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Abstract 
 

This paper addresses an application of improved DE Algorithm to solve the 

optimal power flow (OPF) problem. The proposed approach contributes to 

speeding up the convergence by better choosing the differentiation direction and 

the search region for the constrained global optimization problem. As basis for 

the examination a real practical Engineering problem is employed that consists 

of optimizing the power flow. The objective is to minimize the total fuel cost of 

generation while taking power system losses, limits on generator real and 

reactive power outputs and bus voltages constraints into consideration. 

Simulations were carried out on IEEE-14 and IEEE-30 bus system. The 

Weighted DE approach results are compared with the results reported in the 

literature. The results show the effectiveness and robustness of the proposed 

approach. 

 

Keywords: Fuel cost, Evolutionary algorithms, Optimal power flow, Weighted 

differential evolution 

 

Nomenclature 
PG     Generator active power output 

QG     generator reactive power output 

PD     active power load demand 

QD     reactive power load demand 

Pl     active power loss in transmission lines 

Ql     reactive power loss in transmission lines 

VG     voltage magnitude at generation bus 

VL     voltage magnitude at load bus 

V      voltage magnitude at bus 

      voltage angle 

GC     conductance 

BS     susceptance 

Sl     total transmission line loading 
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QC     output shunt VAR compensators 

T      tap regulating transformers 

NT     number of tap regulating transformers 

NC     number of shunt VAR compensators 

NPV    number of voltage controlled buses 

NPQ    number of PQ buses 

NTL    number of transmission lines 

FC     total fuel cost function 

ai, bi, ci   cost coefficients of i
th
 generation 

      penalty factor 

D     decision parameters 

NP     population size 

CR     crossover rate 

F      mutation factor 

G     number of generations 

 

Introduction 
The Optimal Power Flow (OPF) problem has been and continues to receive a lot of 

interest in electric network system planning, operation and control over the years [1-5]. 

The OPF problem optimizes single and/or multi objective functions while satisfying 

power flow constraints as well as the constraints imposed on control and state variables. 

The solution of OPF problem must satisfy the network security constraints [6]. 

     Conventional mathematical programming techniques, such as nonlinear 

programming, successive linear programming, interior point methods, quadratic 

programming, and Newton-based techniques have been applied to solve the OPF 

problem [7-12]. Although these methods have demonstrated efficacy in handling 

optimization problems, they may fail to find the global optimum in many difficult 

problems and frequently get trapped in local optimum. Solutions qualities of classical 

algorithms are quite sensitive to the starting points and convexity. Moreover, the main 

difficulties of the OPF are due to non-convex and discontinuous cost characteristics, 

mixed integer variables, a large number of constraints. To overcome these problems, 

global optimization based on evolutionary algorithms becomes an attractive tool for 

solving engineering optimization problems such as OPF. Evolutionary algorithms have 

proven to be effective in solving nonlinear, non-differentiable and multi-modal 

optimization problems in the power systems area. These methods search from a 

population of points instead of a single point as in conventional search and optimization 

techniques [13]. Moreover they do not require a suitable initial guess. Differential 

Evolution (DE) method is one among them. DE is a powerful population-based 

evolutionary algorithm for global optimization, which was originally proposed by Storn 

and Price [14]. In this paper, an enhanced DE based method has been proposed for 

solving the complex OPF problem [15]. The remainder of this paper is organized as 

follows. The mathematical problem formulation of OPF is described in more detail in 

Sections II, followed by the DE based approach in Section III and IV. Sections V and 
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VI depict the implementation method and simulation results respectively.  Finally, the 

conclusions drawn are given in Section VII. 

 

Mathematical Problem Formulation of OPF 
The optimal power flow problem is a nonlinear optimization problem. The essential 

goal of the OPF is to minimize the settings of control variables in terms of a certain 

objective function subjected to various equality and inequality constraints. The optimal 

power flow problem requires the solution of nonlinear equations, describing optimal 

and secure operation of power systems. The general optimal power flow problem can 

be mathematically expressed as a constrained optimization problem as follows: 

     F(x,u) Minimize                                    

(1) 

     0),( subject to uxg                                (2) 

0),( uxh                                  (3) 

     where 

     F is the objective function to be minimized, 

     x is the vector of dependent variables including, generator active power output at 

slack bus 1GP , load bus voltage LV , generator reactive power output GQ , and 

transmission line loading lS . 

     In this manner x can be expressed as: 

     
 lNTLlGNPVGLNPQLG

T SSQQVVPx  1111 ,,,                     (4) 

     In a similar way, the vector of control variables u can be expressed as: 

      NTCNCCGNGGGNGG
T TTQQVVPPu  1112 ,,,                     

(5) 

     In this paper, minimization of fuel cost is considered as an objective function to 

examine the performance of the proposed approach. The total fuel cost function for a 

number of thermal generating units can be expressed by a quadratic function as: 
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     g is the equality constraints of OPF problem which represent power balance 

constraints. The total power generation must cover the total load demand and the power 

loss in transmission lines as: 
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     using load flow equations, g can be rewritten as: 
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     h is inequality constraints that includes:  

1.   Generator capacity limits: for stable operation, voltage magnitude, active and 

reactive power outputs are restricted by their upper and lower limits as: 

           
NPV , 2, 1,i ,

NPV , 2, 1, i ,

NPV , 2, 1,i ,

maxmin

maxmin

maxmin
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                       (11) 

2.   Transformer constraints: transformer tap settings are restricted by the minimum 

and maximum limits as: 

          NT , 2, 1,i maxmin  iii TTT                        

 (12) 

3.   Shunt VAR compensator constraints: shunt VAR compensators are restricted 

by their lower and upper limits as: 

          NC , 2, 1,i maxmin  CiCiCi QQQ                       

 (13) 

4.   Security constraints: these contain the voltage magnitude constraints at load 

buses and transmission line loading limits. these constraints can be written as: 

     NPQ , 2, 1,i maxmin  LiLiLi VVV                           (14) 

NTL , 2, 1,i max22  lilili SQP                          (15) 

     The inequality constraints of dependent variables contain load bus voltage 

magnitude, real power generation output at slack bus, reactive power generation output 

and line loading. A common way for handling the inequality constraints is the use of a 

penalty function added to the objective function. Here, a penalty factor multiplied with 

the square of the disregard value of dependent variable is added to the objective 

function and any unfeasible solution obtained is declined. Mathematically, penalty 

function can be expressed as [11]: 
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limx is the limit value of the dependant variable x and is given as: 
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DE Optimization Process 
The Evolutionary algorithms (EAs) differ from the traditional optimization techniques in 

that EAs make use of a population of solutions, not a single point solution. Differential 

evolution (DE) initially proposed in [15] is a popular evolutionary algorithm (EA) 

gaining significant interests during recent years due to its simplicity, efficiency and 

robustness. DE shares a number of similar concepts to other EAs. The evident 

distinction is the mutation step used to generate a new candidate solution. DE is capable 

of handling non-differentiable, non-linear, non-convex, and multi-modal objective 

functions. 

     Differential Evolution Algorithm (DEA) combines simple arithmetical operators 

with the classical operators of recombination, mutation and selection to evolve from a 

randomly generated starting population to a final solution. At every generation G during 

the optimization process, DE algorithm maintains a population GP  of NP vectors of 

candidate solutions to the problem at hand. 

      G
NP

G
i

GG XXXP ...,,...,,1                            (18) 

     Each candidate solution iX  is a D-dimensional vector, containing as many integer-

valued parameters as the problem decision parameters D . 

     
  DjNPixxxX G

iD
G

ij
G

i
G
i ...,,1,...,,1,...,,...,, ,,,1                     (19) 

     There are several DE strategies to be employed for optimization. Through these 

variants of DE, the strategy used for optimizing the load flow problem is binbestDE /1// . 

It operates like the classical DE, except that the base vector is selected from the best 

vector among the population and the other 2 individuals are selected 

randomly. binbestDE /1// starts by defining and evaluating the initial population through 

calculating the fitness value for each individual. After that, until the termination 

condition is not reached, the necessary individuals are picked, and a new one is 

produced according to the selected DE scheme. This new individual is evaluated and 

compared with the old one. Only the one with the best fitness value will be chosen and 

pass for population of the next generation. 

     In DE, the search mechanism is based on mutation, which, associated with 

recombination and selection, directs the search towards potential areas of optimal 

solution [16]. It is possible to efficiently converge towards the optimal solution by 

calculating a differential which creates a vector that will point in the general direction of 
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the optimal search region. Many modified strategies have been proposed for the last 

years [17]. They aim at speeding up the convergence by better choosing the 

differentiation direction and the search region. Here, we propose a new modified 

version of basic DE called Weighted Differential Evolution. This strategy consists in 

using the best individual for base vector and combining it with 2 weighted other 

randomly chosen individuals for differential vectors. Our approach can be seen as a 

parallel exploration of the regions which are the most likely to comprise the solution to 

the optimization problem. In this way, the global minimum is reached in less iteration. 

 

Improved De Algorithm 
A major drawback of the conventional DE is that the convergence slows down as the 

region of global optimum is being approached. This problem is addressed here by 

making a modification to the basic DE algorithm to make it more efficient. For the 

preliminary DE based weighted, DE/best/1/bin is the candidate learning strategy. The 

following is an outline of the proposed Weighted Differential Evolution (W-DE) 

algorithm. 

     Step 1: Parameter setup, The user chooses the parameters of population size, the 

boundary constraints of optimization variables, the mutation factor, the crossover rate, 

and the stopping criterion of maximum number of generations ( maxG ), like the 

conventional DE. 

     Step 2: Initialization, set generation G = 0. Initialize a population of NP individuals 

with random values generated according to a uniform probability distribution in the D 

dimensional problem space. These initial values are chosen randomly within user 

defined bounds. 

       minmaxmin0
, 1,0 jjjj

G
ij xxrandxx                                (20) 

     where NPi ,...,1 , and Dj ...,,1 . 0
,
G
ijx is the initial value (G=0) of the thj parameter of 

the thi  individual vector. min
jx and max

jx are the lower and upper bounds of the 

thj decision parameter, respectively. Corresponding fitness value of each vector is 

evaluated and stored. 

     Step 3: Mutation operation, the crucial idea of DE is a novel mutation paradigm, 

which is executed by adding a weighted difference vector between two selected 

individuals to the third individual. It was found that this kind of mutation has desired 

self-adaptation feature based on current population diversity [17]. The mutation strategy 

of classical DE perturbs the best vector of the current population by single difference of 

two other randomly selected vectors ( 1rX  and 2rX ), while W-DE generates new vectors 

by adding the weighted difference between two vectors to a best vector. For each target 

vector a mutant vector ( G
iV ) is produced using the following formula 

      G

rr

G

rr

G

best

G

i XWXWFXV 2211                        (21) 

     where G
bestX is the best performing vector of the current generation. Vector 

indices 1r and 2r are randomly chosen, which 1r and  NPr ...,,12  and irr  21 . F is 
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typically chosen from within the range  1,0 . 

     The couple  ),( 21 rr WW  represents the calculated weight to be used with 

),( 21
G
r

G
r XX vectors in goal of the fitness-proportionate selection. We assume here that 1C  

and 2C  are the 1rX and 2rX performances respectively. Hence the weight of 1rX is defined 

in (22) and the weight of 2rX in (23). 
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     Step 4: Crossover operation, to increase the potential diversity of the population a 

crossover operator is used. At the generation G, the crossover operation creates trial 

vectors ( iU ) by mixing the parameters of the mutant vectors ( iV ) with the target vectors 

( iX ) according to a selected probability distribution. 
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     The crossover constant CR is a user-defined value, which is usually selected from 

within the range [0,1]. jrand is a the trial parameter with randomly chosen 

index ]1,0[ . )(iRnbr is the trial parameter with randomly chosen index  D...,,1 , which 

ensures that the trial vector gets at least one parameter from the mutant vector. 

     Step 5: Selection operation, the selection operator chooses the vectors which are 

going to compose the population in the next generation. This operator compares the 

fitness of the trial vector and the corresponding target vector and selects the one that 

provides the best solution. The fitter of the two vectors is then allowed to advance into 

the next generation. The selection process may be outlined as: 
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     where f is the function to be minimized. 

     The selection process is repeated for each pair of target/trail vector until the 

population for the next generation is complete. 

 

Implementation of Proposed Approach 
The main steps of the proposed method for optimal power flow are described by the 

flowchart given in Fig. 1. Constraints are managed in the first conditional block of the 

flowchart. 
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Start

Specify the parameters of W-DE

Randomly initialize control parameters

Fitness evaluation by PF program

Generate trial vector by mutation & crossover

New solution fitness by PF program

Selection operation

Convergence

Optimal solution

Stop

No

Yes

maxmin xxx 
No

Yes

 
 

Figure 1: Flowchart of the W-DE/best/1/bin strategy 

 

Simulation Results 
In order to illustrate the efficiency and robustness of the proposed W-DE based OPF 

algorithm, two case studies were performed. In the first case study, we consider the 

IEEE 14-bus test system, with a quadratic model of generator cost curves. In the second 

case study, we consider the IEEE 30-bus system, also with a quadratic model of 

generator cost curves. In each case study, two sets of 15 successful test runs for solving 

the OPF problem were performed; the first set (DE–OPF) is based on the Basic 

differential evolution algorithm and the second one is based on the enhanced differential 

evolution algorithm (WDE-OPF). Each optimization approach (DE–OPF and WDE–

OPF) was implemented under the MATLAB computational environment and run on PC 

with Pentium core duo processor operating @ 2 GHz with 2 GB RAM. The Power 

flow is run using the program developed in laboratory based Newton-Raphson method. 

 

Case 1. IEEE 14-bus system 

In the network test of IEEE 14-Bus system, there are 14 buses, out of which 5 are 

generator buses. Bus 1 is the slack bus, 2, 3, 6 and 8 are taken as PV generator buses 

and the rest are PQ load buses. The network has 20 branches, 17 of which are 
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transmission lines and 3 are tap- changing transformers. It is assumed that shunt 

compensation capacitor is available at bus 9 for voltage control. Totally, there are 14 

control variables, which consist of 5 unit active power generators, 5 generator bus 

voltage magnitudes, 3 tap changing transformers, and 1 shunt VAR compensator. The 

system data and initial operating conditions of the system are given in [11]. 

     The W-DE parameters for handling the inequality constraints (16) used for the 

optimal power flow solution are chosen as: 

     5.0F , 5.0CR , 50NP , and 250max G . 

     Fig. 2 shows the convergence characteristics of total fuel cost minimization obtained 

by DE, GA and W-DE. The convergence of W-DE is faster while obtaining a better 

solution in lesser computational time. The minimum costs achieved after successful run 

of W-DE, DE, and GA algorithms are 839.182, 839.735, and 839.863 respectively. 
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Figure 2: Cost convergence versus generations 

 

     Table 1 shows the optimal control variables obtained for the optimal power flow of 

the IEEE-14 bus system and table 2 shows a comparison between the results of fuel 

cost obtained from the proposed approach and those reported in the literature. The W-

DE approach is useful for obtaining high-quality solution in a very less time and 

outperforms the other techniques. 

 

Table 1: Optimal Control Variables 

 

Power gen. (MW) PG1 PG2 PG3 PG6 PG8 

 112.175 70.123 28.131 26.420 26.873 

Gen. voltages (pu) VG1 VG2 VG3 VG6 VG8 

 1.037 1.029 1.048 1.044 1.036 

Trans. tap & shunt VAR  T4-7 T4-9 T5-6  QC9 

 1.041 0.951 0.956  3.847 
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Table 2: Comparison Of Fuel Cost 

 

Method Cost ($/h) 

EP [18] 

PSO [18] 

Proposed W-DE 

839.2810 

839.2236 

839.182 

 

Case 2. IEEE 30-bus system 

The test System-IEEE 30 bus system [9] consists of 30 buses, out of which 6 are 

generator buses. Bus 1 is the slack bus, 2, 5, 8, 11 and 13 are taken as PV buses and 

the remaining 24 are PQ buses. The network has 41 branches, 4 transformers and 2 

capacitor banks. The four branches 6–9, 9–10, 4–12, 27–28 are under load tap 

changing transformers. In DE solution for OPF, the total control variables are 16: six 

unit active power outputs, six generator bus voltage magnitudes, and four transformers 

tap settings. 

     To verify the effectiveness and performance of the proposed method for solving OPF 

problem using W-DE algorithm, standard IEEE 30-bus system is considered for 

simulation study. The network, load, generator and cost factors data were taken from 

[9]. 

     Fig. 3 shows the convergence characteristics of total fuel cost minimization obtained 

by DE, GA, and W-DE. Solutions achieved by W-DE, DE, and GA approaches are 

799.8739, 801.3598, and 801.9724 respectively. W-DE achieves the least total fuel 

cost. 
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Figure 3: Cost convergence versus generations 

 

     Table 3 shows a comparison between the results of fuel cost obtained from the 

proposed approach and those reported in the literature. The comparison is carried out 

with the same control variable limits, initial conditions, and other system data. It is clear 

from the table that the proposed W-DE approach outperforms the EP and the PSO 

techniques. 
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Table 3: Comparison of Fuel Cost 

 

Method Cost 

($/h) 

EP [18] 800.966 

PSO [18] 801.0204 

Proposed W-DE approach 799.8739 

 

 

Conclusion 
This paper has presented an application of the improved differential evolution technique 

dedicated to minimizing the total fuel cost on the standard IEEE 14-bus and IEEE 30-

bus systems. The W-DE approach was successfully applied to find the optimal settings 

of the decision variables. The simulation results demonstrate the effectiveness and 

robustness of the proposed algorithm to solve OPF problem. Moreover, the results of 

the proposed W-DE algorithm have been compared to those reported in the literature. 

The comparison confirms the effectiveness and the superiority of the enhanced DE 

algorithm over the other classical and heuristic techniques in terms of solution quality. 
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