
International Journal of Applied Engineering Research

ISSN 0973-4562 Volume 10, Number 10 (2015) pp. 26103-26114

© Research India Publications

http://www.ripublication.com

Programming Style In Introductory Programming Courses

Teodosi K. Teodosiev
1
 and Anatoli M. Nachev

2

1
Department of Mathematics and Computer science, Shumen University “Bishop K.

Preslavski”, Universitetska 115, Shumen, Bulgaria, e-mail: t.teodosiev@fmi.shu-

bg.net
2
Cairnes Business School, National University of Ireland, Galway, Ireland, e-mail:

anatoli.nachev@nuigalway.ie

Abstract

This work addresses some issues in introductory programming courses. We

discuss an essential attribute of the computer program, which is rarely paid

attention to in the first steps of the programming courses – the programming

style. The study discusses approaches for incorporating programming style

consideration into the introductory programming courses. This is about how

that initial training in programming builds foundations for correct

algorithmization and program composition.

We argue the definition of this term and discuss the benefits of the

programming style and its role in the programming training. Style of

programming is presented as a style of thinking manifested in the ability to

outline the algorithm in a form, suitable for solving the problem in the

terminology of a specific programming language.

We also provide illustrative examples of programming style that can be

incorporated in teaching materials of traditional "Introduction to

Programming" courses.

Here we don't focus to mastering skills of professional programmers, instead

we focus to solidifying skills of ‘apprentices’.

Keywords: Algorithm; Introduction to Programming; Programming style;

Teaching.

Introduction
Usually, introductory programming courses do not rely on previous knowledge in

algorithms or any programming experience. Composing algorithms and their

implementation as a computer program is a creative work. Some formal methods for

algorithm implementation and proving its correctness are topics of more advanced

programming courses that follow. Everything, starting with sketching the algorithm

mailto:anatoli.nachev@nuigalway.ie

26104 Teodosi K. Teodosiev

and finishing with the choice of language for its coding depends on the choice,

preferences, and the people’s creativity.

According to [1], programming is a process that ‘some call it the art of constructive

thinking’. The creative nature of the programming suggests that seeking appropriate

style of programming is applicable, similarly to other areas of creativity, such as art,

literature, fashion, architecture, etc.

What does make us to compare the programming to the other styles, such as art,

architecture etc.? In art, style is a specific approach and original 'certificate' of

authorship. Closest to the programming style is the architecture style. Similarly to

how an architect prepares a project blueprint, which then is implemented by engineers

exactly and without improvisation, a programmer composes a program that the

computer runs exactly, without improvisations or whatsoever amendments.

Further to that, the programming style offers practical benefits: first, it makes a

program clearer and easy to read, given that the program correctness and efficiency

are not affected; secondly, the risk of making mistakes minimize; and finally, the style

helps to improve the program efficiency in terms of computing resources, such as

CPU and RAM usage.

The paper is organised as follows: Comments on various definitions of what

programming style are provided in Section 1. Section 2 addresses elements of the

programming styles and the benefits of learning style issues. Section 3 provides a

rationale of emphasizing on the programming styles in the introductory programming

courses. Good program examples, which address the issues discussed, are presented in

Section 4. These examples are organised according to major topics the course

syllabus.

Programming Style

As noted before, the programming is a creative process attributed by an important

characteristic called ’style’. As far as ‘style of programming’ (or programming style)

is an informal concept of a very high order, providing unarguable definition is nearly

impossible. However, there are several elements common to a large number of

programming paradigms
1
 and therefore, it can be characterised descriptively,

similarly to the other paradigms. Definitions of programming styles can be given

emphasizing on elements, important from authors’ point of view.

Regarding the content of the term ‘style of programming’, there is some

inconsistency among works in the area, which is influenced by factors, such as the

current stage of development of programming; the time in which those works have

been written; and the objectives and instruments used. In most of the cases, these

differences can be seen as a broader interpretation of the concept’ style of

programming’.

1 Programming paradigm is a set of ideas and concepts, which define the style of writing a program. The programming

paradigm determines the terms in which the programmer describes the program logic. For example, in imperative
programming, a program is described as a sequence of actions, in functional programming it is presented as a set of
expressions and function definitions. In the popular OO paradigm, a program is seen as a set of interacting objects. It shoul d
be noted that the programming paradigm is not associated with the programming language used - many modern languages
allow using different paradigms [7].

Programming Style In Introductory Programming Courses 26105

The programming style is widely understood as typographical differences between

codes. It is related to the program readability. ’Programming style is a term used to

describe the effort a programmer should take to make his or her code easy to read and

easy to understand’ as stated in [2].

The programs should be designed in such a way that they can be read first from

people rather than machines, who may need to understand them in order to further

develop the programs or make necessary amendments.

According to You [3], the style of programming is not only typographic style of

code. ‘This style has direct impact on the performance as it affects the use of

algorithms, implementation and control flow constructs’.

According to Van Tassel [4] under style of programming we mean a set or

methods of programming, which are used by experienced programmers to obtain

correct, efficient, easy to implement and easy to read programs.

When a programmer masters a certain programming style, their programs become

significantly easier to understand. This view is shared by Bodrikov [5], who says:

‘The style, in my opinion, is the key to composing nice, well-tested programs. Thus, if

the programmer strictly adheres to a style, then he "sees" better their program, makes

fewer mistakes, and passing through the code doesn't turn into a nightmare‟.

Common in the above definitions is that style of programming is presented as a

style of thinking manifested in the ability to outline the algorithm in a form, suitable

for solving the problem in the terminology of a specific programming language.

Unfortunately, looking at style of programming as style of thinking is not fully

realised by all. Often, programming style is considered as a technology programming.

Ability to write nice and elegant programs is a very important skill that is not always

in the focus of computer science and programming courses. A good observation about

the programming style is made by Kernighan and Pike [6], who state: ‘In a world of

…relentless pressure for more of everything, one can lose sight of the basic

principles-simplicity, clarity, generality-that form the bedrock of good software’.

Characteristics of Programming Style

Characteristics of programming style can be divided into three groups:

 Related to readability (indentation, spaces, blank lines, length of code) and

standardization of the code (naming conventions, comments, etc.). This is

usually called coding standard. Recommendations on readability are most

often discussed in the literature. The rules are mainly prescriptive and not

mandatory, which means they do not affect the correctness and effectiveness

of the program. However, narrowing the term ‘style of programming’ to those

rules only would be incorrect. The style that a programmer adheres to shows

up during runtime of the program.

 Related to debugging (left comparison; initialization; scope of variables and

loop parameters) and avoiding bugs (using parentheses to avoid ambiguity;

compound statement; unnecessary semicolon; avoiding out of scope bugs; out

of array boundaries bugs) [8]. These are recommendations of how poor

programming style can cause common errors, frequently made by novices, or

at least drawing attention to them as ‘danger zones’ in the program. The

26106 Teodosi K. Teodosiev

introduction to programming as introduction to any subject inevitably

addresses issues related to errors and their occurrence. The errors can be part

of the natural process of building knowledge and skills in certain area. The

aim the teaching methodology is to understand the most common problems

that the students are exposed to, and through that understanding to find an

approach to avoid or at least control these problems.

 Increasing efficiency (optimization of internal loops; moving invariant

components out of the loop, change the data presentation) and ensure

correctness of the program (by avoiding: equality of real numbers, integer

arithmetic errors, loss of accuracy from implicit type conversion and mixed

expressions; breaking task into subtasks) [8]. Recommendations related to the

selection of accurate and efficient algorithm, breaking a task into subtasks in

order to save time and memory, consideration of relations between machine

arithmetic and the programming language. Therefore, these recommendations

are most important for the program quality from one hand, but from the other -

most difficult to realize.

The style of programming is one of the aspects of software quality. According to

Mohan and Gold [9], style of programming is one of the major problems in software

maintenance. The same point of view is stated in [10]: ‘…is a critical component of

programming quality, and many authors offer specific guidance about what good style

should, or should not, be’.

At the same time, introductory programming courses rarely comment on the

meaningful elements of the programming style, or this is done at the very end of the

course. Questions on how programs are written are they efficient, are they easy to

read and understand, are either neglected, or addressed to a small cohort of motivated

students. Inclusion of such questions into the course is often overlooked, hoping that

students can learn these issues on their own.

Perhaps this approach makes sense – first, studying the instruments and then

mastering skills for handling them. However, taking into account the fact that re-

learning and replacing already acquired bad skills is very difficult and slow, the

methodical approach of parallel learning of programming style and programming

languages and instruments appears more reasonable and beneficial.

If introductory programming courses pay attention to the style of programming to

some extent, that is primarily towards shaping the code and making comments,

hoping that students will learn the rest on their own looking the ‘stylish’ programs as

models, which they take from textbooks or electronic sources.

Reviewing the publications on this topic, we noticed that the discussion on style

concerns recording the source code. Narrowing down the term programming style to

those issues only, however, would be inappropriate as these stylistic features are

overlooked due to the fact that they are just recommendable.

Our interest here is focused to those elements of the style, which influence

readability, performance, and correctness of the program.

Programming Style In Introductory Programming Courses 26107

Place in the Course Content

In terms of positioning of the training of programming style in the course timeline, the

prevailing opinion supported by studies in the area and common practices is that

programming style should be scheduled as following the core topics.

In the preface to his book [4] the author made several findings, which today have

many supporters:

 Style is commented to students who already know how to program;

 Style issues are rarely commented in introductory programming courses;

There is another point of view. For many things in life, first impression is most

important. Programming is not exception. Support to that view is made in [11]: ‘Yet

few programmers have ever been taught what style is, as we can see from even

cursory inspection of their code’.

Our personal teaching experience and that of other colleagues [12, 13, 14] shows

that in programming, initial training plays an essential role in the efficiency and

quality of programming.

Grigas [12] analyzed the medalist of IOI'94 and commented that the best students

impresses by a good programming style. He also argued that the program readability

has a positive impact on its correctness and that assessment on the result only was

criticized because performance only does not reveal the main features of the

algorithm.

Skūpienė [13] also argues that programs with good and poor style should be

assessed differently. It is much easier to develop skills for good programming style

with students who have no prior programming experience and hopelessly hard to get

students to adopt good programming style once they have written programs with bad

style for several years.

As stated in [15] ‘…my main concern in teaching students computing science was

to train to think first and not to rush into coding…’ It is obvious that novice

programmers have long enough to train with ‘pencil and paper’ developing of

elements of the algorithm logic, proper construction of the loops, etc. before they are

allowed to enter code of a usable program.

Examples

Further to the discussion above and considering the fact that it is more difficult to

change a skill than to create one, we favour the methodical approach, which

incorporates teaching of programming style issues as soon as possible and throughout

the introductory programming course. Elements of style can be taught in nearly all

major topics of the course.

Let's consider a few examples, which enable learning algorithmization and

language specifics while paying attention to the programming style. A common

teaching approach of gradual increasing of the algorithm complexity will also be

illustrated.

26108 Teodosi K. Teodosiev

Topic: ‘Variables, Data Types and Expressions’.

Writing a program must be tailored to the characteristics of computer calculations.

This not only illustrates a good style, but also protects from making mistakes in

calculations.

A common mistake made by beginners is evaluating mixed expressions containing

integer division. Students can understand that the result is the whole quotient if they

are to assigned it to an integer variable, but not easy understand the loss of precision

assigning the expression value to a variable of type double or float.

After introducing the language basics and program structure, which includes data

types, operations, expressions, and assignment, the following example can be

considered:

Example 1: Write a program, which enters a decimal value for the variable x of

type double and calculates: (x
3
-2x

2
+7).

//Example 1

//version 1

int main()

{

 double x, y;

 cout << "Enter number:";

 cin>>x;

 y = 1 / 2 *(x * x * x – 2 * x * x + 7);

 cout << y <<endl;

}

int main()

{

 double x, y;

 cout << "Enter number:";

 cin >> x;

 //version 2

 y = (double) 1 / 2 * (x * x * x – 2 * x * x + 7);

 //or version 3

 // y = 1.0 / 2 * (x * x * x – 2 * x * x + 7);

 cout << y <<endl;

}

Note: Be careful when using mixed expressions as integer division evaluates to

integer result. The output of version 1 above is 0 regardless of the x value. Avoiding

this problem is illustrated in version 2, which uses explicit type conversion (casting),

or implicit type conversion (coercion), illustrated in version 3.

Topic: „Boolean Values. Conditional Statements. Multiple Selection and Switch

Statements‟.

Example 2: Write a program that enters a string interpreted as arithmetic expression

and calculates it. The string consists of 5 characters: the middle one is an arithmetic

operation; all others are digits forming two 2-digit numbers.

Programming Style In Introductory Programming Courses 26109

//Example 2

//version 1

int main()

{

 int arg1, arg2;

 char ch1, ch2, ch3, ch4, op;

 cout << "Enter string:";

 cin>> ch1 >> ch2 >> op >> ch3 >> ch4;

 arg1 = (ch1 - '0')* 10 + ch2 - '0';

 arg2 = (ch3 - '0')* 10 + ch4 - '0';

 if (op == '+') cout << arg1 + arg2 <<endl;

 if (op == '-') cout << arg1 - arg2 <<endl;

 if (op == '*') cout << arg1 * arg2 <<endl;

 if (op == '/') cout << arg1 / arg2 <<endl;

}

//version 2 (fragment)

if ('+' == op) cout << arg1 + arg2 <<endl;

if ('-' == op) cout << arg1 - arg2 <<endl;

if ('*' == op) cout << arg1 * arg2 <<endl;

if ('/' == op) cout << arg1 / arg2 <<endl;

In languages that use single '=' for assignment and double '==' for comparison (e.g.

C, C++, C#, Java, PHP, Perl, etc.), where comparisons is used within control

structures, it is makes sense arranging literals as left operands, e.g. (' ' == ch). Left-

comparison expressions, such as those used in version 2, would a compilation error in

omission of one '=' character (marked in gray above), which is a common mistake

made by beginners. This wouldn't happen with right (standard)-comparison as in

version 1. That example would go through compilation, which does not detect the

error. Spotting and fixing such an error becomes difficult as the program runs, but not

correctly – it has a logical error.

Topic: ’Repetition structure (Loops)’.

The first examples of this topic could be computing well-known series, such as (sum

of the squares, sum of harmonic series, etc.). To solve simple tasks students tend to

follow previously given examples and models. Thus, teachers could expect that

showing a solution of one task will influence solution of the following one.

These tasks are very similar previous ones and the first that springs in mind is to

apply the same ‘model’. Indeed, reproductive methods are used as methodical

approaches in introductory programming courses, which encourage students to use

components of previous solution in new one.

Programmers do not always assign initial values to the variables, relying on the

compilation process for this. One of the challenges constructing counter-controlled

loops is setting the initial and final value of the control variable(s). The choice of

those values should be made carefully, because incorrect initial values can lead to

erroneous results in a generally correct algorithm. Moreover, that choice should

guarantee completion of the loop.

26110 Teodosi K. Teodosiev

Example 3: Write a program, which enters a natural number n and calculates n!.

//Example 3

int main()

{

 int n,s;

 cin >> n;

 for (int i= 1; i<= n; i++)

 s = s * n;

 cout << s << endl;

 }

Not initializing variable s in this example leads to incorrect performance of the

program and unspecified output value. To avoid this error, initialization of all

variables is necessary.

Let's consider a task that allows to illustrate several recommendations for

improving the effectiveness of the program, and then demonstrates the usefulness of

careful constructing an algorithm.

Example 4: Write a program, which enters x and n and calculates the following

function:
(2n)!

x
1)(....

4!

x

2!

x
1x cos

2n
n

42

This example of approximate calculation of a series is important, because many

math and physics functions can be calculated with very high precision using series.

Here we present four versions of solution so that each one is simpler and clearer than

the previous one. In addition to that, the first two versions allow to comment on how

to optimize loops.

It seems that solving this task we can calculate successively each term and

add/subtract it to the sum. But how to calculate the next term?

This version separately calculates the products of the numerator and denominator

of each term of the series. These products are very similar to the ‘model’ of the

examples above. Here we have a problem of calculating factorials, which might be

very large numbers.

//Example 4 version 1

int main()

{

 double a = 1, x, s = 1; int i = 1, n;

 cout << "Enter x: "; cin>>x;

 cout << "Enter n: "; cin>>n;

 do

 {

 double num = 1;

 for (int j= 1; j <= 2 * i; j++)

 num = num * x;

 double denom = 1;

 for (int j = 1; j <= 2 * i; j++)

 denom = denom * j;

 if (i%2) a = -num / denom;

Programming Style In Introductory Programming Courses 26111

 else a = num / denom;

 s += a; i++;

 }

 while (i <= n);

 cout<< "cos(" << x << ")=" << s <<endl;

}

In this version we calculate the numerator and denominator of each term by a

separate loop.

At this stage, a discussion should pay attention to the problem of alternative

change of the sign and the error of calculation for large values of n (say n > 310).

Attempting to speed up the program run, attention should be focused to the loops

as they consume much of the execution time and any optimization may have a

significant effect on the overall performance, much more than the effect of an out-of-

loop statement. One way to reduce the number of iterations is to merge two or more

loops together. This reduces the execution time and memory needed.

This technique leads to the following version of the task solution. It can be noticed,

that the numerator and denominator are calculated in the same way, allowing their

calculations to be combined in one loop. Combining the bodies of the separate loops

reduces the amount of calculations, improves the program efficiency and shortens the

code.

//Example 4 version 2 (fragment)

do

{

 double num = 1, denom = 1;

 for (int j = 1; j <= 2 * I ; j++)

 {

 num = num * x;

 denom = denom * j;

 }

 if (i%2) a = -num / denom;

 else a = num / denom;

 s += a;

 i++;

}

while (i <= n);

It would be better if each loop’s iteration can use the results obtained in the

previous iteration. This is illustrated in the following version 3, which employs the

fact that each term can be calculated by multiplying the previous one by (x / j),

//Example 4 version 3 (fragment)

do

{

 a = 1;

 for (int j = 1; j <= 2 * i; j++)

 {

 a = a * x / j;

26112 Teodosi K. Teodosiev

 }

 if (i % 2) s -= a;

 else s += a;

 i++;

 }

 while (i <= n);

Finally, version 4 illustrates implementation, which involves recurrence relation

between two terms of the series. Revealing this relation, in our opinion, is the biggest

challenge for students when they go through the topic 'Recursion'. The difficulty can

also be explained by lack of understanding of the recursive math techniques studied in

school.

Finding relations between two subsequent computations is a prerequisite of finding

the recurrence relation, which is part of the topic 'Recursion'. Let's denote the general

term of the series as follows:

., 1,2,...n f
1)2n(2n

x
.aa 1a then ,

(2n)!

x
1)(а

2

n1n0

2n
n

n or

which is the recurrence relation of the general term.

//Example 4 version 4

int main()

{

 double a = 1,x, s = 1; int i = 1,n;

 cout << "Enter x: "; cin >> x;

 cout << "Enter n: "; cin >> n;

 do

 {

 a = -a * x * x /(2 * i *(2 * i - 1));

 s += a; i++;

 }

 while (i <= n);

 cout<< "cos(" << x << ")=" << s <<endl;

}

Of course, the tasks considered do not comprise the diversity of methodical

approaches of training programming style to beginners. They just illustrate that there

are no prerequisites to consider appropriate examples extending the programming

style issues to other topics, such as subroutines / functions / methods, arrays, etc.

Conclusion
Novice programmers often underestimate the style of programming considering it as

time-consuming and not helping in solving problems. For them, it is often difficult to

understand the meaning of the guidelines for programming style, while trying to

concentrate on the creation of the first programs.

 In this paper, we argue that the methodical approach of incorporating a

programming style discussion into the syllabi of introductory programming courses as

soon as possible is preferable and more beneficial comparing to the approach of

Programming Style In Introductory Programming Courses 26113

discussing those issues after the main course topics. We back our points with years of

teaching experience and estimating results of applying different methodical

approaches. We also provide a set of examples, which illustrate style issues and are

ready to be used in the course.

 In programming, style usually achieves unity between form and content of the

program. The form should illustrate, explain and document the content. The style also

has a role to ease understanding of the program in the learning process. The style of

programming is directly related to the professional training of the teacher and his

teaching experience.

 Some may argue that certain points discussed here might be addressed by

automatic tools [16], such as components of the integrated development environments

(IDE), but relying on those tools contradicts to the pedagogical aspects of building a

solid ground for algorithmisation skills.

Acknowledgements
This work has been partially supported by the Fund "Scientific Research" at the

University of Shumen, Bulgaria – Contract № RD – 08-273/11.03.2015.

References

[1] Wirth N., 2002, Computing Science Education: The Road not Taken,

ITiCSE Conference, Aarhus, Denmark, http://www.inr.ac.ru/~info21/

texts/2002-06-Aarhus/en.htm (2/05/15)

[2] McCann, 1997, Toward Developing Good Programming Style C version,

http://www.cs.arizona.edu/~mccann/style_c.html (2/05/15)

[3] You, H. L., 2009, Tool Support for Learning Programming Style,

http://www.csse.uwa.edu.au/UWAJavaTools/publications/YouHai.Dissert

ation.pdf (2/05/15)

[4] Van Tassel, D., 1978, Program style, design, efficiency, debugging, and

testing, 2d ed. Prentice-Hall, N. J.

[5] Bodrikov, S.V., 2005, C /C ++ - programming style (in Russian),

http://www.codenet.ru/progr/cpp/C-Style.php (2/05/15)

[6] Kernighan, B. W. & Pike, R, 1999, The Practice of Programming.

Addison-Wesley, https://docs.google.com/file/d/0B2Q8Nd2L-

6PjN2I0MzEzZDYtM2JhNC00NzJlLWFhMGQtZWUyMWE0N2M4MG

M4/edit?pli=1 (2/05/15)

[7] Nepejvoda, N., 2003, Programming styles as foundation of a notion system

for informatics, Kluwer Academic Publishers.

[8] Teodosiev T. & Nachev A., 2012, Some Pitfalls in Introductory

Programming Courses, Informatics in Education, Vol. 11, No. 2, 241–255.

[9] Mohan, A. & Gold, N., 2004, Programming Style Changes in Evolving

Source Code. In: IEEE Proceedings of the 12th International Workshop on

Program Comprehension, Bari, Italy, June 24–26, 236–240

http://www.cs.arizona.edu/~mccann/style_c.html
http://www.csse.uwa.edu.au/UWAJavaTools/publications/YouHai.Dissertation.pdf
http://www.csse.uwa.edu.au/UWAJavaTools/publications/YouHai.Dissertation.pdf
http://www.codenet.ru/progr/cpp/C-Style.php
https://docs.google.com/file/d/0B2Q8Nd2L-6PjN2I0MzEzZDYtM2JhNC00NzJlLWFhMGQtZWUyMWE0N2M4MGM4/edit?pli=1
https://docs.google.com/file/d/0B2Q8Nd2L-6PjN2I0MzEzZDYtM2JhNC00NzJlLWFhMGQtZWUyMWE0N2M4MGM4/edit?pli=1
https://docs.google.com/file/d/0B2Q8Nd2L-6PjN2I0MzEzZDYtM2JhNC00NzJlLWFhMGQtZWUyMWE0N2M4MGM4/edit?pli=1

26114 Teodosi K. Teodosiev

[10] Glaser, A., 2009, Notes on Programming Style, Octagon Research

Solutions, Inc. http://www.lexjansen.com/nesug/nesug09/as/AS03.pdf

(2/05/15)

[11] Kernighan, B. W. & Plauger, P. J., 1974, Programming Style: Examples

and Counterexamples. ACM Comput. Surv. 6(4): 303-319.

[12] Grigas, G., 1998, Investigation of the relationship between program

correctness and programming style (draft), http://olympiads.win.

tue.nl/ioi/ioi94/style.txt (2/05/15)

[13] Skūpienė, J., 2006, Programming Style – Part of Grading Scheme in

Informatics Olympiads: Lithuanian Experience, ISSEP, 545-552.

[14] Tkachev, F.V., 2006, Education system as a factor of national sovereignty

in the area of information technology, http://www.inr.ac.ru/~info21/

texts/2006-09-SFO/v2public.htm (2/05/15)

[15] Dijkstra, E. W., 1982, Why is software so expensive? http://www.cs.

utexas.edu/~EWD/transcriptions/EWD06xx/EWD648.html (2/05/15)

[16] McConnell, S., 2004, Code Complete, 2nd Edition, Redmond, Wa.:

Microsoft Press

http://www.lexjansen.com/nesug/nesug09/as/AS03.pdf
http://www.informatik.uni-trier.de/%7Eley/pers/hd/p/Plauger:P=_J=.html

