
S/N Analysis using Taguchi Method 

Taguchi method uses a special set of arrays called orthogonal arrays which stipulate 

the way of conducting the minimal number of experiments that would give the full 

information of all the factors that affect the performance parameter. The experiments 

were conducted based on the L27 Taguchi orthogonal array design. The system has 4 

parameters and each of them has 3 levels. Table 3 shows the list of parameters and 

their levels. Testing all the possible combinations of these parameters will result in a 

set of 81(3
4
) test cases. However instead of testing the system for each combination of 

parameters, one can use an orthogonal array to select only a subset of these 

combinations. A total of 27 experiments (turning operations) were carried out with 

different combinations of input parameters by utilizing Taguchi‟s orthogonal array. 

 

Table 3: Turning Parameters and their Levels 

 

Level 
Composition  

(Wt. % of SiC) 

Depth of 

Cut (mm) 

Feed 

(mm/rev) 

Speed 

(rpm) 

1 0 0.5 0.125 500 
2 5 0.75 0.250 750 
3 10 1.00 0.375 1000 

 

     MRR was calculated using the equation 1 for all the 27 experiments. SR was 

measured in micrometers (µm) with the help of a surface roughness meter after the 

turning operation. The experimental results for MRR and SR are shown in Table 4. 

The experimental results were then converted to S/N Ratios so that the effects of 

various parameters on the responses could be found out. The S/N ratios for a given 

response were calculated using the equations 2 and 3 and the values are listed in Table 

4. A process parameter setting with the highest S/N ratio always yields the optimum 

quality with minimum variance. 
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Table 4: Orthogonal Array and Experimental Result 

 

Expt. 

No. 

Compo

sition 

(Wt.% 

of SiC) 

Depth 

of Cut 

(mm) 

Feed 

(mm/rev) 

Speed 

(rpm) 

MRR 

(g/min) 

S/N Ratio 

for MRR 

(dB) 

SR 

(μm) 

S/N Ratio 

for SR 

(dB) 

1 0 0.5 0.125 500 2.992 9.519232 1.8466 -5.32746 

2 0 0.5 0.25 750 8.2413 18.31991 4.8666 -13.7445 

3 0 0.5 0.375 1000 14.6594 23.32232 7.88 -17.9305 

4 0 0.75 0.125 750 6.1814 15.82174 2.02 -6.10703 

5 0 0.75 0.25 1000 15.0234 23.53536 6.62 -16.4172 

6 0 0.75 0.375 500 12.0974 21.65384 5.86 -15.358 

7 0 1 0.125 1000 10.9176 20.76254 1.8766 -5.46743 

8 0 1 0.25 500 10.8804 20.7329 4.972 -13.9306 

9 0 1 0.375 750 19.18109 25.65747 7.7933 -17.8344 

10 5 0.5 0.125 500 3.0589 9.711306 1.78 -5.0084 

11 5 0.5 0.25 750 8.5342 18.62326 2.96 -9.42583 

12 5 0.5 0.375 1000 13.8179 22.80884 6.085 -15.6852 

13 5 0.75 0.125 750 6.3743 16.08865 1.6766 -4.48859 

14 5 0.75 0.25 1000 14.0307 22.94159 3.7866 -11.565 

15 5 0.75 0.375 500 12.0815 21.64242 5.89 -15.4023 

16 5 1 0.125 1000 11.3597 21.10734 1.66 -4.40216 

17 5 1 0.25 500 10.8626 20.71868 3.8533 -11.7167 

18 5 1 0.375 750 19.6184 25.85327 6.6233 -16.4215 

19 10 0.5 0.125 500 5.9699 15.51934 2.16 -6.68908 

20 10 0.5 0.25 750 14.5175 23.23784 3.3266 -10.44 

21 10 0.5 0.375 1000 14.7835 23.39555 4.8933 -13.792 

22 10 0.75 0.125 750 7.7964 17.83788 2.2066 -6.87447 

23 10 0.75 0.25 1000 13.5175 22.61793 3.91 -11.8435 

24 10 0.75 0.375 500 11.455 21.1799 4.9933 -13.9678 

25 10 1 0.125 1000 10.7706 20.6448 2.3 -7.23456 

26 10 1 0.25 500 10.7587 20.6352 3.9633 -11.9611 

27 10 1 0.375 750 19.3498 25.73353 4.9466 -13.8861 
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Grey Relational Analysis  
In the Grey Relational Analysis, S/N ratios for MRR and SR were first normalized in 

the range between zero and one, which is termed the grey relational generation. The 

relationship between the desired and actual experimental data is expressed through the 

grey relational coefficient, which is calculated from the normalized experimental data. 

The mean of the grey relational coefficients corresponding to each process response is 

calculated, which corresponds to the grey relational grade. The overall evaluation of 

the multiple process responses is based on the grey relational grade. As a result, 

optimization of complicated multiple process responses can be converted into 

optimization of a single grey relational grade. The optimal level of the process 

parameters is the level with the highest grey relational grade.  

     After grey relational generation, the deviation sequence is calculated as:  

     oi = )()( kxkx io                       (4) 

     The reference sequence and comparability sequence are denoted 

by )(kxo and )(kxi respectively. Then, the grey relational coefficient )(ki for the k
th

 

performance characteristics in the i
th

 experiment is calculated as: 

     max

maxmin

)(
)(

k
k

oi

i

                  

           (5) 

     0 < )(ki  ≤ 1;  is known as the distinguishing coefficient and it is defined in the 

range 0 ≤ ≤ 1, and therefore a value of = 0.5 is used.  

     The average value of the grey relational coefficients is the grey relational grade. 

Therefore, the grey relational grade is calculated as follows: 

     i

n

k

i k
n 1

)(
1

,                       (6) 

     where n is the number of process responses. The grey relational grade i represents 

the level of correlation between the reference sequence and the comparability 

sequence. A higher value of the grey relational grade implies that the corresponding 

process parameter is closer to the optimal one.  

     The grey relational generation was carried out and the normalized S/N ratio values 

are listed in Table 5. In general, the larger normalized S/N ratio corresponds to the 

better performance. The deviation sequence Δ0i is calculated using equation 4 as 

follows: 

     Δ02(1) = )1()1( 2xxo
= │1.0000 - 0.53879│= 0.46121 

     Δ02(2) = )1()1( 2xxo
= │1.0000 - 0.30942│ = 0.69058   

     The same calculation method is used for all experiments (i = 1 to 27), and the 

results of all deviation sequences are listed in Table 5. Δmax and Δmin obtained from 

Table 5 are as follows: 
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     Δmax =  Δ01(1) = Δ03(2)  = 1.00 

     Δmin =  Δ18(1) = Δ16(2) = 0.00 

 

Table 5: S/N Ratios, Normalized S/N Ratios and Deviation Sequences 

 

Expt. 

No. 

S/N Ratios 
Normalized S/N 

Ratios 
Deviation Sequences 

MRR SR MRR SR MRR SR 

1 
9.519232 -5.32746 0 0.93160 1 0.0684 

2 
18.31991 -13.7445 0.53879 0.30942 0.46121 0.69058 

3 
23.32232 -17.9305 0.84505 0 0.15495 1 

4 
15.82174 -6.10703 0.38585 0.87397 0.61415 0.12603 

5 
23.53536 -16.4172 0.85809 0.11186 0.14191 0.88814 

6 
21.65384 -15.358 0.7429 0.19015 0.2571 0.80985 

7 
20.76254 -5.46743 0.68833 0.92125 0.31167 0.07875 

8 
20.7329 -13.9306 0.68652 0.2956 0.31348 0.7044 

9 
25.65747 -17.8344 0.9880 0.00718 0.0120 0.99282 

10 9.711306 -5.0084 0.01175 0.95518 0.98825 0.04482 

11 18.6236 -9.42583 0.55738 0.62865 0.44262 0.37135 

12 22.86884 -15.6852 0.81361 0.16597 0.18639 0.83403 

13 16.08865 -4.48859 0.40219 0.9936 0.59781 0.0064 

14 22.94159 -11.565 0.82174 0.47053 0.17826 0.52947 

15 21.64242 -15.4023 0.7422 0.18688 0.2578 0.81312 

16 21.10734 -4.40216 0.70944 1 0.29056 0 

17 20.71868 -11.7167 0.68565 0.45931 0.31435 0.54069 

18 25.8532 -16.4215 1 0.11154 0 0.88846 

19 15.51934 -6.68908 0.3673 0.83095 0.63267 0.16905 

20 23.23789 -10.44 0.83988 0.55368 0.16012 0.44632 

21 23.39555 -13.792 0.84953 0.30591 0.15547 0.69409 

22 17.83788 -6.87447 0.5092 0.81724 0.4908 0.18276 
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23 22.61793 -11.8435 0.80192 0.44994 0.19808 0.55006 

24 21.1799 -13.9678 0.71388 0.29291 0.28612 0.70709 

25 20.6448 -7.23456 0.68112 0.79063 0.31888 0.20937 

26 20.6352 -11.9611 0.68054 0.441251 0.31946 0.558749 

27 25.73353 -13.8861 0.99267 0.2989 0.00730 0.70110 

 

     The grey relational coefficients and the grey relational grade for each experiment 

were calculated using the equations 5 and 6 respectively. The average value of the 

grey relational coefficients is the grey relational grade. The calculated values and the 

ranks of coefficients and grades are listed in Table 6. The 18
th

 experiment with a grey 

relational coefficient value of 1.000 for MRR had the highest rank. This indicates that 

the optimal setting of control parameters for maximum MRR are 5 wt.% SiC (level 2), 

1 mm DOC (level 3), 0.375 mm/rev Feed (level 3) and 750 rpm Speed (level 2). The 

16
th
 experiment had the highest grey relational coefficient value of 1.000 for SR and 

therefore the optimal setting of control parameters for minimum SR are 5 wt.% SiC 

(level 2), 1 mm DOC (level 3), 0.125 mm/rev Feed (level 1) and 1000 rpm Speed 

(level 3). This indicates that the machined surface obtained after 16
th

 experiment is 

very smooth in nature in comparison to other experiments and has the optimum 

surface finish. The 3
rd

 experiment had the lowest grey relational coefficient of 0.3333 

for SR which indicates that the machined surface obtained after this experiment is 

very rough in comparison to others.  

     Ranks of grey relational grade for all the experiments are listed in Table 6. It can 

be clearly observed from the table that the 16
th

 experiment with a grey relational 

grade value of 0.8162 had the highest rank. This indicates that the optimal parameter 

combination for the multiple responses are 5 wt.% SiC (level 2), 1mm DOC (level 3), 

0.125 mm/rev Feed (level 1) and 1000 rpm Speed (level 3). Based on the Grey 

Relational Analysis, the optimal combination of parameters for obtaining the highest 

MRR and lowest SR during turning operation of LM-13 Aluminium/SiC/fly ash 

hybrid composites is given in Table 7.   

 

Table 6: Grey Relational Coefficient and Grey Relational Grade 

 

MRR SR MRR and SR 

Expt. 

No. 

Grey 

Relational 

Coefficient 

Rank 
Expt. 

No. 

Grey 

Relational 

Coefficient 

Rank 
Expt. 

No. 

Grey 

Relational 

Grade 

Rank 

18 1.0000 1 16 1.000 1 16 0.8162 1 

27 0.9856 2 13 0.9873 2 7 0.7399 2 

9 0.9765 3 10 0.9177 3 13 0.7214 3 

5 0.7789 4 1 0.8796 4 27 0.7009 4 

3 0.76341 5 7 0.8639 5 18 0.6800 5 
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21 0.7628 6 4 0.7986 6 25 0.6577 6 

20 0.7574 7 19 0.7473 7 9 0.6557 7 

14 0.7371 8 22 0.7323 8 20 0.6429 8 

12 0.7284 9 25 0.7048 9 10 0.6268 9 

23 0.7162 10 11 0.5738 10 4 0.6237 10 

6 0.6604 11 20 0.5283 11 22 0.6184 11 

15 0.6598 12 14 0.4856 12 14 0.6114 12 

24 0.6360 13 17 0.4804 13 1 0.6064 13 

16 0.6324 14 23 0.4761 14 23 0.5962 14 

7 0.6160 15 26 0.47225 15 19 0.5943 15 

8 0.6146 16 2 0.4199 16 21 0.5907 16 

17 0.6139 17 21 0.4187 17 5 0.5695 17 

25 0.6105 18 27 0.4162 18 11 0.5521 18 

26 0.6101 19 8 0.4151 19 12 0.5516 19 

11 0.5304 20 24 0.4142 20 3 0.5483 20 

2 0.5201 21 6 0.3817 21 17 0.5472 21 

22 0.5046 22 15 0.3807 22 26 0.5412 22 

13 0.4554 23 12 0.3748 23 24 0.5251 23 

4 0.4487 24 5 0.3601 24 6 0.5210 24 

19 0.4414 25 18 0.3601 25 15 0.5202 25 

10 0.3359 26 9 0.3349 26 8 0.5148 26 

1 0.3333 27 3 0.3333 27 2 0.4700 27 

 

Table 7: Optimal Combination of Parameters for Turning Hybrid Composites 

 

Composition 
90 wt.% LM-13 Aluminium Alloy, 5 wt.%  

SiC and 5 wt.% Fly ash 

 
Depth of cut 1.00 mm 

Feed 0.125 mm/rev 

Speed 1000 rpm 

 

 

Analysis of Variance (ANOVA) and Significance of Parameters 

The relative contribution of each parameter to multiple responses was identified with 

the help of ANOVA. A confidence level of 95% was used for the analysis, that is for 

significance level of α = 0.05. The ratio of individual sum of squares of a particular 

independent variable to the total sum of squares of all the variables gives the 

percentage contribution of the independent variable on the response. The significance 

of the individual control factors is quantified by comparing the variance between the 

control factor effects against the variance in the experimental data due to random 

experimental error, and this is given by the F-test.  
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     ANOVA was performed with grey relational grade as response to determine the 

relative contribution of each parameter to the overall measured multiple responses. 

Pairs of the factors in an experiment may also interact with one another to provide 

synergistic effect on the response. Therefore the three important interactions, namely 

Composition*DOC, Composition*Feed and Composition*Speed were also included 

for this analysis. MINITAB 15.2 was used to calculate the total sum of squares and 

adjusted sum of squares for all the factors and their interactions and all the results are 

listed in Table 8. Using the software, degrees of freedom, mean squares, and the F-test 

ratios were also found out for all the factors and their interactions.  

     Percentage contribution of the independent variables and their interactions to the 

multiple responses was also calculated. Table 8 shows the percentage contribution of 

the factors and their interactions to the multiple responses, MRR and SR. This 

indicates the degree of influence on the results. When the P-value for this model is 

less than 0.05, then the parameter or interaction can be considered as statistically 

significant. From the table, it can be noted that feed (33.64%), followed by speed 

(20.67%) and DOC (17.26%) exert significant influences on the turning responses of 

hybrid composites. The most dominant parameter was feed, as it had the highest 

percentage contribution to the multiple responses. This is in agreement with the 

results obtained by Pushpendra Kumar Jain, et al. during the machining of AMCs 

[17]. Composition exerts a negligible effect (4.86%), and since its P-value > 0.05, it 

can be considered as statistically insignificant. Similarly, the interaction terms 

Composition*Feed, Composition*DOC and Composition*Speed have a P-value > 

0.05, and hence are statistically insignificant.  

 

Table 8: ANOVA for MRR and SR (Grey Relational Grade) 

 

Source of 

variation 
DF Seq SS Adj SS Adj MS 

F-

test 
P-value 

Percentage 

Contribution 

Composition (Wt.% 

of SiC) 
2 0.007973 0.007973 0.003986 2.76 0.142 4.86 

DOC (mm) 2 0.028281   0.028281 0.014140 9.77 0.013 17.26 

Feed (mm/rev) 2 0.055130 0.055130 0.027565 19.05 0.003 33.64 

Speed (rpm) 2 0.033880 0.033880 0.016940 11.71 0.008 20.67 

Composition* DOC 4 0.006812 0.006812 0.001703 1.18 0.408 4.16 

Composition* Feed 4 0.017317 0.017317 0.004329 2.99 0.112 10.57 

Composition* 

Speed 
4 0.005824 0.005824 0.001456 1.01 0.473 3.55 



Multi-Response Optimization of Machining Parameters For Hybrid et. al.  25905 

Error 6 0.008681 0.008681 0.001447   5.29 

Total 26 0.163898 

 
    100 

Notes: DF, Degrees of freedom; Seq SS, Sequential sum of squares; Adj SS, Adjusted 

sum of squares;     Adj MS, Adjusted mean squares; F-test, Fisher‟s test. 

 

     Figure 5 shows the variation of the responses from the mean values through 

residual plots. Violation of the basic assumptions and model adequacy was 

investigated by examination of residuals. Residual plots were generated to examine 

the goodness of model fit. Normal probability plot was used to detect non-normality. 

If the model is adequate, residuals should be structure less, that is, they should contain 

no obvious and unusual patterns. From the normal probability plot of the residuals for 

MRR and SR in Figure 5, it can be observed that the residuals generally fall on a 

straight line. This indicates that the residuals are normally distributed and thus a 

goodness-of-fit is obtained. Residual versus observation order plot were used to detect 

time-dependence of residuals (Figure 5). This plot shows random patterns on both 

sides of zero line. No clear time-dependent pattern was exhibited by the residuals 

which show that the data was normally distributed and the equality of variance was 

not violated. Thus the examination of residuals proved that the model to be fully 

adequate to represent the relationships between the multiple responses and the 

independent variables. 
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Figure 5 Residual Plots for MRR and SR (Grey Relational Grade) 
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Conclusions  
1. Based on the Grey Relational Analysis, the optimal combination of factors for 

obtaining the highest MRR and lowest SR during turning operation of LM-13 

Aluminium/SiC/Fly ash hybrid composites are: Composition = 5 wt.%  SiC & 

5 wt.% Fly ash, DOC = 1.00 mm, Feed = 0.125 mm/rev and Speed = 1000 

rpm.  

2. It was determined based on ANOVA that feed (33.64%) has the predominant 

influence on the multiple responses MRR and SR, followed by Speed 

(20.67%) and DOC (17.26%). Composition, Composition*Feed, 

Composition*DOC and Composition*Speed exert a negligible effect on the 

multiple responses and hence they are statistically insignificant. 

3. The examination of residuals proved that the model to be fully adequate to 

represent the relationships between the multiple responses and the independent 

parameters. The usage of optimal parameter combination will lead to an 

improved MRR and good surface finish during continuous turning operation 

of hybrid aluminium composites. 

 

 

References 
 

[1]  Surappa, M.K., 2003, "Aluminium matrix composites: Challenges and 

opportunities," Sadhana, 28, Parts 1 & 2, pp. 319–334. 

[2]  Gowri Shankar, M.C., Jayashree, P.Ka., Raviraj Shettya, Achutha Kinia 

and Sharma,  S.Sa., 2013, “Individual and Combined Effect of 

Reinforcements on Stir Cast Aluminium Metal Matrix Composites,” 

International Journal of Current Engineering and Technology, 3(1). 

[3]  Singh, I.B., Singh,M., Das,S., and Anil K Gupta, 2012, "A Comparative 

Corrosion Studies of LM-13 alloy, LM-13-10%SiC composite and cast 

iron in NaCl solution", Indian Journal of Chemical Technology, 19, 

pp.385-391. 

[4]  Manoj Singla, Deepak Dwivedi, D., Lakhvir Singh, and Vikas Chawla, 2009, 

"Development of Aluminium Based Silicon Carbide Particulate Metal 

Matrix Composite", Journal of Minerals & Materials Characterization & 

Engineering, 8 (6), pp. 455-467.  

[5]  Rohatgi, P.K., Weiss, D., and Gupta, N., 2006, “Applications of Fly ash in 

Synthesizing Low-Cost MMCs for Automotive and Other Applications,” 

JOM, pp. 71-76. 

[6]  Rajeshkumar Gangaram Bhandare and Parshuram M. Sonawane, 2013, 

"Preparation of Aluminium Matrix Composite by Using Stir Casting 

Method", International Journal of Engineering and Advanced Technology, 

3(2). 

[7]  Kapgate, R.A., and Tatwawadi, V. H., 2013, "Development of Al/SiC10% 

Metal Matrix Composite And Its Comparision With Aluminium Alloy - 

LM-13 On Tribological Parameters," International Journal of Engineering 

Research & Technology (IJERT), 2(4). 



Multi-Response Optimization of Machining Parameters For Hybrid et. al.  25907 

[8]  Benardos, P.G., and Vosniakos, G.C., 2003, “Predicting surface roughness 

in machining: a review,” International Journal of Machine Tools and 

Manufacture, 43(8), pp. 833-844. 

[9]  Palanikumar, K., and Karthikeyan, R., 2007, “Assessment of factors 

influencing surface roughness on the machining of Al/SiC particulate 

composites,” Materials & Design, 28(5), pp. 1584-1591. 

[10]  Lu, C., 2008, “Study on prediction of surface quality in machining 

process,” Journal of Materials Processing Technology, 205(1-3), pp. 439-

450. 

[11]  Loony, LA., Monaghan, JM., Reilly, P.O., and Toplin, DRP, 1992, “The 

turning of an Al/SiC metal matrix Composite,” Journal of Material 

Processing Technolgy, 33(4), pp.453–468. 

[12]  Manna, A., and Bhattacharyya, B., 2003, “A study on machinability of 

Al/SiC-MMC”, Journal of Materials Processing Technology, 140, pp. 

711–716. 

[13]  Lin, J.T., Bhattacharyya, D., and Lane, C., 1995, “Machinability of a 

silicon carbide reinforced aluminium metal matrix composite”, Wear, 181-

483, pp. 883-888. 

[14]  Ozben, T., Kilickap, E., and Cakir, O., 2008, “Investigation of mechanical 

and machinability properties of SiC particle reinforced Al-MMC”, Journal 

of Materials Processing Technology, 198(1-3), pp.220-225. 

[15]  Sahib Singh, Kapil Singh and Dr.Bhushan, R.K., 2012, “Machining 

Response in Turning Aluminium Composite LM-13 With 15% SiC”, 

International Journal of Enhanced Research in Science Technology & 

Engineering, 1(1). 

[16]  Krishankant, Jatin Taneja, Mohit Bector and Rajesh Kumar, 2012, 

"Application of Taguchi Method for Optimizing Turning Process by the 

effects of Machining Parameters" International Journal of Engineering and 

Advanced Technology (IJEAT), 2(1). 

[17]  Pushpendra Kumar Jain, Soni, S.C. and Prashant V. Baredar, 2014, 

"Review on Machining of Aluminium Metal Matrix Composites", Material 

Science Research India, Vol. 11(2), pp. 114-120. 

[18]  Arun, L., Praveen, N., Venkat Prasat, S. and Subramanian, R., 

2011,"Electric Discharge Machining of AlSi10Mg/Fly ash/Graphite 

Hybrid Metal Matrix Composites", European Journal of Scientific 

Research, 59(4), pp. 485-498. 

[19]  Taguchi, G., 1993, "Taguchi on Robust Technology Development: 

Bringing Quality Engineering Upstream", ASME press, New York, NY, 

pp. 1-40. 

[20]  Deng, J.L., 1989, “Introduction to Grey system”, J. Grey Syst., 1(1), pp. 1–

24. 

[21]  Deng, J.L., 1982, “Control Problems of Grey Systems”, Syst. Control 

Lett., 1, pp. 288–294. 



25908  Dr. S. Venkat Prasat 

[22]  Reddy Sreenivasulu and Srinivasa Rao, Ch., 2012, "Application of Grey 

Relational Analysis for Surface Roughness and Roundness Error in 

Drilling of Al 6061 Alloy," International Journal of Lean Thinking, 3(2).  


