International Journal of Applied Engineering Research

ISSN 0973-4562 Volume 10, Number 10 (2015) pp. 25859-25866
© Research India Publications

http://www.ripublication.com

Reducing Can Bit-Stuffing Using Selective Xoring

B.Pazhanthanigai Malar®, B.Vinodhkumar ? and Dr. J.Ramesh®
'M.E-Embedded System Technologies, Sri Shakthi Institute of Engineering and
Technology, Coimbatore
?Associate Professor, Sri Shakthi Institute of Engineering and Technology,
Coimbatore
3 Assistant Professor (senior Grade), PSG College of Technology, Coimbatore

Abstract

This paper presents a new approach for reducing bit-stuffing in Controller
Area Network (CAN). CAN uses a bit-stuffing mechanism to prevent six
consecutive bits from having the same polarity by inserting a bit of opposite
polarity after the fifth bit. The added bits eliminate the forbidden patterns but
cause an increase in frame length which worsens the timing accuracy of a
network. So the selective XORing method is proposed to reduce the bit-
stuffing. The essence of this analysis is to explore on reducing bit-stuffing for
the worst case scenarios. The proposed method is validated through Simulink
implementation.

Index Terms: CAN, Bit-stuffing, selective XORing, Simulink.

Introduction

Development of the CAN bus started in 1983 at Robert Bosch GmbH. The protocol
was officially released in 1986 at the Society of Automotive Engineers(SAE) congress.
Bosch published several versions of the CAN specification and the latest is CAN 2.0
published in 1991. This specification has two parts; part A is for the standard format
with an 11-bit identifier,commonly called CAN 2.0Aand part B is for the extended
format with a 29-bit identifier, called CAN 2.0B. Currently there are hundreds of
millions of CAN nodes in use in the world.

CAN 2.0A Data Frame:

Conirol

I< Fed >l
S R|1
o| 11 bit identifier T |p |0 |DLC
F R|E
| AmbirationField | & DamFed |

Figure 1: CAN-Standard Format

http://en.wikipedia.org/wiki/Robert_Bosch_GmbH
http://en.wikipedia.org/wiki/Society_of_Automotive_Engineers

25860 B.Pazhanthanigai Malar

CAN 2.0B Data Frame:

Control
< Fietd I

s|1
11 bit identifier R|D 18 bit identifier
R|E

o w
AR

10 |prc

& Arbitration Field =>| |« Data Field 9‘

Figure 2: CAN-Extended Format

CAN is a multi-master serial bus standard for connecting Electronic Control Units
[ECUs] also known as nodes. Two or more nodes are required on the CAN network to
communicate. The complexity of the node can range from a simple 1/0O device up to an
embedded computer with a CAN interface and sophisticated software. The node may
also be a gateway allowing a standard computer to communicate over a USB or
Ethernet port to the devices on a CAN network.All nodes are connected to each other
through a two wire bus. The wires are 120 nominal twisted pair.Message IDs must
be unique on a single CAN bus, otherwise two nodes would continue transmission
beyond the end of the arbitration field (ID) causing an error.

To ensure enough transitions to maintain synchronization, a bit of opposite polarity
is inserted after five consecutive bits of the same polarity. This practice is called bit
stuffing.CAN uses a ”Non Return to Zero” (NRZ) coding technique. Since there is no
synchronization signalling involved in NRZ a drift in the receiver’s clock can occur
when a long sequence of identical bits has been transmitted; this can result in message
corruption. To avoid the possibility of this scenario, the CAN communication protocol
at the physical level uses a bit-stuffing mechanism which operates as follows: after five
consecutive identical bits have been transmitted in a given frame, the sending node
adds, an additional bit, of the opposite polarity. When five or more consecutive bits of
the same polarity are to be transmitted, a stuff” bit of the opposite polarity is inserted
by the transmitting hardware, and subsequently removed by the receiver hardware. Six
consecutive bits of the same type 111111 or 000000 are considered as an error else an
error or overload frame . According to the CAN standard the total number of bits after
bit stuffing will be:

Total bits after bit stuffing = 8n+47+L (34+8n-1)/4 4 ... 1)

n- Number of bytes.

Bit stuffing can introduce a delay of up to 24 bit time (worst case).

Today the CAN bus is also used as a fieldbus in general automation environments,
primarily due to the low cost of some CAN controllers and processors. CAN is being
widely used in passenger cars, buses, factory automation, work machines, agriculture,
forestry and mining applications. Medical equipment manufacturer’s use CAN as an
embedded network in medical devices. In fact, some hospitals use CAN to manage
complete operating rooms. Hospitals control operating room components such as
lights, tables, cameras, X-ray machines, and patient beds with CAN-based systems.
Lifts and escalators use embedded CAN networks, and hospitals use the CAN protocol
to link lift devices, such as panels, controllers, doors, and light barriers, to each other

http://en.wikipedia.org/wiki/Multi-master_bus
http://en.wikipedia.org/wiki/Serial_bus
http://en.wikipedia.org/wiki/Bit_stuffing
http://en.wikipedia.org/wiki/Bit_stuffing
http://en.wikipedia.org/wiki/Bit_stuffing
http://en.wikipedia.org/wiki/Fieldbus

Reducing Can Bit-Stuffing Using Selective Xoring 25861

and control them. CAN also is used in nonindustrial applications such as laboratory
equipment, sports cameras, telescopes, automatic doors, and even coffee machines.The
applications for CAN are increasing all the time.

Literature Review

Bit stuffing using message manipulation

Using message manipulation method the bitmask value is applied to the data. The data
will be de-stuffed in the receiving end with the same bitmask value. While applying
this method the bit stuffing is reduced. When applying it for the worst case scenario
like the data which is same as the bitmask value the transmitted data will be all
0’s.Again it will lead to the bit-stuffing of 12 bits. On the contrary the complement of
the bitmask value is sent the transmitted data will be all 1’s which will also include the
bit stuffing. This method fails to concentrate on worst case scenarios. To overcome this
an investigation is done and a new method is proposed.

Byte 1 2 3 4 5 & 7 8
Data 01010101 0101 0101 0201 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101
Bitmask 010101010101 0101 0101 0101 0101 0101 0101 0104 0101 0101 0101 0201 0101 0101
Afterbit D000 0000 0000 0000 0000 0000 D000 0000 0000 0000 D000 0000 0000 0000 D000 0000
S EEREEEEEEREEE

1 1 1 1 1 1 1 1 1 1 1 1
T

Data 0000010000010000010000010000010:00:0010000:01 00000 1000001 0000:31 000001000001 0000

No. of stuff bits: 12
Figure 3: Bit-stuffing in CAN data using message manipulation

Total number of bits after bit stuffing for the worst case scenario is 135.The largest
frame takes 135 bit times to send the data.

Eight-To-Eleven Modulation (EEM)

Eight-to-Eleven Modulation (EEM) is another type of X-to-Y modulation where “X”
equals to 8 (the number of bits per byte) and “Y” equals to 11(the number of encoded
data bits).After adding the extra stuff bit the total number of stuff bit will be three for
a set of 8 bit data. So the total number of bit encoded bit will be 11 bit. In the 11 bit
encoded format of the 8 bit input data, where we have one stuff bit at the middle of
the input data sequence, one near most significant bit and one near least significant
bit. This method includes 3 stuf bits per byte.It increases the length of the frame. To
overcome this a new method is introduced.

25862 B.Pazhanthanigai Malar

Selective XORing
In selective XORing method the bitmask is applied for the data field in the selective
CAN frames. The bit mask values used are BM1:[55 55 55 55 55 55 55 55] and
BM2:[91 91 91 91 91 91 91 91]. The bitmask is applied for the CAN frames other
than the worst case scenarios as mentioned above. If the data is same as the bitmask
or the complement of the bitmask it will be transmitted without masking. The
algorithm explains this method.

BM1: Bitmaskl

BM2: Bitmask?2

Algorithm for CAN Data transmission
if(d==0)
{
d xor BM2

elseif (d==BM2)
{

¥

else

{Tx=d}
elseif(d==BM1)

{

Tx=data}

else

{
d xor BM1

}

if (d==~BMS1)
{

Tx=d

}

else{

¥

When the transmitted data is all 0’s it is XORed with
BM2 .If the transmitted data is BM2 it is ORed withl.Otherwise it is XORed with
BML1.1f the transmitted data is equal to BML1 it is transmitted as such without masking.

d |1

Tx = XORed data

Algorithm for CAN DATA reception
if(R==BM1)
{

receive data

}

Reducing Can Bit-Stuffing Using Selective Xoring 25863

elseif(r=C4)
{
X=r1
X xor BM1
}
else
{
Y=r xor BM1
If(y==BM2)
{
Y xor BM2
¥
elseif(y==0)
{
Y xor 170 and transmit
}

else {receive the data

¥
}

In the receiving end also the bit masking should be done to destuff the bits. When
the received data is same as BM1 receive the data as such. If the received value is
equal to [C4 C4 C4 C4 C4 C4 C4 C4] first the received value is ORed with the data
and then it is XORed with BM1.If the received data is equal to BM2 it will be XORed
with the BM2 to decode the data. If the value is equal to O then it will be XORed with
[170 170 170 170 170 170 170 170].Otherwise the data will be received as such.

Byte 1 2 3 4 5 11 7 8
Data 0101 01010101 0101 0104 0101 0301 0201 0104 0101 0101 0101 0101 0101 0201 0104
After bit

Stuffing Mo of stuff bits: 0

T

Data 010101010101 0101 0101 0201 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101

No. of stuff bits:0
Figure 4: Bit-stuffing in CAN data using selective XORing

Implementation using MATLAB simulink

This method is implemented in Simulink model using MATLAB R2012b.This version
consists of vehicle network toolbox. It contains the blocks CAN configuration , CAN
transmit, CAN receive, CAN pack and CAN un pack. Using these blocks the algorithm
is implemented and it is verified for the worst case scenarios.

25864 B.Pazhanthanigai Malar

The Vehicle Network Toolbox block library is a tool for simulating message traffic
ona CAN network, as well for using the CAN bus to send and receive messages. We
can use blocks from the block library with blocks from other Simulink libraries to
createsophisticated models.

CAN Configuration - Configure the settings of a CAN device.

CAN Transmit -Transmit CAN messages to a CAN bus.

CAN Receive - Receive CAN messages from a CAN bus.

CAN Pack - Pack signals into a CAN message.

CAN Unpack -Unpack signals from a CAN message.

Figure 5; Simulink model for selective XORing

The model is created using these blocks. Then the model is run. Based on the
execution the transmitted data is noted.

Results and Discussion

This method is analyzed for the following worst case scenarios. This table shows that
without using the selective XORing the number of stuff bits for the worst case
scenarios 1 and 2 is 24. The stuff bits using selective XORing are 8 which is reduced
from 24.Total number of bits after bit stuffing for the worst case scenario using this
method is (64+47+8=119).The largest frame takes 119 bit times to send the data using
this method. This is reduced to 119 bit times from 135 bit times.

Reducing Can Bit-Stuffing Using Selective Xoring

25865

Table 1: Simulink result for stuff bits with selective XORing Vs.stuff bits without
selective XORing

Worst

Data Tx data Stuff _bits with_out St.uff bits _
Case (hex) selective XORing | with selective | Rx data(hex)
. (hex) .

Scenarios XORing

WCS1 [55 55 55 55 | [55 55 55 55 55 | 24 8 [55 55 55 55
555555 55] | 5555 55] 55 55 55 55]

WCS2 [AA AA AA | [AAAAAAAA | 24 8 [AA AA AA
AA AA AA | AA AA AA AA] AA AA AA
AA AA] AA AA]

WCS3 [1111111|[5454545454 |8 8 [f111111
1] 54 54 54] 1]

WCS4 [DO00000 |[C4 C4 C4 C4 |8 8 [0000000
0] C4 C4 C4AC4] 0]

WCS5 [92 919191 |[C6 C6 C6 C6 | 8 8 [91 91 91 91
91919191] | C6C6 C6 C6] 919191 91]

WCS6 [6E 6E 6E 6E | [3B 3B 3B 3B | 8 8 [6E 6E 6E 6E
6E 6E 6E 6E] | 3B 3B 3B 3B] 6E 6E 6E 6E]

WCS: Worst Case Scenario

The graph depicts the Probability of bit stuffing for different worst case scenarios.
The probability of including the stuff bits is reduced from 1 to 0.3 using this method.

Probability

of
inchiding
stuff bits

08

07

06

05

04

02

01

08 \

1

09

08

07

06

05

04

03 { BF—a—f——f——f—a [03

0.2

01

0

WCS1 WCS2 WCS3 WCS4 WCS5 WES6

= 4= without selective

XORing

~—#—with selective XORing

No of worst case scenarios

Figure 6: Probability of bit stuffing for worst case scenarios

This result shows that the probability of including the stuff bits using selective

XORing is reduced and it will reducethe transmission delay.

Conclusion

In this paper we have presented a new approach to reduce bit stuffing for worst case
scenarios. We achieved the accuracy in the Simulink modeling by taking worst case

25866

B.Pazhanthanigai Malar

scenarios into consideration. This allowed us to reduce the frame size used when
performing bit stuffing analysis of the CAN bus. It is observed that worst case number
of stuff bits using selective XORing is 8 compared to the worst case of 24 bits derived
by message manipulation method.On a more detailed level, we will investigate the
effects of bit stuffing in the control fields of CAN frames.

References

[1]

[2]

3]

[4]
[5]
[6]

[7]

[8]

[9]

T. Nolte, H. Hansson, and C. Norstrom. Minimizing CAN Response-Time
Analysis Jitter by Message Manipulation. IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS’02), pages 197-206,
September

T.Nolte, H. Hansson, and C. Norstrom. Using Bit-Stuffing Distributions in
CAN Analysis. IEEE/IEE Real-Time Embedded Workshop (RTES’01),
December 2001.

K. W. Tindell, A. Burns, and A. J. Wellings. Calculating Controller Area
Network (CAN) Message Response Times. Control Engineering Practice,
3(8):1163-1169, 1995.

Florian Hartwich, Armin Bassemir,”The configuration of the CAN Bit
timing”,6th international CAN conference, Turin.

J. Xu and D. L. Parnas. Priority scheduling versus preruntime scheduling.
Real-Time Systems Journal, 18(1), January 2000.

I. S. O. (ISO). Road Vehicles- Interchange of digital information -
Controller Area Network (CAN) for high-speed communication. I1SO
Standard-11898, Nov 1993

I. Broster and A. Burns. Timely Use of the CAN Protocol in Critical Hard
Real-Time Systems With Faults. Proceedings of the Euromicro
Conference on Real-Time Systems, June 2001.

A. Burns. Preemptive Priority Based Scheduling: An Appropriate
Engineering Approach. Technical Report YCS 214, University of York,
1993.

Bosch (1991), Robert Bosch GmbH “CAN Specification Version 2.0”.

[10] Vehicle Network Toolbox,User’s guide,Mathworks.

