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Abstract

This article is about the estimator of an unknown regression function which is
smooth but observed with noise on a bounded interval. The method is based on ap-
plying results of the recently developed theory of variational mode decomposition.
It is illustrated with simulation.
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1. Introduction

Estimating a smooth regression function has been a very useful exploratory tool for data
analysis. Itis also essential in fitting a curve for high dimensional data. It helps to reduce
the observational errors in the data so as the interpretation concentrates on important de-
tails of the mean dependence of the response function on the causal variable or variables.
In fact, estimating the regression function is so important in the present information age
as it becomes most challenging to synthesize information, achieve understanding, and to
derive insight from increasingly massive, time-varying, noisy and possibly conflicting
data sets [11].

This can be achieved either by the parametric estimation when we assume that the
mean response has some pre specified functional form or by the nonparametric estimation
when there is no reference to a specific form. Nonparametric modeling of regression
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does not project the observed data into a Procrustean bed of fixed parametrization due to
the doubt concerning the appropriate parametric form or about the assumptions on the
parameters. Nonparametric simple regression is often called “scatter plot smoothing”
because an important application is to tracing a smooth curve through a scatter plot
of y against x. Thus the main objective of these studies is to draw conclusion on
the underlying trend of the data observed in various real time situations [9]. Though
the major research on nonparametric regression dates back to 1960’s, several methods
of nonparametric curve fitting have been proposed in the recent years and is still an
expanding area of ongoing research. During the 1990’s the nonparametric regression
literature was dominated by linear and nonlinear wavelet estimators. The purpose of this
paper is to derive an alternative method to estimate a nonparametric regression function
based on variational mode decomposition (VMD).

The rest of the paper is organized as follows. We brief about the existing regression
function estimation procedure in Section 2. A review of the VMD model is given in
Section 3. We present our VMD based approach to estimate the regression function in
Section 4. Section 5 discusses the results based on the simulation. The paper concludes
with Section 6.

2. Regression Function Estimation

Let us consider the nonparametric fixed design regression model
Yi=f(x;) +efori=1,...,n (1)

where Y;’s are noisy observations of the regression function f and g;’s are i.i.d nor-
mal random variables with zero mean and unit variance. We suppose, without loss of
generality, that x;’s are within the unit interval [0, 1] with x; =0, x,, = 1.

The common methods of nonparametric regression are kernel estimation, local-
polynomial regression which is a generalization of kernel estimation, smoothing splines
and orthogonal series methods.

The kernel approach is conceptually simple and is to obtain and use appropriate

n

weights w;; to yield fitted values y; = Z w;;y;. Out of many methods of determining
j=1
weights the one that was proposed by Nadarya (1964, 1965) and Watson (1964) is more
common. Due to its weight structure it is also known as local constant estimator. It
was understood that this local constant estimation nearer to the boundary has very high
bias. Due to this limitation of the kernel estimation, the local linear estimation method
was proposed to address this boundary problem. But, it is found by simulation that the
local linear method does not perform always better than the local constant method. In
fact, when the regression function is quite flat, the local constant estimate does better.
Meanwhile, the better performance in few cases by local linear estimates over local
constant estimators triggered to think of local polynomial estimators too. Though all
these local linear and local polynomial methods reduce bias, the variance increases with
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the order of the polynomial. Thus the curve fitted with such methods has too much
rapid local variation and hence are too wiggly which may not be acceptable. But, the
solution for such penalized regression problems were given by the smoothing spline

method which minimizes S(h) = Y [yi — f(xi]* + h / [f”(x)]*dx where h is the

roughness penalty.

Orthogonal series estimating procedure is yet another estimator which is widely
used as it is simple in structure and easy to compute and analyze mathematically. It also
has well developed mathematical theory. But, the quality of this estimation procedure
depends very much on the orthogonal system selected [3]. The linear and nonlinear
wavelet estimators are also a subset of orthogonal series estimators which are imple-
mented through fast algorithm and hence computationally better than the other classical
orthogonal series estimators [3]. Despite these facts wavelet estimation can be made
only when the sample values are taken at dyadic points in general and wavelet basis
functions are not data-adaptive in nature.

Meanwhile, the empirical mode decomposition (EMD) was introduced by Huang
etal. [7] to decompose the given function recursively into different modes or sub signals
of separate frequency bands. It has been shown that EMD shares important similarities
of wavelets [8] and has been widely used by signal and image processing community.
Despite these facts, EMD algorithm could not be modeled mathematically and has few
apparent limitations. These shortcomings are overcome by non-recursive VMD model
proposed by Konstantin Dragomiretskiy and Dominique Zosso where the modes are
extracted concurrently. VMD is interpreted as signal decomposition with a wavelet-
packet transform filter bank structure, which is very different from the EMD which is
wavelet-like in structure. Therefore, VMD is an adaptive decomposition method with
more refinement time-frequency divisions than EMD [10]. These developments in signal
and image processing problems lead to this article by making an effort to estimate the
regression function using VMD algorithm and is found to be justified by the results
obtained for our simulation study. We present in the next section a brief review of VMD
model before we describe our estimation procedure.

3. Review of Variational Mode Decomposition

The VMD model looks for a number of modes fj and their respective center frequencies
g, such that Z fr = Y. It has important relations to Wiener filter denoising. The
goal of VMD is to decompose an input signal into a discrete number of modes, that have
sparsity in its bandwidth while reproducing the input. In other words, we require each
mode k to be mostly compact around a center pulsation.

The modes and the respective centre frequencies are obtained by minimizing the
constrained variational problem

mmfk,wkE :

k

2

A [<5<x> + i) * fk<x>] eI
X

2
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such that Z fr =Y, where § represents the dirac delta function and j = +/—1.

k
The above minimization procedure is resulted while the effort is made to estimate

the bandwidth of a mode by obtaining the analytic function corresponding to the real
mode using the Hilbert transform H as fi(x) + jH fi(x). The analytic function becomes
essential in order to have the positive sided frequency spectrum alone of the mode which
is assumed to be centered at wi. The resulting analytic function is demodulated by
multiplying by e™/“* so that to shift the centre of the frequency of the mode to the
origin [2] [1]. In fact, the modes are derived as optimal functions using calculus of
variations [2].

The solution of the constrained problem is shown to be the saddle point of the La-
grangian unconstrained problem

2

L(fie o1, ) = Ole: Ox [(5(36) + n‘]—x) * fk(x)] eI Okx

-l v r-Xw

in which o denotes the balancing parameter of the data-fidelity constraint and A is
the Lagrangian multiplier. The solution will be found in a sequence of iterative sub-
optimizations called alternate direction method of multipliers.

The solution of the above unconstrained optimization problem at n + 1 th iteration
is given in frequency domain by,

2

SCER I 5 E 1
e =1 ;f”“z (14 2(w — a))? )

LD _ I ol fr(@)Fdw
‘ I fe)Pdw

where g for any g will denote the Fourier transform of g. It is important for our pro-
posed problem of estimating the regression function to note the presence of Wiener filter
structure in the iterative algorithm of the Fourier transform of the mode fk. However,
the required mode can be obtained from the real part of inverse Fourier transform.

This discussion will suffice to present the procedure of the proposed VMD based
regression function estimation.

3)

4. The Proposed VMD based estimator

In this section we present our approach of obtaining the estimate of the regression function
f (x) of the model given in (2.1) from the noise added observations Y; fori = 1,2, ..., n.
We understand that two modes will be enough for our problem of estimating the regres-
sion function by eliminating the noise from the observations. The Hilbert transform
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of the assumed modes are obtained as convolution with the impulse response since the
Hilbert transform is linear time invariant and hence the analytic function of the modes are
constructed. The resulting analytic function is demodulated by suitable multiplication
of complex exponential function involving the central frequencies of the modes.

The modes and the corresponding centre frequencies are obtained by solving the un-
constrained Lagrangian optimization problem using alternate direction method of mul-
tipliers. Though the original formulation of the optimization problem is continuous, it
is carried out over the vector whose components are the discrete sampled values and
the mode vectors are obtained which might be assumed to be the sampled values of the
required mode function. As per the discussion made by Upadhyay and Pachori [1], a
large value of « is used so as to eliminate the noise. This is iterated until some stopping
criteria is met. The resulting first mode gives us the vector consisting of required esti-
mate of the regression function f (x) whereas the eliminated noise constitute the second
mode. Thus obtained the estimate of the regression function from the noisy observation
Y;. Thus we could accomplish smoothing the noisy data using VMD.

There is much similarity between the proposed VMD based estimation and the
wavelet estimation. The decomposition of the given function is the key idea based
on which the estimation is done in both of these methods. Despite this fact, the decom-
position in wavelet method is recursive and is depending on the basis function we intend
to use whereas it is nonrecursive and it depends very much on the function which we wish
to estimate. In addition to this key difference, the samples we use in wavelets should
come from the dyadic points otherwise a suitable wavelet must be chosen or constructed
whereas no such restriction is imposed in the case of estimation using VMD.

5. Simulation Results and Discussion

In this section we will investigate the performance of the proposed estimator numerically.
Of course, the proposed estimation procedure introduced in Section 4 is easily imple-
mentable in MATLAB. We implemented our numerical works in MATLAB R 2014 b.
For this purpose, we consider the noise added observations Y;’s given in equation (2.1)
where n = 40000. In fact, the signal to noise ratio of our problem is 10. We have
considered only two modes as it is discussed earlier in the previous section. The first
mode f] results in the estimate of the regression function. In fact, modes are obtained
as vectors of the same size as Y;. However, we obtain the smooth plot of the first mode
to compare with f(x). The stopping criteria is fixed by taking the ratio of the /> norm
of the difference between the two successive iterations to the [ norm of the previous
iteration not to exceed e~’. The resulting estimates are very much comparable with the
estimates of any other existing estimating procedures.

In the numerical study, we use ¢ = 70000, so as to work well in eliminating noise.
Though the error is not so different for the choice of « = 70000 and o = 5000 there is
a significant visual difference in the estimate. For a given value of « the error decreases
when 7n increases.
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(a) Estimate of Blocks (c) Estimate of Bumps

(b) Estimate of Doppler (d) Estimate of m(z)

Figure 1: VMD estimates

The functions Bumps, Blocks, Doppler [6] and
mx) =1+ 4(6—550(16—0-2)2 | 2000572 | 6_950(x_0'8)2) @

are estimated using VMD estimation procedure. These estimates are depicted in Figure 1.
In fact, we demonstrate in Figure 2 the way VMD works in extracting the noise and
catches the smooth regression function. Visual comparison between the estimates of
the regression function using wavelet and VMD is also done. The Haar wavelet is used
for this purpose of regression function estimation and the first level approximation is
considered. In fact, we considered the estimates of Bumps for this purpose.

6. Conclusion

In this paper we tried a VMD based approach to estimate the regression function in
the nonparametric regression model. We succeeded in obtaining an adaptive estimation
procedure for the regression function. We have explained our method with the numerical
examples of obtaining estimates without any prior knowledge of the function. It is
noticed that the difference between our proposed VMD based estimate and the linear



Smoothing Using VMD 7

T T T T T T T
— it e fcion
+
-
il
piid
i+
15F
0 | | | | | | | | | f | | |
0 (1] 02 03 04 05 () (0] 08 (1) 1 0 05 1 15 2 25 3 35 4
it
(b) Mode 2 (d) True Mean function
Figure 2: VMD estimating Procedure
T T T
8 38F 1
Mmoo
| | | | | | |
0 05 1 15 2 2 3 35 4
ot
(a) Wavelet Estimate of Bumps (b)VMD Estimate of Bumps

Figure 3: Comparison of Wavelet and VMD estimates

wavelet estimate is not much significant. However, we have many advantages of VMD
based estimate over wavelet methods. There will be no restriction on the number of
samples. In fact, it will be a major problem to choose the wavelet system to obtain better
results whereas it will be done inherently by VMD method. Therefore, this has led to the
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conclusion that the VMD based approach is better in inhomogeneous function estimation
and comparable to wavelet estimates in the case of smooth function.
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