International Journal of Applied Engineering Research

ISSN 0973-4562 Volume 10, Number 10 (2015) pp. 26823-26836
© Research India Publications

http://www.ripublication.com

Generating Classification Rules by Applying Rough Set
Theory on Pair Programming Data

R.K. Kavitha!, M.S. Irfan Ahmed?
'Department of Computer Applications
Kumaraguru College of Technology, Coimbatore, India
kavitha.rk.mca@kct.ac.in
Department of Computer Applications
Sri Krishna College of Engineering and Technology, Coimbatore, India
msirfan@gmail.com

Abstract

Agile methodologies are frequently used by many self organizing and cross
functional teams across various organizations. Complemented by its unique,
iterative and incremental methodology, it has significantly provided effective
business and software solutions for various computing domains of recent
times. Rough set theory is an intelligent technique used for the discovering
data dependencies, data reduction, approximate set classification, and rule
induction from databases. This paper reports the results of application of rough
set method on pair programming data generated by pair programming
exercises carried out with a set of fifty seven post graduate students, who
developed small applications as a part of their software development
laboratory course at Kumaraguru College of Technology (KCT) during the
academic year 2013-2014. The objective of this research is to relate the
students’ opinion on various aspects on pair programming collected during
pair programming sessions and their exam scores. Rough set analysis was
carried out to deal with inconsistent data and with the intention of identifying
student groups which requires special attention.

Keywords: Knowledge discovery, Rough sets, Agile Software Development,
Pair Programming, Rule generation.

Introduction

The usage of agile software is on the rise among the software developers for its
unique and proven methodology. Known for its success agile software has delivered
requisite productivity and quality in software development. Holding out an immense
potential to synergize tacit and explicit knowledge, it culminates conventional

mailto:kavitha.rk.mca@kct.ac.in
mailto:msirfan@gmail.com

26824 R.K. Kavitha

practices and fosters proactive planning in a collaborative environment and provides
rapid and flexible responses for the programmers. As one of renowned agile software
development methods, Extreme Programming [17] focuses on disseminating
knowledge through collaborative practices viz., pair programming, planning game and
retrospectives. Pair Programming [PP] is a subset of such extreme programming
practice, where two programmers mutually collaborate at the same workstation to
acquire added knowledge and experience on day to day basis. The programmers
collaborate as pairs by sharing a single computer working with the same design,
algorithm, code, or test etc. While one member of the pair, namely the driver types at
the computer or writes down a design, the other who assumes the role of the navigator,
observes the work of the driver to ensure objectivity, logic and process flexibility.

Pair programming as a pedagogy offers quick and consistent learning in higher
academia. Through its collaborative nature it engendered greater participation and
better interaction among learners when compared to conventional programming
methods. Studies also revealed that pair programming complemented the learning
process commendably within a short period of time [15]. Further, it also helped
students to gain real time practical experience of software development through
knowledge sharing and collaboration.

The theory of rough sets is a mathematical tool for extracting knowledge from
uncertain and incomplete data based information. The theory assumes that with
necessary information or knowledge of objects in the universe, the objects can be
divided into different groups. With exactly same information of two objects, it can be
said that they are indiscernible. The theory of rough set can be used to find
dependence relationship among data, evaluate the importance of attributes, discover
the patterns of data, learn common decision-making rules, reduce all redundant
objects and attributes and seek the minimum subset of attributes so as to attain
satisfying classification. This paper discusses how rough set theory can be used to
analysis pair programming data, and for generating classification rules from the
collected data set. The analysis was based on data sources gathered from a post
graduate computer applications course. The rough set reduction technique is applied
to find all reducts of the data which contains the minimal subset of attributes that are
associated with a class label for classification. This paper is organized as follows.
Existing studies are discussed in Section 2. Details regarding the proposed work are
introduced in Section 3. Experimental results and discussion are reported in Section 4.
Finally, conclusion is discussed in Section 5.

Existing Studies

A comprehensive review of literature was done in order to understand the impact of
pair programming exercise on teaching learning process. Literature reveals plenty of
studies related to the effects of pair vs. solo programming. The ability to work as part
of a cross-disciplinary team in industry has been highlighted by Scott, et al. [15].
Subbaraya Kuppusami, Kalimuthu Vivekanandan [13] experimented with computer
science course students comparing the learning efficiency of students who adopted
pair programming with those using traditional method for laboratory exercises for a

Generating Classification Rules By Applying Rough Set Theory on et. al. 26825

short duration. The metrics used for the study were design documents, completion
time, and marks obtained in a written test. They also concluded that the adoption of
pair programming improves design ability, reduces the time spent on a laboratory
exercise and also increases both knowledge and programming skills of the pairs
involved.

The cost-effectiveness of PP and the potential contained in the same for developing
codes with a few errors have been demonstrated by Muller [12]. According to Lui &
Chan [11], pair programming promotes not only quality programming skills, but also
enhances responsibility, mentoring, teamwork in addition to providing an increased
sense of enjoyment. Jari Vanhanen and Harri Korpi [10] demonstrated their
experiences of using PP extensively in an industrial project. The results seem to show
that test-driven development and design in pairs not only minimized defects but also
improved both quality and knowledge transfer, thus proving their suitability for
complex tasks.

An extensive and substantial case study on pair programming was carried out in
software development courses at the University of Dortmund, Germany by Tanja
Bipp and Andreas Lepper [8]. Thirteen software development teams with a total of
100 students took part in the experiments. The groups were as follows: In one set, the
group members worked on their projects in pairs. Not only did these teams produce
nearly the same number of codes as the teams of individual workers in the same
period, but their codes were easier to read and understand thus facilitating easy
detection and correction of errors. Research conducted by Begel [9] also brought to
fore the fact that freshly inducted software developers often struggled to adequately
communicate, when they were in need of assistance or while they were struggling
with a problem. M. Pikkarainen, J. Haikara, O. Salo, P. Abrahamsson and J. Still [4]
studied the communication aspect of agile software development and concluded that
agile practices improve both formal and informal communication among team
members.

On reviewing 66 studies, Norsaremah Salleh [7] identified certain psychosocial
factors such as compatibility, personality and gender issues, which affect the
effectiveness of pair programming among students. The effects of pair programming
on knowledge transfer and the resulting sense of fulfiliment experienced by students
were reported by V. Venkatesan and A. Sankar [5]. Jo E. Hannay, Erik Arisholm,
Harald Engvik, and Dag I.K. Sjgberg [3] observed that the personality of the pairs
engaged in pair programming could be a valid predictor for long-term team
performance. However, no conclusive evidence regarding the effect of personality on
pair programming was observed. Norsaremah Salleh, Emilia Mendes, and John C.
Grundy [4] presented evidence related to the effectiveness of pair programming (PP)
as a pedagogical tool in higher education CS/SE courses.

Ella Hassanien, Jafar M.H. Ali has applied rough set classification on breast cancer
data and the study showed that the theory of rough sets seems to be a useful tool for
inductive learning and a valuable aid for building expert systems [19].

Studies reported in literature mostly involved experiments conducted for a limited
duration ranging from a few laboratory sessions to a few months. Further, only a few
studies in the Indian educational context have been reported so far. The current study

26826 R.K. Kavitha

aims to plug the gap by undertaking a controlled experiment and extending it to a
longer duration (i.e.) a period of six-months. Not many studies in literature report
work related to applying rough set theory on academic data. In this work rough set
theory has been applied to collected data to deal with inconsistencies. This approach
will help the academic practioners to identify student groups to whom they have to be
given special attention and training so as to make them perform well in final
examination.

Proposed Work

The significance of knowledge sharing through pair programming was felt when the
students of the Master of Computer Applications (MCA) program struggled a lot
initially while developing applications, owing to their heterogeneous academic
backgrounds [1]. Based on the researcher’s experiences and insights drawn from
existing literature, the researcher proposed to study the effects and experiences of the
pair programming concept. The objectives of the study are:

1. To relate the students opinion on various aspects on pair programming
collected during pair programming sessions and their exam scores.

2. To study the interesting rules generated and to analyze the reasons for poor
scores secured by students in model exam, in spite of the knowledge gained
through pair programming. These rules would help the instructors predict the
student’s performance in their end semester exams of the laboratory course.
The instructor can give extra coaching and care to these students to improve
their results in their end semester examinations.

Experimental Methodology and Context

In order to facilitate learning process of students in the Computer Applications course,
the study investigated the use of pair programming as a teaching methodology and
investigated its effectiveness on students overall learning process.

Research Instrument

Formal lists of questions were prepared and the responses were analyzed using
standard statistical techniques. Two questionnaires with close-ended questions
containing a 5-point rating scale were designed. The students were made to fill an
entry questionnaire consisting of ten questions to assess their level of exposure to
programming tasks, partner preferences etc. The worksheet also contained twelve
open-ended questions, which allow the students to provide their own answers in an
unprompted manner, thus yielding qualitative data. After the completion of the
project, an exit questionnaire containing twenty questions on knowledge sharing, tool
learning, pair programming effectiveness during various phases of software
development and general experiences on pair programming [Table 1] was
administered to each student practicing PP. Also, unstructured interviews were
conducted to understand their pair programming experiences and clarify their
responses to questionnaires.

Generating Classification Rules By Applying Rough Set Theory on et. al. 26827

Student Respondents

The pair programming experiment was carried out for fifty seven students in software
development laboratory course in the fifth semester of the MCA Program. The study
was carried out in a controlled experimental setup. Twenty eight pairs were formed by
pair programming information system (PPIS) based on student responses to the
following factors such as willingness to participate in the experiment, partner
preferences, level of knowledge, cumulative grade point average secured till the
previous semester and their level of expertise in developing software applications and
tool usage. One student was made to work individually. Most students preferred to
work with the same gender and had no problems working with partner of any
knowledge level. The major intent of the study is to enable the average and slow
learners to learn and display improved performance in the laboratory course. Hence,
the students were categorized into 4 levels based on the cumulative grade point
average secured. The students were grouped as follows: Level 1 consisting of top
performers, level 2 the above average performers, level 3 the average category and
level 4 the slow learners. Students who were in level 4 and 3 were either paired with
students in level 1 or level 2 in order to facilitate effective knowledge sharing. This
data was used to perform rough set analysis.

The Controlled Experiment

A process framework was designed in order to carry out the pair programming
exercise systematically [Figure 1]. Appropriate user interfaces available in the
framework enabled student respondents and the assessors to record data easily. Once
the students were found to acquire the requisite understanding about pair
programming, they were allowed to access online software Pair Programming
Information System [PPIS], which forms a part of the framework. PPIS enabled the
students to fill the entry and exit questionnaire online. The questionnaire entries were
stored in appropriate databases [1].

Twenty eight software application development projects [Table 2] with equal
levels of difficulty, were chosen for the experiment by the faculty. These projects
were randomly allotted to the students and the scope and requirements were clearly
explained to contextualize the results. These tasks were executed during separate lab
sessions of five hours duration per week. The pairs were asked to interchange driver-
navigator roles once in the middle of each laboratory session to ensure equal
contribution to the project.

During the lab experiment, the students were asked to record their experiences
individually for each lab session. In order to extract and record the software
development and learning experiences of those students working in pairs, they were
made to fill in a worksheet as detailed in Table 1. Subsequently, details related to
knowledge sharing and transfers were also collected. After the tasks were completed,
the students were asked to fill in an online exit questionnaire, specifically designed to
collect their views on pair programming, knowledge sharing, tool learning and
collaborative skill development.

26828

R.K. Kavitha

Table 1: Sample Questions Asked In The Questionnaires

Entry Questionnaire Exit Questionnaire Worksheet

Rate your level of | Do you think working in | Lines of code
understanding on the subjects | pairs was useful? developed

Software engineering and

object oriented analysis and

design.

Mention the number of | Do you see yourself getting | Types of errors and
software applications | better in developing | time spent for
developed so far collaborative skills? debugging

Rate your level of familiarity | Has your productivity | Contribution of
of the concept ‘Pair | increased? partner in correcting
Programming’. errors

Mention the preferred level of | Did pair programming | Pair ~ programming
your partner while doing pair | improve your work quality | experience in the
programming. and skills? session

How far you will be
comfortable working with a
different gender?

Effectiveness of pair
programming in inception,
elaboration, construction
and transition phases.

Difficulties faced in
the session if any

Cumulative Grade Point
Average (tin current
semester).

How far do you get the
support and coordination of
the pair?

Additional
features/enhancement
included apart from
the basic requirement
for the project.

The previous studies reported in literature have not used a complete process
framework that is fully automated. When the entry questionnaire is filled by the
respondent online, PPIS would automatically suggest pairs based on student
preferences. It would also suggest pairs randomly on demand. Once the data entry is
complete for the questionnaires, worksheets and assessment sheets, the data will be
stored in a database that can be exported in Microsoft excel format, which in turn can

be fed into the analysis tools.

Table 2: Sample projects

Project Title

Resource planner for a college

Student feedback system

Exam result analysis system

Library management system

QB WNFF,W]

Student attendance management system

Generating Classification Rules By Applying Rough Set Theory on et. al. 26829

Pre Experiment
Awareness Review history &
Creation Preferences

Experimenting PP

i i PPIS
Data Creator W
Task Questionnaire
Assessor s o
Assessment -
— Practicing PP K= System
DB
Recording Worksheet
Experiences

Assessment

Participant

|

Analysis Manager

|

Post Experiment Artifacts

Knowledge Dablidain General Tool Phase
Sharing 9ging Experiences Learning Effectiveness

Figure 1: Pair Programming Process Framework

Validity and Reliability of the experiment

Generally, the attitudes and behavior of student respondents might not be consistent.
At times, it is possible that the questions may not be interpreted by them as they are
intended to be. In all likelihood, the student respondents may rate a factor without
understanding the question carefully, thus yielding imprecise data and creating a
threat to the validity of the data. This problem was addressed by designing questions
that can be both clearly and easily understood by student respondents. The
significance of the study and the need for recording accurate data were also explained
and they were motivated and guided by the faculty, as and when needed.

Experimental Results and Discussion

Rough Sets Theory

The idea of rough set as a new mathematical tool to deal with vague concepts was
proposed by Pawlak [18]. Rough set theory proposes a new mathematical approach to
imperfect knowledge or vagueness. It offers mathematical tools to discover patterns in
hidden data. By applying rough sets theory to knowledge discovery systems, it is
possible both to identify and remove redundant variable, and also to classify
imprecise and incomplete information. Thus, rough set theory is useful for reasoning
about the knowledge of objects represented by attributes. The fundamental
assumptions here are as follows: (i) the objects are represented by values of attributes
and (ii) objects with same information are indiscernible. The main advantages of
rough set tools are as follows: (i) it allows generating set of decision rules from the

http://en.wikipedia.org/wiki/Zdzis%C5%82aw_Pawlak

26830 R.K. Kavitha

given data automatically (ii) provides an easy interpretation of the results. The most
important areas which rough set data analysis addresses are as follows: describing
object sets by attribute values, finding dependencies between attributes, reducing
attribute descriptions, analyzing attribute significance and generating decision rules.

Each rough set contains objects which cannot be classified with certainty as
members of the set or its complement by employing the available knowledge [16].
Obviously, rough sets in contrast to precise sets cannot be characterized in terms of
information about their elements. With any rough set is associated a pair of precise
sets, called the lower and the upper approximation of the rough set, is associated. The
lower approximation consists of all objects which belong to the set, while the upper
approximation contains all objects which possibly belong to the set. The difference
between the upper and the lower approximation constitutes the boundary region of the
rough set. The rough set based data analysis starts from a data table known as a
decision table, the columns of which are labeled by attributes, the rows by objects of
interest and the entries of the table by attribute values. Attributes of the decision table
are divided into two disjoint groups, known as the condition and decision attributes
respectively. Each row of a decision table induces a decision rule, which specifies a
decision, if some conditions are satisfied. If a decision rule uniquely determines a
decision in terms of conditions, then the decision rule is considered to be certain.
Otherwise, the decision rule remains uncertain. Decision rules are closely connected
with approximations. While certain decision rules describe lower approximation of
decisions in terms of conditions, uncertain decision rules refer to the boundary region
of decisions. Each decision rule is related to two conditional probabilities, namely the
certainty and the coverage coefficient. The certainty coefficient expresses the
conditional probability that an object belongs to the decision class specified by the
decision rule, provided it satisfies the conditions specified by the rule. The coverage
coefficient provides the conditional probability of reasons for a given decision [6].

Pattern recognition and machine learning knowledge reduction are the two most
important problems in data mining. The rough set theory has been applied to the
development of learning and data reduction algorithms for data mining tasks. Rough
set theory based classification of the pair programming data handles minimal set of
attributes and vagueness which reduces the complexity of the data set.

Table 3: Sample PP Data Set

Stu | Usefu | Produc | K. K. Proactive | Satis | Work | Tool | Grade
dent | Iness | tivity | improv | sharing | learning | faction | quality | Lear
ement ning
S1 |4 3 4 4 4 4 4 4 S
S2 |4 4 3 5 4 4 4 4 C
S3 |4 4 5 5 4 4 3 4 a
S4 |4 4 3 4 3 4 3 3 a
S5 |4 5 4 4 4 5 5 5 S
S6 |4 4 5 5 4 4 3 4 S
S7 |3 4 4 5 3 3 3 4 S

Generating Classification Rules By Applying Rough Set Theory on et. al. 26831

S8 |3 4 4 5 3 3 3 4 b
S9 |5 5 5 5 4 5 4 5
S10 |5 5 5 5 4 5 4 3 S

Table 3 shows a sample data set about the student’s opinion on pair programming.
The students have rated the various attributes of pair programming that helped them
to improve their knowledge. The grades obtained by students in the model
examination of the software development laboratory course are provided in the last
column of the table and they have been calculated as shown in Table 4.

Table 4: Grade calculation

Range of Marks Grade
90-100
80-89
70-79
60-69
55-59
50-54

D O O T2 »m

From the table, it can be observed that two students (S7and S8) had given the same
rating for all the above mentioned aspects of knowledge improvement. However, their
model examination scores are different. Rough set theory can be used in such
situations to handle imprecise data.

Rough Set Based Rule Evaluation

Empirical data was collected during pair programming sessions using the pair
programming process framework. The data collected through the questionnaires were
classified and transformed into a decision table for further analysis. Initially, the data
was loaded into the data mining tool and made to undergo the preprocessing phases
[17], namely the completion phase and discretisation phase. During the completion
phase, the missing values in the table were attended to. Those objects with missing
values in the table were either removed or the missing values were filled up with the
mean value of the entries that are present. Discretization involves deciding the cuts
that determine the intervals and the values fell within this interval were then mapped
to the same value. This was carried out to ensure that the rules induced by the tool
were not specific. Therefore, equal frequency scaler was used. For each attribute, the
algorithm discretized the given attribute into a number of intervals such that each
interval contained approximately the same number of objects. For example, rating 3
was discretized as (*, 4) and rating 4 as (4, 5). After discretization, the data set was
randomly split into two disjoint sets. The first set, known as the training set, is used to
extract knowledge used for creating general rules, relations and descriptions in the
data set. The goal is to gain knowledge which is valid not only in the case of the
specific data being considered, but also for other similar data sets. The knowledge
thus extracted may be tested against the second set known as the test set. If the

26832 R.K. Kavitha

knowledge gained from the training set is general, it is likely to be correct for most
parts of the test set as well. Different sample sizes were randomly selected from the
data set and a split factor of 0.6 was used for training and testing purposes.

Computing reducts is the task of finding minimal attribute subsets. There are many
algorithms for reduct computation. This study uses the genetic RSES algorithm to
generate both reducts and rules based on data collected in the exit questionnaire, as
shown in Tables 5 and 6. Rules are generated on the basis of the computed reducts
that constitute one of the most important results of the rough set data analysis. Two
objects are considered to be conflicting when they are characterized by the same
values for all attributes, but belonging to different classes. In such cases, rough sets
compute both the lower and upper approximations. The tool used in this work
generates rules for every object and its related reducts, considering the inconsistent
data. The rules thus generated were used to discover knowledge by comparing two
factors, namely students’ performance in the model examination and the students’
perceptions about various aspects about pair programming. The rules thus generated
take into account the inconsistencies between two or more sets of information,
describing the same variable which occurs in the data collected. Rules induced from
the lower approximation of the classes certainly describe the class, hence such rules
are called ‘certain’. On the other hand, rules induced from the upper approximation of
the class describe the class possibly and so, these rules are called the possible
rules. Using rough sets, both the certain and possible rules were generated.

Table 5: Sample Reducts

SNO Reduct
{productivity, satisfaction level}
{productivity, sharing knowledge, work quality}
{productivity, knowledge improvement, work quality}
{sharing knowledge, work quality, proactive learning}
{sharing knowledge, proactive learning, proactive learning }
{productivity, sharing knowledge, proactive learning }
{usefulness, knowledge improvement, work quality, tool learning }
{usefulness, knowledge improvement, proactive learning, tool learning }
{knowledge improvement, sharing knowledge, tool learning }

0 {productivity, knowledge improvement, tool learning }

P OoOO~NOoO ok~ WwN -

Table 6: Sample Generated Rules

S. Rules

1 productivity([*, 4)) AND satisfaction level([4, 5)) => Grade(s)
2 productivity([*, 4)) AND satisfaction level([*, 4)) => Grade(c)

3 productivity([*, 4)) AND sharing knowledge([*, 5)) AND work quality([4,
5)) => Grade(s)

Generating Classification Rules By Applying Rough Set Theory on et. al. 26833

4 productivity([4, 5)) AND sharing knowledge([*, 5)) AND work quality([*,
4)) => Grade(a)

5 productivity([*, 4)) AND knowledge improvement([4, 5)) AND work
quality([4, 5)) => Grade(s)

6 productivity([4, 5)) AND knowledge improvement([4, 5)) AND work
quality([*, 4)) => Grade(s) OR Grade(b)

7 productivity([5, *)) AND knowledge improvement([*, 4)) AND work
quality([4, 5)) => Grade(s)

8 productivity([*, 4)) AND knowledge improvement([*, 4)) AND work
quality([4, 5)) => Grade(a)

9 sharing knowledge([*, 5)) AND work quality([4, 5)) AND tool learning([4,
5)) => Grade(s)

10 sharing knowledge([*, 5)) AND work quality([5, *)) AND tool learning ([5,
*)) => Grade(s) OR Grade(c)

The rules shown in Table 6 are based on the scores obtained by students in the
model examination conducted a few weeks ahead of end semester examination. The
predicted rules thus help the course instructors to identify those students who require
extra care and coaching. From the rule productivity ([*, 4)) AND satisfaction level
([4, 5)) => Grade(s), it can be inferred that a student respondent who has rated 3 for
the attribute productivity and 4 for the attribute satisfaction level shall score an s
grade in the final examination. As per rule productivity ([*, 4)) AND satisfaction level
([*, 4)) => Grade(c), a student respondent who has rated 3 for the attribute
productivity and 3 for the attribute satisfaction level shall score a grade c in the final
examination. The rule productivity ([4, 5)) AND knowledge improvement ([4, 5))
AND work quality ([*, 4)) => Grade(s) OR Grade (b) can be interpreted as any
student who rates 4 for the attributes productivity, knowledge improvement and 3 for
the attribute work quality will score either s grade or b grade in the final examination.
Thus it can be observed that while rules 1 and 2 are certain rules, rule 6 is uncertain.
As per rule 6, the student who feels that productivity, knowledge improvement and
work quality has improved significantly has scored in the range of either 90-100 or
70-79 marks, leading to uncertainty. As per rule 10, the student who feels that work
quality and tool learning has improved significantly has scored in the range of either
90-100 or 60-69 marks, leading to uncertainty. Such rules help the instructors to
identify those students who have given such ratings and to tightly monitor them. The
results seem to indicate that rough sets work better in cases of inconsistent data.

The set of rules induced on the basis of the computed reducts are often used to
classify new and unseen objects. Batch classifier has been used to classify the data in
this work. The classifier performance can be analyzed and compared by those
measures generated by the confusion matrix. The confusion matrix is a specific table
layout that allows visualization of the performance of an algorithm and is typically
a supervised learning one. Each column of the matrix represents the instances in a
predicted class and each row represents the instances in an actual class. The matrix
displays the number of correct and incorrect predictions made by the rules on the test

http://en.wikipedia.org/wiki/Supervised_learning

26834 R.K. Kavitha

data. From Figure 2, it can be observed that the percentage of accuracy for classifying
the pair programming data using the genetic algorithm is 77.

M Batch classifier

Predicted
s c a b
= 149 0 a 0 1.0
C 2 4 a0 0 0. EEEEEY
Actusl a 3 1 3 0 0.428571
h 2 0 a 2 0s
0.730769 0s 1.0 1.0 0777778
Class =
Ares 0922601
ROC [Std. error 0045951
Thr. (0,17 0.sa
Thr. acc. 053

Figure 2: Confusion Matrix

Conclusion

Collaborative work is now being looked upon more seriously than ever in teaching-
learning process. This was the impetus for carrying out the above—reported research.
The study reports the results of preliminary work carried out in implementing pair
programming as a teaching methodology. The results of the study conducted in the
context of a programming laboratory course appear to be positive and also reveal the
potential of PP in improving both programming practice and collaborative skills. The
researcher developed a process framework for pair programming and experimented
the effects of the same for a longer duration. Most student respondents have
acknowledged in the questionnaire that practicing in pairs did help them experience a
sense of reward and accomplishment. To deal with the inconsistent data, rough set
analysis was carried out and the rules were generated. These rules would help in
predicting students’ performance in final examination and also in identifying those
student groups which require personal attention by the faculty. The accuracy of the
classifier was found to be at 0.77, which is a significant value.

Acknowledgements

The authors would like to thank the Management of Kumaraguru College of
Technology, Coimbatore, India for providing the necessary support to conduct the
experiment and collect the necessary data for research. We would like to thank all the
students who participated in the study and faculty friends who supported the study.
This work was funded by the All India Council for Technical Education (AICTE) Ref.
No. 8023/RID/RPS-61/2011-12 (Pvt).

Generating Classification Rules By Applying Rough Set Theory on et. al. 26835

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

R.K. Kavitha, M.S. Irfan Ahmed (2013), “Knowledge sharing through pair
programming in learning environments: An empirical study”, Education
and Information Technologies, Springer, Published online:09 October
2013.

Norsaremah Salleh, Emilia Mendes, John Grundy (2011), “Empirical
Studies of Pair Programming for CS/SE Teaching in Higher Education: A
Systematic Literature Review”, IEEE Transactions on Software
Engineering, Vol. 37, No. 4, 509-525.

Hannay J.E, Erik Arisholm, Harald Engvik, Dag I.K. Sjgberg (2010),
“Effects of Personality on Pair Programming” IEEE Transactions on
Software Engineering, VOL. 36, NO. 1.

M. Pikkarainen, J. Haikara, O. Salo, P. Abrahamsson, J. Still (2008), “The
impact of agile practices on communication in software development”,
Published online: 23 May 2008, Springer Science + Business Media

V. Venkatesan, A. Sankar (2010), “Adoption of Pair Programming in the
Academic Environment with different Degree of Complexity in Students
Perspective— An Empirical Study”, International Journal of Engineering
Science and Technology Vol. 2(9), 4791-4800.

Rajendra Akerkar, Priti Sajja (2010), “Knowledge-Based Systems”, Jones
and Bartlett Publishers, Canada

Norsaremah Salleh (2008), “A Systematic Review of Pair Programming
Research —Initial Results”, Proceedings of NZCSRSC 2008, Christchurch,
New Zealand, 151-158.

Tanja Bipp, Andreas Lepper, Doris Schmedding (2008), “Pair
Programming in Software Development Teams-An empirical study of its
benefits”, Science Direct Information and Software Technology, 231-240.
Andrew Begel, Beth Simon (2008), “Novice software developers, all over
again”, Proceedings of the Fourth international Workshop on Computing
Education Research, ICER '08, 3-14, New York, ACM.

Jari Vanhanen, Harri Korpi (2007), “Experiences of Using Pair
Programming in an Agile Project”, Proceedings of the 40th Hawaii
International Conference on System Sciences IEEE Computer Society,
1530-1605.

Kim Lui, Keith C.C. Chan (2006), “Pair Programming Productivity:
Novice-Novice vs. Expert-Expert”, International Journal of Human-
Computer Studies, 64 (9), 915-925.

Matthias M.Muller (2005), “Two controlled experiments concerning the
comparison of pair programming to peer review”, The Journal of Systems
and Software,78(2), 166-179.

Subbaraya Kuppuswami, Kalimuthu Vivekanandan (2004), “The Effects
of Pair Programming on Learning Efficiency in Short Programming
Assignments”, Informatics in Education, Vol. 3, No. 2, 251-266, Institute
of Mathematics and Informatics, Vilnius.

26836
[14]

[15]

[16]

[17]
[18]

[19]

R.K. Kavitha

Laurie Williams, Robert Kessler (2003), “Pair Programming Illuminated”,
Addison Wesley.

Geoff Scott and David Wilson (2002), “Tracking and profiling successful
IT graduates: An exploratory study”, Proceedings of the 13th Australasian
Conference on Information Systems, ACIS '02, 1185-1195.

Zdzistaw Pawlak (2002), “Rough set theory and its applications”, Journal
of Telecommunications and information technology.

Kent Beck (2000), “Extreme Programming Explained”, Addison-Wesley.
Zdzistaw Pawlak (1982), “Rough sets”, International Journal of Computer
and Information sciences”, Volume 11, Issue 5, 341-356, Springer.

Ella HASSANIEN, Jafar M.H. ALI (2004), “Rough Set Approach for
Generation of Classification Rules of Breast Cancer Data”
INFORMATICA, Vol. 15, No. 1, 23-38.

http://link.springer.com/search?facet-author=%22Zdzis%C5%82aw+Pawlak%22
http://link.springer.com/journal/10766
http://link.springer.com/journal/10766
http://link.springer.com/journal/10766
http://link.springer.com/journal/10766/11/5/page/1

