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Abstract

Composite materials are beginning to find a foothold in the modern industrial
environment owing to their ever increasing applications. In this research work,
LM-13 Aluminium alloy matrix was reinforced with Fly ash (5 wt.%) and
varying percentage of Silicon Carbide particulates (0 wt.%, 5 wt% & 10
wt.%) to fabricate the hybrid composites with the help of Stir casting
equipment. The composites were subjected to continuous turning in a CNC
lathe with the help of carbide inserts and the experiments were conducted
based on the L,7; Taguchi orthogonal array design. The turning operation was
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conducted at various levels of cutting parameters such as depth of cut, feed
and speed. The effect of these machining parameters on Material Removal
Rate (MRR) and Surface Roughness (SR) of the hybrid composites was
studied using Taguchi Method. Signal-to-noise (S/N) ratio analysis and Grey
Relational Analysis were performed to determine the optimal setting of
machining parameters that result in maximum MRR and minimum SR.
Analysis of Variance (ANOVA) was used to study the influence of process
parameters and their interactions on the multiple responses, which showed that
feed was the most significant factor influencing the responses.

Keywords: Hybrid Aluminium Matrix Composites, Material Removal Rate,
Surface Roughness, Design of Experiments, Taguchi, Grey Relational
Analysis.

Introduction
The term “composite” refers to a material system which constitutes distinct
constituents (reinforcements) dispersed in a continuous phase (matrix). The composite
material has characteristics that are different from the characteristics of its
constituents [1]. In Aluminium Matrix Composites (AMCs), one of the constituent is
aluminium/aluminium alloy, which functions as the matrix phase and the other
constituent which is dispersed in the matrix is the reinforcement. The reinforcements
are in the form of particulates or fibres. The major advantages of AMCs are improved
strength, improved stiffness, reduced density, improved thermal conductivity,
controlled thermal expansion coefficient and improved abrasion and wear resistance
[1]. AMCs are being used increasingly in numerous structural, non-structural and
functional applications in different engineering sectors. They give both improved
performance and also have economic and environmental benefits. Industries which
are currently enjoying the added benefits of AMCs are the automotive and aerospace
sector. They are especially used in hot reciprocating parts such as pistons where hot
strength and resistance to thermal stresses are a prerequisite. The unique thermal
properties of AMCs such as metallic conductivity with coefficient of expansion that
can be tailored down to zero, add to their prospects in aerospace and avionics [2].
LM-13 Aluminium alloy is mainly used for applications where thermal stresses are
high since it can withstand higher temperatures and loads and has good wear
resistance properties. AMCs which are reinforced with Silicon Carbide (SiC) have
enhanced specific strength, lower thermal expansion coefficient, higher thermal
conductivity and higher wear resistance compared to the matrix material [3,4]. Fly ash
which mainly consists of refractory oxides like silica, alumina, and iron oxides has
low density. It can be mixed with aluminium alloy to reduce overall weight and
density of the composites [5]. The cost of fly ash is also much lower than most other
reinforcing materials and as well as the matrix aluminium. Therefore the usage of the
low cost fly ash particulates in aluminium alloy has the potential to reduce the cost of
hybrid AMC products. The incorporation of fly ash also increases the hardness and
wear resistance of composites [5]. The incorporation of several different types of
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reinforcements into a single matrix has led to the development of hybrid composites.
The reason for using stir casting method to fabricate composites was to achieve
uniform distribution of reinforcements and also due to the fact that it is economical
[6,7].

Since AMCs contain certain amount of hard and abrasive ceramic reinforcements,
they are considered to be one of the most difficult materials to machine [8,9].
Improving the machinability of AMCs and developing machining data are the most
promising ways to convince designers and manufacturers to use AMCs in their
applications. The prominent quality indicator for machined products is Surface
Roughness (SR). In many critical applications, achieving the desired surface quality is
of great importance for the effective use of the product [10]. Material Removal Rate
(MRR) is a key indicator of productivity in the turning operation. Another major
challenge in turning of AMCs is the lack of machining data for all possible
combination of reinforcements. Investigation of mechanical and machinability
properties of SIiC particle reinforced AMCs was conducted by many researchers
[11,12,13,14]. It has been reported in the literature that during turning process,
parameters like Depth of Cut (DOC), feed and cutting speed, influence the MRR and
SR [15,16,17].

Design of Experiments (DOE) is a powerful analysis tool for modelling and
analysing the influence of multiple control factors on the performance output. DOE
approach using Taguchi technique can be used for process optimization and to
determine the optimal combination of factors for a given response [18]. Taguchi's
Signal-to-Noise (S/N) ratios, which are logarithmic functions of desired output, serve
as objective functions for optimization, help in data analysis and prediction of
optimum results [19]. It helps in predicting the extent to which the parameters affect
the response. Analysis of Variance (ANOVA) is used to determine the influence of
individual machining parameters on the responses and as well as their interactions.

Taguchi method is designed to optimize single response characteristic. The higher-
the-better performance for one factor may affect the performance because another
factor may demand lower-the-better characteristics. Hence, multi-response
optimization characteristics are complex. Grey relational analysis [20] is an efficient
tool for such multi-response analysis. Grey relational analysis owes its origin to grey
system theory. Grey system theory formulated by Deng [20,21] is used to study the
unascertained problems with limited data but poor information. In Grey Relational
Analysis, black represents having no information and white represents having all
information. A grey system has a level of information between black and white. This
analysis can be used to represent the grade of correlation between two sequences so
that the distance of two factors can be measured discretely. When the experiments
are ambiguous or when the experimental method cannot be carried out exactly, grey
analysis helps to compensate for the shortcomings in statistical regression. Grey
Relation Analysis is an effective means of analyzing the relationship between
sequences with less data and can analyze many factors that can overcome the
disadvantages of statistical methods [22].

Based on the literature review, LM-13 Aluminium alloy was chosen as the matrix
in this research work. SiC and fly ash particulates were chosen as reinforcements.
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However, limited information is available regarding the optimization of process
parameters in turning Aluminium-SiC-fly ash hybrid composites using statistical
methods. In this investigation, the Taguchi approach followed by Grey Relational
Analysis is applied to solve the multi-response optimization in turning Aluminium-
SIiC-fly ash hybrid composites. ANOVA was used to determine the contribution of
each parameter and their interactions on the turning process.

Experimental Details

Materials

LM-13 Aluminium alloy (Al-Sil2Cu) has been used as the matrix material in this
investigation. LM-13 alloy is generally used for piston, pulleys (sheaves) and for
other engine parts operating at elevated temperatures. It has the advantage of good
resistance to wear, good bearing properties, a low coefficient of thermal expansion
and good machinability. The alloy has a density of 2.7 g/cm® The chemical
composition of LM-13 aluminium alloy is listed in Table 1. SiC and fly ash
particulates were used as reinforcements. SiC particulates were used owing to better
strength and thermal properties, and fly ash was used for its lower density and
hardness improvement properties. The spherical fly ash particles contain both solid
precipitators and hollow cenospheres. The particle density of SiC and fly ash were
3.21 g/cm?® and 2.04 g/cm®, respectively. Fly ash particles with a size range of 53-75
um were used. The average particle size of the reinforcement SiC was 30 um.

Table 1: Chemical Composition of LM-13 Aluminium Alloy

Element | Cu Fe [Pb | Mg | Mn | Ni |Si Sn | Ti | Zn | Al
% by i 0.8- 10.0- :
weight 0.7-15 [ 1.0 | 0.1 15 05 |15 13.0 0.1 { 0.2 | 0.1 | Remainder

Fabrication of Hybrid Composites using Stir Casting

The hybrid composite was prepared with the help of stir casting equipment as shown
in the Figure 1. The reinforcement particles were first preheated at a temperature of
600-800°C for a few hours so that the volatile substances were removed. The LM-13
alloy was placed in the crucible at the bottom of the furnace and melted by heating it
to around 750°C. The melt was agitated with a stirrer and Magnesium ribbons were
added to remove the slag. Fly ash and SiC particles were then added and stirred for
duration of 10 minutes until the particles were homogeneously distributed in the
matrix. The molten mixture was then poured into the moulds which were also
preheated and allowed to cool down and solidify. The composite samples were
removed after solidification.
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Figure 1: Stir Casting Equipment

Hybrid composite sample which are cylindrical in shape were cast with varying
weight percentage of SiC (0 wt.%, 5 wt% and 10 wt.%) and a fixed weight
percentage (5 wt.%) of fly ash. Table 2 shows the composition of the various
composite samples. The samples were machined to produce cylindrical specimens
each measuring 75mm in length and 20mm in diameter. A total of 9 specimens for
each composition was fabricated using stir casting equipment so that they could be
utilized for the 27 different experiments.

Table 2: Composition of the Hybrid Composite Samples

Sample LM-13 Aluminium

Number | alloy (wt.%) Fly ash (wt.%0) | Silicon Carbide (wt.%0)

1 95 5 NIL
2 90 5 5
3 85 5 10

Turning of Hybrid Composites and Design of Experiments (DOE)

These hybrid composite specimens were then subjected to turning operation ina CNC
lathe at various levels of DOC, feed and speed for a constant duration of 2 minutes
and 45 seconds. Carbide tipped tool was used for turning operation, because the
composites are comparatively harder than conventional materials and also due to the
fact that these tools have the capacity to withstand the high temperatures encountered
during the high speed turning operation. The experimental setup for turning of hybrid
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composites using CNC lathe is shown in Figure 2. The sequence in which the
experiments were to be conducted was determined based on Taguchi's Method. This
is essentially a 4-Factor and 3-Level design as it has 4 input variables and with 3
different levels. The input variables are composition, DOC, feed, speed and the
responses are MRR and SR. The various levels of input parameters are shown in
Table 3. An L27 orthogonal array was selected for this work and it has 27 rows and
13 columns. The photomacrograph of the cylindrical hybrid composite specimens
after the turning operation is shown in Figure 3.

Figure 2: Experimental setup for Turning Hybrid Composites using CNC Lathe

Figure 3: Photomacrograph of the Hybrid Composite Specimens after Turning
operation
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Measurement of MRR and SR

MRR and SR of the machined samples are the performance characteristics which are
used to evaluate the machining quality in this study. The initial mass of the samples
was measured using an accurate weighing scale and the final mass was measured after
the turning operation. The machining time was kept constant for all the samples at 2
minutes and 45 seconds. The difference between the initial and final mass gave the
mass loss in gram. MRR is defined as the ratio of mass of the work material removed
to the machining time. MRR for each experiment was calculated using the following
expression:

MRR = (miticl mess - Final mass) (1)

Machining Tims
The unit in which MRR is measured is g/min.

SR was measured in micrometers (um) with the help of a surface roughness meter
as shown in Figure 4.

Figure 4: Measurement of Surface Roughness using Surface Roughness Tester

S/N Analysis, Grey Relational Analysis and ANOVA
S/N ratio measures how the response varies relative to the nominal or target value
under different noise conditions. The objective of determining S/N ratio is to develop
processes that are insensitive to noise. The S/N ratio characteristics can be classified
into three categories, namely, ‘smaller is better’, ‘larger is better’ and ‘nominal is
best’ characteristic.

For MRR, 'Larger is Better' characteristic is chosen to determine S/N Ratio:
5 1 15
$=-100g [ (Z3]] (2)

N

where y is the observed data (MRR) and n is the number of observations.
For SR, 'Smaller is Better' characteristic is chosen to determine S/N Ratio:

2= 1010g @] (3)
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where y is the observed data (SR) and n is the number of observations.

Multi-response optimization of machining parameters for the hybrid composites
was performed using Grey Relational Analysis. The overall evaluation of the multiple
process responses (MRR and SR) is based on the grey relational grade. The relative
contribution of each control factor on the overall measured multiple responses is
obtained by ANOVA. Basically, ANOVA compares two types of variances: the
variance within each sample and the variance between different samples. It uses a
mathematical technique known as the sum of squares to quantitatively examine the
deviation of the average mean of the factors that affect the response from the overall
experimental mean response. MINITAB 15.2 software was used for the analyses of
the experimental data.

Results and Discussion

S/N Analysis using Taguchi Method

Taguchi method uses a special set of arrays called orthogonal arrays which stipulate
the way of conducting the minimal number of experiments that would give the full
information of all the factors that affect the performance parameter. The experiments
were conducted based on the L,; Taguchi orthogonal array design. The system has 4
parameters and each of them has 3 levels. Table 3 shows the list of parameters and
their levels. Testing all the possible combinations of these parameters will result in a
set of 81(3") test cases. However instead of testing the system for each combination of
parameters, one can use an orthogonal array to select only a subset of these
combinations. A total of 27 experiments (turning operations) were carried out with
different combinations of input parameters by utilizing Taguchi’s orthogonal array.

Table 3: Turning Parameters and their Levels

Level Composition | Depth  of | Feed Speed
(Wt. % of SIC) | Cut (mm) | (mm/rev) | (rpm)

1 0 0.5 0.125 500

2 5 0.75 0.250 750

3 10 1.00 0.375 1000

MRR was calculated using the equation 1 for all the 27 experiments. SR was
measured in micrometers (um) with the help of a surface roughness meter after the
turning operation. The experimental results for MRR and SR are shown in Table 4.
The experimental results were then converted to S/N Ratios so that the effects of
various parameters on the responses could be found out. The S/N ratios for a given
response were calculated using the equations 2 and 3 and the values are listed in Table
4. A process parameter setting with the highest S/N ratio always yields the optimum
quality with minimum variance.
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Table 4: Orthogonal Array and Experimental Result
Compo . .
Expt. siion  OP®  peed  speed  MRR SN Ratio o SIN - Ratio
of Cut . for MRR for SR
No. (Wt.% (mmfrev) (rpm)  (g/min) (nm)
; (mm) (dB) (dB)
of SiC)
1 0 0.5 0.125 500 2.992 9519232  1.8466  -5.32746
2 0 0.5 0.25 750 8.2413 18.31991  4.8666  -13.7445
3 0 0.5 0.375 1000  14.6594  23.32232  7.88 -17.9305
4 0 0.75 0.125 750 6.1814 15.82174  2.02 -6.10703
5 0 0.75 0.25 1000  15.0234 2353536  6.62 -16.4172
6 0 0.75 0.375 500 12.0974  21.65384  5.86 -15.358
7 0 1 0.125 1000  10.9176  20.76254  1.8766  -5.46743
8 0 1 0.25 500 10.8804  20.7329 4.972 -13.9306
9 0 1 0.375 750 19.18109  25.65747  7.7933  -17.8344
10 5 0.5 0.125 500 3.0589 9.711306  1.78 -5.0084
11 5 0.5 0.25 750 8.5342 18.62326  2.96 -9.42583
12 5 0.5 0.375 1000  13.8179  22.80884  6.085 -15.6852
13 5 0.75 0.125 750 6.3743 16.08865  1.6766  -4.48859
14 5 0.75 0.25 1000  14.0307 2294159  3.7866  -11.565
15 5 0.75 0.375 500 12.0815  21.64242  5.89 -15.4023
16 5 1 0.125 1000 113597  21.10734  1.66 -4.40216
17 5 1 0.25 500 10.8626 ~ 20.71868  3.8533  -11.7167
18 5 1 0.375 750 19.6184  25.85327  6.6233  -16.4215
19 10 0.5 0.125 500 5.9699 1551934  2.16 -6.68908
20 10 0.5 0.25 750 145175  23.23784  3.3266  -10.44
21 10 0.5 0.375 1000 147835  23.39555  4.8933  -13.792
22 10 0.75 0.125 750 7.7964 17.83788  2.2066  -6.87447
23 10 0.75 0.25 1000 135175 2261793  3.91 -11.8435
24 10 0.75 0.375 500 11.455 21.1799 49933  -13.9678
25 10 1 0.125 1000  10.7706  20.6448 2.3 -7.23456
26 10 1 0.25 500 10.7587  20.6352 3.9633  -11.9611
27 10 1 0.375 750 10.3498  25.73353 49466  -13.8861
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Grey Relational Analysis

In the Grey Relational Analysis, S/N ratios for MRR and SR were first normalized in
the range between zero and one, which is termed the grey relational generation. The
relationship between the desired and actual experimental data is expressed through the
grey relational coefficient, which is calculated from the normalized experimental data.
The mean of the grey relational coefficients corresponding to each process response is
calculated, which corresponds to the grey relational grade. The overall evaluation of
the multiple process responses is based on the grey relational grade. As a result,
optimization of complicated multiple process responses can be converted into
optimization of a single grey relational grade. The optimal level of the process
parameters is the level with the highest grey relational grade.

After grey relational generation, the deviation sequence is calculated as:

Aoi = ”Xo (k) =X (k)” (4)
The reference sequence and comparability sequence are denoted
by x, (k) and x; (k) respectively. Then, the grey relational coefficient & (k) for the K"
performance characteristics in the i experiment is calculated as:
Amin + Amax
£ (k) = Dmn * ©)
Aoi (k) + gAmax
0 < &(k) <1; ¢ is known as the distinguishing coefficient and it is defined in the

range 0 < £ <1, and therefore a value of £ = 0.5 is used.

The average value of the grey relational coefficients is the grey relational grade.
Therefore, the grey relational grade is calculated as follows:

=YK, ©)

where n is the number of process responses. The grey relational grade y, represents

the level of correlation between the reference sequence and the comparability
sequence. A higher value of the grey relational grade implies that the corresponding
process parameter is closer to the optimal one.

The grey relational generation was carried out and the normalized S/N ratio values
are listed in Table 5. In general, the larger normalized S/N ratio corresponds to the
better performance. The deviation sequence Ao is calculated using equation 4 as
follows:

Aoz(1) = |x, (1) - @)= | 1.0000 - 0.53879 | = 0.46121
Ao2(2) = [x,(0) - %, (1= | 1.0000 - 0.30942 | =0.69058

The same calculation method is used for all experiments (i = 1 to 27), and the
results of all deviation sequences are listed in Table 5. Ayax and Apin oObtained from
Table 5 are as follows:
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Amax= Ao1(1) = Ap3(2) =1.00

Amin = Alg(l) = A16(2) =0.00

Table 5: S/N Ratios, Normalized S/N Ratios and Deviation Sequences

Expt. S/N Ratios ggtrirgsalized SIN Deviation Sequences
No. MRR SR MRR SR MRR SR

. 9.519232 -5.32746 0 0.93160 1 0.0684
2 18.31991 -13.7445 0.53879 0.30942  0.46121 0.69058
3 23.32232 -17.9305 0.84505 O 0.15495 1

4 15.82174 -6.10703 0.38585 0.87397  0.61415 0.12603
> 23.53536 -16.4172 0.85809 0.11186  0.14191 0.88814
0 21.65384 -15.358  0.7429  0.19015 0.2571 0.80985
! 20.76254 -5.46743 0.68833 0.92125  0.31167 0.07875
8 20.7329  -13.9306 0.68652 0.2956 0.31348 0.7044
3 25.65747 -17.8344 0.9880  0.00718  0.0120 0.99282
10 9.711306 -5.0084 0.01175 0.95518  0.98825 0.04482
11 18.6236  -9.42583 0.55738 0.62865  0.44262 0.37135
12 22.86884 -15.6852 0.81361 0.16597  0.18639 0.83403
13 16.08865 -4.48859 0.40219 0.9936 0.59781 0.0064
14 22.94159 -11.565 0.82174 0.47053  0.17826 0.52947
15 21.64242 -15.4023 0.7422 0.18688  0.2578 0.81312
16 21.10734 -4.40216 0.70944 1 0.29056 0

17 20.71868 -11.7167 0.68565 0.45931  0.31435 0.54069
18 25.8532 -16.4215 1 0.11154 O 0.88846
19 1551934 -6.68908 0.3673 0.83095  0.63267 0.16905
20 23.23789 -10.44 0.83988 0.55368  0.16012 0.44632
21 23.39555 -13.792  0.84953 0.30591  0.15547 0.69409
22 17.83788 -6.87447 0.5092 0.81724  0.4908 0.18276
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23 22.61793 -11.8435 0.80192 0.44994  0.19808 0.55006
24 21.1799  -13.9678 0.71388 0.29291  0.28612 0.70709
25 20.6448  -7.23456 0.68112 0.79063  0.31888 0.20937
26 20.6352  -11.9611 0.68054 0.441251 0.31946 0.558749
27 25.73353 -13.8861 0.99267 0.2989 0.00730 0.70110

The grey relational coefficients and the grey relational grade for each experiment
were calculated using the equations 5 and 6 respectively. The average value of the
grey relational coefficients is the grey relational grade. The calculated values and the
ranks of coefficients and grades are listed in Table 6. The 18" experiment with a grey
relational coefficient value of 1.000 for MRR had the highest rank. This indicates that
the optimal setting of control parameters for maximum MRR are 5 wt.% SiC (level 2),
1 mm DOC (level 3), 0.375 mm/rev Feed (level 3) and 750 rpm Speed (level 2). The
16" experiment had the highest grey relational coefficient value of 1.000 for SR and
therefore the optimal setting of control parameters for minimum SR are 5 wt.% SiC
(level 2), 1 mm DOC (level 3), 0.125 mm/rev Feed (level 1) and 1000 rpm Speed
(level 3). This indicates that the machined surface obtained after 16™ experiment is
very smooth in nature in comparison to other experiments and has the optimum
surface finish. The 3" experiment had the lowest grey relational coefficient of 0.3333
for SR which indicates that the machined surface obtained after this experiment is
very rough in comparison to others.

Ranks of grey relational grade for all the experiments are listed in Table 6. It can
be clearly observed from the table that the 16™ experiment with a grey relational
grade value of 0.8162 had the highest rank. This indicates that the optimal parameter
combination for the multiple responses are 5 wt.% SiC (level 2), Imm DOC (level 3),
0.125 mm/rev Feed (level 1) and 1000 rpm Speed (level 3). Based on the Grey
Relational Analysis, the optimal combination of parameters for obtaining the highest
MRR and lowest SR during turning operation of LM-13 Aluminium/SiC/fly ash
hybrid composites is given in Table 7.

Table 6: Grey Relational Coefficient and Grey Relational Grade

MRR SR MRR and SR
Grey Grey Grey
E)épt' Relational | Rank E)épt. Relational Rank ﬁ);pt. Relational | Rank
' Coefficient ' Coefficient ) Grade
18 1.0000 1 16 1.000 1 16 0.8162 1
27 0.9856 2 13 0.9873 2 7 0.7399 2
9 0.9765 3 10 0.9177 3 13 0.7214 3
5 0.7789 4 1 0.8796 4 27 0.7009 4
3 0.76341 5 0.8639 5 18 0.6800 5
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21 0.7628 6 4 0.7986 6 25 0.6577 6
20 0.7574 7 19 0.7473 7 9 0.6557 7
14 0.7371 8 22 0.7323 8 20 0.6429 8
12 0.7284 9 25 0.7048 9 10 0.6268 9
23 0.7162 10 1 0.5738 10 4 0.6237 10
6 0.6604 11 20 0.5283 11 22 0.6184 11
15 0.6598 12 14 0.4856 12 14 0.6114 12
24 0.6360 13 17 0.4804 13 1 0.6064 13
16 0.6324 14 23 0.4761 14 23 0.5962 14
7 0.6160 15 26 0.47225 15 19 0.5943 15
0.6146 16 2 0.4199 16 21 0.5907 16
17 0.6139 17 21 0.4187 17 5 0.5695 17
25 0.6105 18 27 0.4162 18 11 0.5521 18
26 0.6101 19 8 0.4151 19 12 0.5516 19
11 0.5304 20 24 0.4142 20 3 0.5483 20
2 0.5201 21 6 0.3817 21 17 0.5472 21
22 0.5046 22 15 0.3807 22 26 0.5412 22
13 0.4554 23 12 0.3748 23 24 0.5251 23
4 0.4487 24 5 0.3601 24 6 0.5210 24
19 0.4414 25 18 0.3601 25 15 0.5202 25
10 0.3359 26 9 0.3349 26 8 0.5148 26
1 0.3333 27 3 0.3333 27 2 0.4700 27

Table 7: Optimal Combination of Parameters for Turning Hybrid Composites

. 90 wt.% LM-13 Aluminium Alloy, 5 wt.%
Composition SiC and 5 wt.% Fly ash
Depth of cut 1.00 mm
Feed 0.125 mm/rev
Speed 1000 rpm

Analysis of Variance (ANOVA) and Significance of Parameters

The relative contribution of each parameter to multiple responses was identified with
the help of ANOVA. A confidence level of 95% was used for the analysis, that is for
significance level of a = 0.05. The ratio of individual sum of squares of a particular
independent variable to the total sum of squares of all the variables gives the
percentage contribution of the independent variable on the response. The significance
of the individual control factors is quantified by comparing the variance between the
control factor effects against the variance in the experimental data due to random
experimental error, and this is given by the F-test.
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ANOVA was performed with grey relational grade as response to determine the
relative contribution of each parameter to the overall measured multiple responses.
Pairs of the factors in an experiment may also interact with one another to provide
synergistic effect on the response. Therefore the three important interactions, namely
Composition*DOC, Composition*Feed and Composition*Speed were also included
for this analysis. MINITAB 15.2 was used to calculate the total sum of squares and
adjusted sum of squares for all the factors and their interactions and all the results are
listed in Table 8. Using the software, degrees of freedom, mean squares, and the F-test
ratios were also found out for all the factors and their interactions.

Percentage contribution of the independent variables and their interactions to the
multiple responses was also calculated. Table 8 shows the percentage contribution of
the factors and their interactions to the multiple responses, MRR and SR. This
indicates the degree of influence on the results. When the P-value for this model is
less than 0.05, then the parameter or interaction can be considered as statistically
significant. From the table, it can be noted that feed (33.64%), followed by speed
(20.67%) and DOC (17.26%) exert significant influences on the turning responses of
hybrid composites. The most dominant parameter was feed, as it had the highest
percentage contribution to the multiple responses. This is in agreement with the
results obtained by Pushpendra Kumar Jain, et al. during the machining of AMCs
[17]. Composition exerts a negligible effect (4.86%), and since its P-value > 0.05, it
can be considered as statistically insignificant. Similarly, the interaction terms
Composition*Feed, Composition*DOC and Composition*Speed have a P-value >
0.05, and hence are statistically insignificant.

Table 8: ANOVA for MRR and SR (Grey Relational Grade)

Source of F-

- DF | Seq SS AdjSS | Adj MS P-value Percentage
variation

test Contribution

Composition (W% |, | 4 507973 | 0.007973 | 0.003986 | 2.76 |0.142 | 4.86

of SiC)

DOC (mm) 2 | 0028281 | 0.028281 | 0.014140 | 9.77 | 0.013 | 17.26
Feed (mm/rev) 2 | 0.055130 | 0.055130 | 0.027565 | 19.05 | 0.003 | 33.64
Speed (rpm) 2 | 0.033880 | 0.033880 | 0.016940 | 11.71 | 0.008 | 20.67

Composition* DOC | 4 0.006812 | 0.006812 | 0.001703 | 1.18 | 0.408 4.16

Composition* Feed | 4 0.017317 | 0.017317 | 0.004329 | 2.99 | 0.112 10.57

Composition*

4 0.005824 | 0.005824 | 0.001456 | 1.01 | 0.473 3.55
Speed
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Error 6 0.008681 | 0.008681 | 0.001447 5.29

Total 26 | 0.163898 100

Notes: DF, Degrees of freedom; Seq SS, Sequential sum of squares; Adj SS, Adjusted
sum of squares; Adj MS, Adjusted mean squares; F-test, Fisher’s test.

Figure 5 shows the variation of the responses from the mean values through
residual plots. Violation of the basic assumptions and model adequacy was
investigated by examination of residuals. Residual plots were generated to examine
the goodness of model fit. Normal probability plot was used to detect non-normality.
If the model is adequate, residuals should be structure less, that is, they should contain
no obvious and unusual patterns. From the normal probability plot of the residuals for
MRR and SR in Figure 5, it can be observed that the residuals generally fall on a
straight line. This indicates that the residuals are normally distributed and thus a
goodness-of-fit is obtained. Residual versus observation order plot were used to detect
time-dependence of residuals (Figure 5). This plot shows random patterns on both
sides of zero line. No clear time-dependent pattern was exhibited by the residuals
which show that the data was normally distributed and the equality of variance was
not violated. Thus the examination of residuals proved that the model to be fully
adequate to represent the relationships between the multiple responses and the
independent variables.

Residual Plots for Grey Relation Grade
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Figure 5 Residual Plots for MRR and SR (Grey Relational Grade)
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Based on the Grey Relational Analysis, the optimal combination of factors for
obtaining the highest MRR and lowest SR during turning operation of LM-13
Aluminium/SiC/Fly ash hybrid composites are: Composition = 5wt.% SiC &
5 wt.% Fly ash, DOC = 1.00 mm, Feed = 0.125 mm/rev and Speed = 1000
rpm.

It was determined based on ANOVA that feed (33.64%) has the predominant
influence on the multiple responses MRR and SR, followed by Speed
(20.67%) and DOC (17.26%). Composition, Composition*Feed,
Composition*DOC and Composition*Speed exert a negligible effect on the
multiple responses and hence they are statistically insignificant.

The examination of residuals proved that the model to be fully adequate to
represent the relationships between the multiple responses and the independent
parameters. The usage of optimal parameter combination will lead to an
improved MRR and good surface finish during continuous turning operation
of hybrid aluminium composites.
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