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Abstract

This paper addresses an application of improved DE Algorithm to solve the
optimal power flow (OPF) problem. The proposed approach contributes to
speeding up the convergence by better choosing the differentiation direction and
the search region for the constrained global optimization problem. As basis for
the examination a real practical Engineering problem is employed that consists
of optimizing the power flow. The objective is to minimize the total fuel cost of
generation while taking power system losses, limits on generator real and
reactive power outputs and bus voltages constraints into consideration.
Simulations were carried out on IEEE-14 and IEEE-30 bus system. The
Weighted DE approach results are compared with the results reported in the
literature. The results show the effectiveness and robustness of the proposed
approach.

Keywords: Fuel cost, Evolutionary algorithms, Optimal power flow, Weighted
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Nomenclature

Ps Generator active power output

Q. generator reactive power output

Po active power load demand

Qb reactive power load demand

P active power loss in transmission lines
Q reactive power loss in transmission lines
Ve voltage magnitude at generation bus
Vi voltage magnitude at load bus

\Y voltage magnitude at bus

1) voltage angle

Ge conductance

Bs susceptance

Sl total transmission line loading
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Qc output shunt VAR compensators

T tap regulating transformers

NT number of tap regulating transformers
NC number of shunt VAR compensators
NPV number of voltage controlled buses
NPQ number of PQ buses

NTL number of transmission lines

Fc total fuel cost function

a;, bi, ¢ cost coefficients of it" generation

A penalty factor

D decision parameters

NP population size

CR Crossover rate

F mutation factor

G number of generations

Introduction
The Optimal Power Flow (OPF) problem has been and continues to receive a lot of
interest in electric network system planning, operation and control over the years [1-5].
The OPF problem optimizes single and/or multi objective functions while satisfying
power flow constraints as well as the constraints imposed on control and state variables.
The solution of OPF problem must satisfy the network security constraints [6].
Conventional mathematical programming techniques, such as nonlinear
programming, successive linear programming, interior point methods, quadratic
programming, and Newton-based techniques have been applied to solve the OPF
problem [7-12]. Although these methods have demonstrated efficacy in handling
optimization problems, they may fail to find the global optimum in many difficult
problems and frequently get trapped in local optimum. Solutions qualities of classical
algorithms are quite sensitive to the starting points and convexity. Moreover, the main
difficulties of the OPF are due to non-convex and discontinuous cost characteristics,
mixed integer variables, a large number of constraints. To overcome these problems,
global optimization based on evolutionary algorithms becomes an attractive tool for
solving engineering optimization problems such as OPF. Evolutionary algorithms have
proven to be effective in solving nonlinear, non-differentiable and multi-modal
optimization problems in the power systems area. These methods search from a
population of points instead of a single point as in conventional search and optimization
techniques [13]. Moreover they do not require a suitable initial guess. Differential
Evolution (DE) method is one among them. DE is a powerful population-based
evolutionary algorithm for global optimization, which was originally proposed by Storn
and Price [14]. In this paper, an enhanced DE based method has been proposed for
solving the complex OPF problem [15]. The remainder of this paper is organized as
follows. The mathematical problem formulation of OPF is described in more detail in
Sections I, followed by the DE based approach in Section Il and V. Sections V and
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VI depict the implementation method and simulation results respectively. Finally, the
conclusions drawn are given in Section VII.

Mathematical Problem Formulation of OPF

The optimal power flow problem is a nonlinear optimization problem. The essential
goal of the OPF is to minimize the settings of control variables in terms of a certain
objective function subjected to various equality and inequality constraints. The optimal
power flow problem requires the solution of nonlinear equations, describing optimal
and secure operation of power systems. The general optimal power flow problem can
be mathematically expressed as a constrained optimization problem as follows:

Minimize F(x,u)

1)
subject to g(x,u) =0 2)
h(x,u) <0 3)
where

F is the objective function to be minimized,
xis the vector of dependent variables including, generator active power output at
slack buspP;,, load bus voltage Vv,, generator reactive power output Q;, and

transmission line loading s, .
In this manner x can be expressed as:

X' = [P<31:V|_1 . -VLNPQ-Qel ---Qanpy s S|1~--S|NT|_] (4)
In a similar way, the vector of control variables u can be expressed as:

UT = [PGZ“'PGNG’VGl'“VGNG’QCl--~QCNC’T1'“TNT]
(5)
In this paper, minimization of fuel cost is considered as an objective function to

examine the performance of the proposed approach. The total fuel cost function for a
number of thermal generating units can be expressed by a quadratic function as:

NG

FC = Z(a, Pél +b| PGi +C|) $/h (6)
i=1

gis the equality constraints of OPF problem which represent power balance

constraints. The total power generation must cover the total load demand and the power
loss in transmission lines as:

NG
ZPGi_PD_PI =0
i=1

(")
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NG
D Qs -Qp-Q =0 (8)
i=1
using load flow equations, g can be rewritten as:
NB
Poi — Poi ~Vi >V, [Gg; cos(s; — ) + By sin(5, - 5;)]=0 9)
j=1
NB
Qai ~Qoi Vi > V; 6y sin(8; ~ ;) + By cos(3; — 6 ]= 0 (10)

=

his inequality constraints that includes:
1. Generator capacity limits: for stable operation, voltage magnitude, active and
reactive power outputs are restricted by their upper and lower limits as:

VI <V <VE™i=1,2,...,NPV
PN < Py, < PI™i=1,2,..., NPV (11)
QD" < Qg; <QI*,i=1,2,...,NPV
2. Transformer constraints: transformer tap settings are restricted by the minimum
and maximum limits as:
TN ST <T™j=1,2,..,NT
(12)
3. Shunt VAR compensator constraints: shunt VAR compensators are restricted
by their lower and upper limits as:
QUM <Qg <QE™i=1,2,...,NC
(13)
4. Security constraints: these contain the voltage magnitude constraints at load
buses and transmission line loading limits. these constraints can be written as:

VI <V SVT™i=12,...,NPQ o

JRZ+QZ <sM*i=12,... NTL (15)

The inequality constraints of dependent variables contain load bus voltage
magnitude, real power generation output at slack bus, reactive power generation output
and line loading. A common way for handling the inequality constraints is the use of a
penalty function added to the objective function. Here, a penalty factor multiplied with
the square of the disregard value of dependent variable is added to the objective
function and any unfeasible solution obtained is declined. Mathematically, penalty
function can be expressed as [11]:
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NPV . NPO .
Jmod = 3 F(Poi)+ 4 (Pey — PEM2+ 2y ) (Vi ~V/Im)?
i1 -1

NPV NTL

+q Z(QGi ~QeM? + s Z(Sli -Si™)?
i=1 i=1

(16)

x'Mis the limit value of the dependant variable x and is given as:

X,im:{x ,if X)X (17)

Xmm] |f X<Xm|n

DE Optimization Process

The Evolutionary algorithms (EAs) differ from the traditional optimization techniques in
that EAs make use of a population of solutions, not a single point solution. Differential
evolution (DE) initially proposed in [15] is a popular evolutionary algorithm (EA)
gaining significant interests during recent years due to its simplicity, efficiency and
robustness. DE shares a number of similar concepts to other EAs. The evident
distinction is the mutation step used to generate a new candidate solution. DE is capable
of handling non-differentiable, non-linear, non-convex, and multi-modal objective
functions.

Differential Evolution Algorithm (DEA) combines simple arithmetical operators
with the classical operators of recombination, mutation and selection to evolve from a
randomly generated starting population to a final solution. At every generation G during
the optimization process, DE algorithm maintains a population P® of NP vectors of
candidate solutions to the problem at hand.

PC =[x8...x8,..X5 | (18)

Each candidate solution X; is a D-dimensional vector, containing as many integer-
valued parameters as the problem decision parameters D .

XE =x&... X% .08 li=1..NP, j=1...D (19)

There are several DE strategies to be employed for optimization. Through these
variants of DE, the strategy used for optimizing the load flow problem is DE/best/1/bin.
It operates like the classical DE, except that the base vector is selected from the best
vector among the population and the other 2 individuals are selected
randomly. DE/best/1/bin starts by defining and evaluating the initial population through
calculating the fitness value for each individual. After that, until the termination
condition is not reached, the necessary individuals are picked, and a new one is
produced according to the selected DE scheme. This new individual is evaluated and
compared with the old one. Only the one with the best fitness value will be chosen and
pass for population of the next generation.

In DE, the search mechanism is based on mutation, which, associated with
recombination and selection, directs the search towards potential areas of optimal
solution [16]. It is possible to efficiently converge towards the optimal solution by
calculating a differential which creates a vector that will point in the general direction of
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the optimal search region. Many modified strategies have been proposed for the last
years [17]. They aim at speeding up the convergence by better choosing the
differentiation direction and the search region. Here, we propose a new modified
version of basic DE called Weighted Differential Evolution. This strategy consists in
using the best individual for base vector and combining it with 2 weighted other
randomly chosen individuals for differential vectors. Our approach can be seen as a
parallel exploration of the regions which are the most likely to comprise the solution to
the optimization problem. In this way, the global minimum is reached in less iteration.

Improved De Algorithm

A major drawback of the conventional DE is that the convergence slows down as the
region of global optimum is being approached. This problem is addressed here by
making a modification to the basic DE algorithm to make it more efficient. For the
preliminary DE based weighted, DE/best/1/bin is the candidate learning strategy. The
following is an outline of the proposed Weighted Differential Evolution (W-DE)
algorithm.

Step 1: Parameter setup, The user chooses the parameters of population size, the
boundary constraints of optimization variables, the mutation factor, the crossover rate,
and the stopping criterion of maximum number of generations (G, ), like the
conventional DE.

Step 2: Initialization, set generation G = 0. Initialize a population of NP individuals
with random values generated according to a uniform probability distribution in the D
dimensional problem space. These initial values are chosen randomly within user
defined bounds.

S0 =x"" +rand, [O,l](x}“aX - x'-“i”) (20)

Xj.i j j

wherei=1..,NP,and j=1...D. x7;is the initial value (G=0) of the " parameter of
the i" individual vector. x["and x[“*are the lower and upper bounds of the

j™ decision parameter, respectively. Corresponding fitness value of each vector is
evaluated and stored.

Step 3: Mutation operation, the crucial idea of DE is a novel mutation paradigm,
which is executed by adding a weighted difference vector between two selected
individuals to the third individual. It was found that this kind of mutation has desired
self-adaptation feature based on current population diversity [17]. The mutation strategy
of classical DE perturbs the best vector of the current population by single difference of
two other randomly selected vectors ( X,, and X,,), while W-DE generates new vectors
by adding the weighted difference between two vectors to a best vector. For each target
vector a mutant vector (V,¢) is produced using the following formula
Ve = Xk?est + F(erlerl _Wrzx:;z) (21)

where X&.is the best performing vector of the current generation. Vector
indices rtandr2are randomly chosen, whichriandr2e{,...NP} andrizr2=i. Fis
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typically chosen from within the range [0,1].

The couple  W,,W,,) represents the calculated weight to be used with
(X&,xS)vectors in goal of the fitness-proportionate selection. We assume here thatc,
and C, are the X,, and X, performances respectively. Hence the weight of X, is defined
in (22) and the weight of X, in (23).

__ G 22
Wo =g e (22)
_ C2
WrZ_C1+C2 (23)

Step 4: Crossover operation, to increase the potential diversity of the population a
crossover operator is used. At the generation G, the crossover operation creates trial
vectors (U;) by mixing the parameters of the mutant vectors (V,) with the target vectors

(X;) according to a selected probability distribution.

G . : .
U,G _{Vi , if rand;(01) <CR or j=Rnbr(i) (24)

Xq, Otherwise

The crossover constant CRis a user-defined value, which is usually selected from
within the range [0,1]. rand;is a the trial parameter with randomly chosen

index [0,1]. Rnbr(i) is the trial parameter with randomly chosen index e {L....,D}, which

ensures that the trial vector gets at least one parameter from the mutant vector.

Step 5: Selection operation, the selection operator chooses the vectors which are
going to compose the population in the next generation. This operator compares the
fitness of the trial vector and the corresponding target vector and selects the one that
provides the best solution. The fitter of the two vectors is then allowed to advance into
the next generation. The selection process may be outlined as:

xF“:{U‘G it (U¢)< f(x°) 25)

Xg Otherwise

where f is the function to be minimized.

The selection process is repeated for each pair of target/trail vector until the
population for the next generation is complete.

Implementation of Proposed Approach

The main steps of the proposed method for optimal power flow are described by the
flowchart given in Fig. 1. Constraints are managed in the first conditional block of the
flowchart.
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| Specify the parameters of W-DE

Randomly initialize control parameters

Xmin <X< Xmax

v Yes
Fitness evaluation by PF program
v
—»| Generate trial vector by mutation & crossover
v
New solution fitness by PF program
v

Selection operation

No

Convergence

Yes
Optimal solution

Figure 1: Flowchart of the W-DE/best/1/bin strategy

Simulation Results

In order to illustrate the efficiency and robustness of the proposed W-DE based OPF
algorithm, two case studies were performed. In the first case study, we consider the
IEEE 14-bus test system, with a quadratic model of generator cost curves. In the second
case study, we consider the IEEE 30-bus system, also with a quadratic model of
generator cost curves. In each case study, two sets of 15 successful test runs for solving
the OPF problem were performed; the first set (DE-OPF) is based on the Basic
differential evolution algorithm and the second one is based on the enhanced differential
evolution algorithm (WDE-OPF). Each optimization approach (DE-OPF and WDE-
OPF) was implemented under the MATLAB computational environment and run on PC
with Pentium core duo processor operating @ 2 GHz with 2 GB RAM. The Power
flow is run using the program developed in laboratory based Newton-Raphson method.

Case 1. IEEE 14-bus system

In the network test of IEEE 14-Bus system, there are 14 buses, out of which 5 are
generator buses. Bus 1 is the slack bus, 2, 3, 6 and 8 are taken as PV generator buses
and the rest are PQ load buses. The network has 20 branches, 17 of which are
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transmission lines and 3 are tap- changing transformers. It is assumed that shunt
compensation capacitor is available at bus 9 for voltage control. Totally, there are 14
control variables, which consist of 5 unit active power generators, 5 generator bus
voltage magnitudes, 3 tap changing transformers, and 1 shunt VAR compensator. The
system data and initial operating conditions of the system are given in [11].

The W-DE parameters for handling the inequality constraints (16) used for the
optimal power flow solution are chosen as:

F=05,CR=05, NP=50,and G™* =250,

Fig. 2 shows the convergence characteristics of total fuel cost minimization obtained
by DE, GA and W-DE. The convergence of W-DE is faster while obtaining a better
solution in lesser computational time. The minimum costs achieved after successful run
of W-DE, DE, and GA algorithms are 839.182, 839.735, and 839.863 respectively.

950 ¢

900 |

Objective function

850+

0 50 100 150 200 250
Number of iterations

Figure 2: Cost convergence versus generations

Table 1 shows the optimal control variables obtained for the optimal power flow of
the IEEE-14 bus system and table 2 shows a comparison between the results of fuel
cost obtained from the proposed approach and those reported in the literature. The W-
DE approach is useful for obtaining high-quality solution in a very less time and
outperforms the other techniques.

Table 1: Optimal Control Variables

Power gen. (MW) Pc1 Peo Pes Pce Pcs
112.175 70.123 28.131 26.420 26.873

Gen. VOItageS (pU) Va1 Vo Vas Vs Vs
1.037 1.029 1.048 1.044 1.036

Trans. tap & shunt VAR Ty Tag Tss Qco

1.041 0.951 0.956 3.847




26218 M. Letaief et. al.

Table 2: Comparison Of Fuel Cost

Method Cost ($/h)
EP [18] 839.2810
PSO [18] 839.2236
Proposed W-DE 839.182

Case 2. IEEE 30-bus system

The test System-IEEE 30 bus system [9] consists of 30 buses, out of which 6 are
generator buses. Bus 1 is the slack bus, 2, 5, 8, 11 and 13 are taken as PV buses and
the remaining 24 are PQ buses. The network has 41 branches, 4 transformers and 2
capacitor banks. The four branches 6-9, 9-10, 4-12, 27-28 are under load tap
changing transformers. In DE solution for OPF, the total control variables are 16: six
unit active power outputs, six generator bus voltage magnitudes, and four transformers
tap settings.

To verify the effectiveness and performance of the proposed method for solving OPF
problem using W-DE algorithm, standard IEEE 30-bus system is considered for
simulation study. The network, load, generator and cost factors data were taken from
[9].

Fig. 3 shows the convergence characteristics of total fuel cost minimization obtained
by DE, GA, and W-DE. Solutions achieved by W-DE, DE, and GA approaches are
799.8739, 801.3598, and 801.9724 respectively. W-DE achieves the least total fuel
cost.

840 | E——

820

800 |

Objective function

0 50 100 150 200 250
Number of iterations

Figure 3: Cost convergence versus generations

Table 3 shows a comparison between the results of fuel cost obtained from the
proposed approach and those reported in the literature. The comparison is carried out
with the same control variable limits, initial conditions, and other system data. It is clear
from the table that the proposed W-DE approach outperforms the EP and the PSO
techniques.
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Table 3: Comparison of Fuel Cost

Method Cost
($/h)

EP [18] 800.966

PSO [18] 801.0204

Proposed W-DE approach 799.8739

Conclusion

This paper has presented an application of the improved differential evolution technique
dedicated to minimizing the total fuel cost on the standard IEEE 14-bus and IEEE 30-
bus systems. The W-DE approach was successfully applied to find the optimal settings
of the decision variables. The simulation results demonstrate the effectiveness and
robustness of the proposed algorithm to solve OPF problem. Moreover, the results of
the proposed W-DE algorithm have been compared to those reported in the literature.
The comparison confirms the effectiveness and the superiority of the enhanced DE
algorithm over the other classical and heuristic techniques in terms of solution quality.
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