
International Journal of Applied Engineering Research

ISSN 0973-4562 Volume 10, Number 10 (2015) pp. 26073-26083

© Research India Publications

http://www.ripublication.com

Enhancing Run-Time Configurable Features Using Kernel

Information

Rajamohan.L
1*

, Dr.Ravi.S
2
 and P.Revanth Mahesh Kumar Sai,

1*

Research Scholar, Department of ECE, St.Peters’ University, Chennai,

Email: rajamohan151@gmail.com
2
Professor and Head, Department of ECE, Dr.M.G.R. Educational and Research

Institute University, Madhuravoyal,Chennai,

Email: ravi_mls@yahoo.com

Student, ECE department,

Dr.M.G.R. Educational and Research Institute,

Chennai - 95.

Abstract

An interface to internal data structures in the kernel is the proc file system.

The metadata information about the system, process id and changes occurring

in certain kernel parameters at runtime is obtained using this. The directory

/proc maintain one subdirectory for individual process running on the system,

which lists the process ID and the kernel data files give information about the

running kernel. The files used to obtain this information are contained in /proc.

Not all of these needs to be present in system and depending on the form-

factor the modules loaded in the kernel configuration are kept dynamic. This is

achieved using bmenuconfig and kmenuconfig commands. However, once

configured, the functionality gets customized and scalability is not possible

(without reloading). This paper includes how to use the System/Kernel

Information from /Proc file system and build suitable macros that can be

enabled or disabled to regulate the loading of kernel modules and also keeping

the design form-factor optimal.

Keywords: Kernel customization, Macros, form-factor, user interface

Introduction
proc file system is an interface provided to the user, to interact with the kernel and get

the required information about processes running on the system. This allows one to

change some parameters (by reloading a different image or environment setup into the

hardware) rather than on the fly (on current running system with immediate effect.).

26074 Rajamohan. L

This has the advantage of just in time compilation or ahead of time compilation.

However, the root file system, environment details, device drivers activated etc.

becomes customized but not instantly reconfigurable. To overcome this limitation,

this paper proposes macro enable and disable approach. Also, to know the process

behavior at realtime level (i.e. cellular level), virtual process timers are implemented.

Related Works
Prasad and Akhilesh Upadhyay (2012) implemented hybrid kernel in which the input

given by the Application Program interface will be submitted to the kernel.

Microkernel layer takes control, which are special for Interrupt Handler mechanisms

and Specific schedulers. Micro Kernel deals with real-time tasks and gives them main

priority. Monolithic Kernel is dealing with non-real-time applications and tasks.

However the intermediate layer of Micro kernel deals with the applications, but the

non-real applications will be scheduled by the monolithic kernel. Thus the advantages

of both the kernels will be achieved and make the system General purpose System.

 Prasanna and VenkateswaraRao (2012) described an embedded monitoring system

based on μC/OS II RTOS operating system using ARM7. It dealt with the porting of

Micro C/OS-II kernel in ARM powered microcontroller for the implementation of

multitasking and time scheduling. Here a real-time kernel is the software that

manages the time of a micro controller to ensure that all time critical events are

processed as efficiently as possible. Different interface modules of ARM7

microcontroller like UART, ADC, and LCD are used and data acquired from these

interfaces is tested using µC/OS-II based real-time operating system. This paper acts

as a gateway to implement RTOS for high end applications.

 Jae Hwan Koh and byoung wook choi (2013) aimed to analyze the response

characteristics of real-time mechanisms in kernel and user space for real-time

embedded Linux: RTAI and Xenomai. The performance evaluations of real-time

mechanisms depending on the changes of task periods and load are also conducted in

kernel and user space. Real-time systems are generally implemented using multiple

tasks. Communication, synchronization, and resource management between tasks are

performed through real-time mechanisms. Therefore, the performance of real-time

systems can be determined by the time responses of real-time mechanisms. Thus,

benchmarking the time characteristics of real-time mechanisms is really important to

estimating the deterministic real-time performance. Test metrics are jitter of periodic

tasks and response time of real-time mechanisms including semaphore, real-time

FIFO, Mailbox and Message queue. The results are promising to estimate

deterministic real-time task execution in implementing real-time systems using RTAI

or Xenomai.

Implementation
A user-space interface is implemented to the /Proc file system. This operates in three

modes.

1. Standard Mode

Enhancing Run-Time Configurable Features Using Kernel Information 26075

2. Short Mode

3. Long mode

A. Standard Mode

It displays the CPU information (cpu and model), kernel version, and Uptime by

extracting from the /proc/cpuinfo, /proc/version, /proc/uptime respective files in /Proc

file system. The file format is listed in table 1.

Table 1: File format details in standard mode

File format Details Inference

/Proc/cpuinfo

processor: 0

vendor_id:GenuineIntel

cpu family: 6

model:28

model name: Intel(R) Atom(TM)

CPU D410 @ 1.66GHz

stepping:10

The speed of processor 0

in group 0 is being limited

by system firmware. The

processor has been in this

reduced performance state

for 71 seconds since the

last report.

/Proc/version

Linux version 2.6.32-38-generic

(buildd@zirconium) (gcc version

4.4.3 (Ubuntu 4.4.3-4ubuntu5)) #83-

Ubuntu SMP Wed Jan 4 11:13:04

UTC 2012

This file specifies the

version of the Linux

kernel and gcc in use, as

well as the version of Red

Hat Enterprise Linux

installed on the system.

/Proc/uptime 8701.53 16009.36
Specifies how long the

system has been running.

 cpuinfo: processor (the value of which is zero for single-processor systems),

vendor_id (the value of which is Genuine Intel in the case of an Intel processor), cpu

family, model_name, cpu MHz (processor speed in millions of cycles per second),

cache size (the amount of high speed cache memory built into the processor)

 Version: This string identifies the kernel version that is currently running. It

includes the contents of /proc/sys/ectype.

 uptime: The current time, how long the system has been running, how many

users are currently logged on, and the system load averages for the past 1, 5 and 15

minutes.

B. Short Mode

It displays kernel statistics and memory information along with Standard mode

information by extracting from the /proc/stat, /proc/memento respective files in /Proc

file system. The file format is listed in table 2.

26076 Rajamohan. L

Table 2: File format details in short mode

File format Details Inference

/Proc/stat

text 19611962

time 1423453071

processes 2193

procs_running 4

procs_blocked 0

softirq 9625163 0 7983432 1

26229 37805 0 6883 459811

11191109883 Switches.

Context Switch is the process of storing

and restoring the state of

process orthread so that execution can

be resumed from the same point at a

later time. This enables multiple

processes to share a single CPU and is

an essential feature of a multitasking

operating system.

/Proc/

meminfo

MemTotal: 2044764 kB

MemFree: 537368 kB

Buffers: 249588 kB

Cached: 638084 kB

SwapCached: 0 kB

Active: 916128 kB

Inactive: 455424 kBs

Active(anon):492444 kB

Inactive(anon):57076 kB

This is used to report the amount of free

and used memory (both physical and

swap) on the system as well as the

shared memory and buffers used by the

kernel.

C. Long Mode

It displays mounted devices and average load of CPU along with Short mode

information by extracting from the /proc/mounts, /proc/loadavg respective files in

/Proc file system.

 C.1./Proc/mounts file format

rootfs / rootfs rw 0 0

none /sys sysfs rw,nosuid,nodev,noexec,relatime 0 0

none /proc proc rw,nosuid,nodev,noexec,relatime 0 0

none /dev devtmpfs rw,relatime,size=1018144k,nr_inodes=216368,mode=755 0 0

none /dev/pts devpts rw,nosuid,noexec,relatime,gid=5,mode=620,ptmxmode=000 0 0

/dev/disk/by-uuid/c0358d6e-3074-40e5-a1a1-ca713774a753 /

ext4rw,relatime,errors=remount-ro,barrier=1,data=ordered 0 0

none /sys/fs/fuse/connections fusectl rw,relatime 0 0

none /sys/kernel/debug debugfs rw, relatime 0 0

none /sys/kernel/security securityfs rw, relatime 0 0

none /dev/shm tmpfs rw,nosuid,nodev,relatime 0 0

none /var/run tmpfs rw,nosuid,relatime,mode=755 0 0

none /var/lock tmpfs rw,nosuid,nodev,noexec,relatime 0 0

none /lib/init/rw tmpfs rw,nosuid,relatime,mode=755 0 0

binfmt_misc /proc/sys/fs/binfmt_misc binfmt_misc rw,nosuid,nodev,noexec,relatime

0 0

gvfs-fuse-daemon /home/rytelyne/.gvfs fuse.gvfs-fuse-daemon

rw,nosuid,nodev,relatime,user_id=1000,group_id=1000 0 0

Enhancing Run-Time Configurable Features Using Kernel Information 26077

 C.2. /proc/loadavg file format

 0.38 0.55 0.48 3/289 2292

Table 3: Features extracted with reported works compared with present approach

Feature Reported works Present Approach

Release Date 1999–present 2009–present

Preemptive Multitasking Yes Yes

Maximum number of tasks 255 Dynamic

Number of tasks at each priority level 1 Dynamic

Round robin scheduling No Yes

Semaphores Yes Yes

Mutual exclusion semaphores Yes Yes(Nestable)

Event flags Yes Yes

Message mailboxes Yes No (not needed)

Message queues Yes Yes

Fixed sized memory management Yes Yes

Signal a task without requiring a semaphore No Yes

Option to post without scheduling No Yes

Send messages to a task without requiring a

message queue
No Yes

Software timers Yes Yes

Task suspend/resume Yes Yes(Nestable)

Deadlock prevention Yes Yes

Scalable Yes Yes

Code footprint 6K to 26K 6K to 24K

Data footprint 1K+ 1K+

ROMable Yes Yes

Run-time configurable No Yes

Compile-time configurable Yes Yes

Pend on multiple objects Yes Yes

Task registers Yes Yes

Built-in performance measurements Limited Extensive

User definable hook functions Yes Yes

Time stamps on posts No Yes

Built-in kernel awareness support Yes Yes

Optimizable scheduler in assembly language No Yes

Catch a task that returns No Yes

Tick handling at task level No Yes

Source code available Yes Yes

Deadlock prevention Yes Yes

Number of services ~90 ~90

26078 Rajamohan. L

Hardware Implementation

 1-----(a) ARM core with root file system mounted in Sd-card

 (b) Linux Kernel mounted as image file

 2-----Hyperterminal to view the results.

Results and Discussion

1. Run as follows for standard mode,

./output

By default the program will run in standard mode and displays the hostname by

reading from the /proc/sys/kernel/hostname file and displays CPU info, kernel version

and model and program exists.

2. Run as follows for short mode,

 ./output –s

It displays kernel statistics and memory information along with Standard mode

information.

3. Run as follows for Long mode,

 ./output –l 2 4

It displays mounted devices and average load of CPU along with Short mode

information. Here 2 specify the interval and 4 specifies the duration for which the

average load is calculated.

Enhancing Run-Time Configurable Features Using Kernel Information 26079

For Standard Mode

For Short Mode

For Long Mode

26080 Rajamohan. L

Target Hardware Results

Case(i) Extracting Kernel Info

Case(ii) Extracting process info at Macro level

Conclusion
In this paper, three modes standard, short and long modes where certain parameters

can be changed by using kernel info acquired using the proc file system is

demonstrated. The details of individual processes running on the system(s) along with

the process ID, device drivers activated are extracted dynamically. Subsequently, by

using macros certain features are enabled /disabled in runtime. Also, the number of

tasks in running state, priority levels, maximum number of tasks and optimal use of

semaphore are made dynamic. Nested features are extended to mutual exclusion

semaphore, message / Mailbox, Task suspend /resume.

References

[1] Dhruva, R, Rinku & Mohdarshad 2013, „Design and implementation of

free RTOS based online data acquisition and controlling system using

cortex m3core‟, International Journal of Engineering Science & Advanced

Technology, vol. 3, no.5, pp. 259-263.

Enhancing Run-Time Configurable Features Using Kernel Information 26081

[2] Jae Hwan Koh & Byoung Wook Choi 2013, „Real-time Performance of

Real-time Mechanisms for RTAI and Xenomai in Various Running

Conditions‟, International Journal of Control and Automation, vol. 6, no.

1, pp. 235-245.

[3] JianFeng&Hongmei Jin 2011, ‘μC/OS-II Port for STM32F107VC

Processor‟, Information Engineering Letters, vol. 1, no. 1, pp. 1-7.

[4] Kim, W.-J., Ji, K., and Ambike, A. (2006). Real-time operating

environmentfor networked control systems.Automation Science and

Engineering, IEEE Transactions on[see also Robotics and Automation,

IEEE Transactions on], 3(3):287–296.

[5] Koker, K. (2007).Autonomous Robots and Agents, chapter Embedded

RTOS: Perfor-mance Analysis With High Precision Counters, pages 171–

179. Springer Berlin / Hei-delberg.

[6] J. H. Koh and B. W. Choi, “Performance Evaluation of Real-time

Mechanisms for Real-time Embedded Linux”, J. of Institute of Control,

Robotics and Systems (in Korean), vol. 18, no. 4, (2012), pp. 337-342.

[7] Krodel, J. and Romanski, G. (2007). Real-time operating systems and

component integration considerations in integrated modular avionics

systems report. Technical report,U.S. Department of Transportation -

Federal Aviation Administration.

[8] J.J.Labrosse,“uC/OS-II The Real-Time Kernel”, Micrium (2009).

[9] P. A. Laplante,“Real-time System Design and Analysis”, Wiley-IEEE

Press,(2004).

[10] Prasad, PS & Akhilesh Upadhyay 2012, „Design of Hybrid Kernel and the

Performance Improvement of the Operating System‟, International

Journal of Engineering and Technology, vol. 4, no. 2, pp. 162-165.

[11] Prasanna,SL & Venkateswara Rao, M 2012 (a), „Design of µC/ Os II

RTOS Based Scalable Cost Effective Monitoring System Using Arm

Powered Microcontroller‟, International Journal of Scientific and

Research Publications, vol. 2, no. 4, pp.1-4.

[12] Prasanna,SL& Venkateswara Rao, M 2012 (b), „Implementation of a

Scalable μC /OS-II Based Multitasking Monitoring System‟, International

Journal of Computer Science and Technology, vol. 3, no. 2, pp. 86-89.

[13] SonaliGrover 2014, „Real-Time Operating Systems: An Overview‟,

International journal of innovative research in technology, vol. 1, no. 4,

pp. 203-207.

[14] Yan Liping&Song Kai 2011,‟Improvement and test of realtime

performance of embedded Linux 2.6 kernel‟,International Journal of

Digital Content Technology and its Applications.vol. 5, no. 4, pp. 247-253.

[15] Huiting Hou,Gao, Dengke Liu. 2014,”A support vector machine with

maximal information coefficient weighted kernel functions for regression”,

systems and informatics(ICSAI),2014 2
nd

 international conference,

Vol.2,no.3, pp.938-942.

26082 Rajamohan. L

Appendix
The code snippet for Standard mode:

 void sampleCpuInfo () {

 char lineBuf[LB_SIZE];

 FILE *thisProcFile;

 thisProcFile = fopen("/proc/cpuinfo", "r");

 printf("CPU Information\n");

 fgets(lineBuf, LB_SIZE+1, thisProcFile); // Skip processor

 fgets(lineBuf, LB_SIZE+1, thisProcFile); // cpu

 printf(" %s", lineBuf);

 fgets(lineBuf, LB_SIZE+1, thisProcFile); // model

 printf(" %s", lineBuf);

 fclose(thisProcFile); }

 The function opens cpuinfofile in /proc file system and reads and displays the

cputypeand model from the opened file.

 void sampleVersion() {

 char lineBuf[LB_SIZE];

 FILE *thisProcFile;

 thisProcFile = fopen("/proc/version", "r");

 fscanf(thisProcFile, "%s", lineBuf);

 printf("Kernel version:\n %s", lineBuf);

 fscanf(thisProcFile, "%s", lineBuf);

 printf(" %s", lineBuf);

 fscanf(thisProcFile, "%s", lineBuf);

 printf(" %s\n", lineBuf);

 fclose(thisProcFile);

 }

 The function opens version file in /proc file system and reads and displays the

kernel version.

void sampleUptime() {

int i;

char lineBuf[LB_SIZE];

FILE *thisProcFile;

thisProcFile = fopen("/proc/uptime", "r");

fscanf(thisProcFile, "%s", lineBuf);

i = atoi(lineBuf);

printf("Uptime: %d:%d:%d\n", i/3600, i/60, i%60);

fclose(thisProcFile);

}

Enhancing Run-Time Configurable Features Using Kernel Information 26083

 The function opens uptime file in /proc file system and reads and displays the time

elapsed.

 The code snippet for Short mode:

void sampleStat() {

char lineBuf[LB_SIZE];

FILE *thisProcFile;

thisProcFile = fopen("/proc/stat", "r");

printf("Kernel Statistics\n");

fgets(lineBuf, LB_SIZE+1, thisProcFile); // Jiffies

printf(" %s", lineBuf);

fgets(lineBuf, LB_SIZE+1, thisProcFile); // Disk operations

printf(" %s", lineBuf);

fgets(lineBuf, LB_SIZE+1, thisProcFile); // Disk reads

fgets(lineBuf, LB_SIZE+1, thisProcFile); // Disk writes

fgets(lineBuf, LB_SIZE+1, thisProcFile); // Disk read sectors

fgets(lineBuf, LB_SIZE+1, thisProcFile); // Disk written sectors

fgets(lineBuf, LB_SIZE+1, thisProcFile); // Memory pages

printf(" %s", lineBuf);

fgets(lineBuf, LB_SIZE+1, thisProcFile);

printf(" %s", lineBuf);

fgets(lineBuf, LB_SIZE+1, thisProcFile); // Interrupts

fgets(lineBuf, LB_SIZE+1, thisProcFile);

printf(" %s", lineBuf);

fgets(lineBuf, LB_SIZE+1, thisProcFile); // Boot time

printf(" %s", lineBuf);

fgets(lineBuf, LB_SIZE+1, thisProcFile);

printf(" %s", lineBuf);

fclose(thisProcFile);}

 The function opens stat file in /proc file system and reads and displays Jiffies, Disk

read/writes, Memory pages, Interrupts, Boot time and Process started.

 The code snippet for Long Mode:

void sampleMounts() {char lineBuf[LB_SIZE];

FILE *thisProcFile;

thisProcFile = fopen("/proc/mounts", "r");

printf("File Systems Mounted:\n");

while(fgets(lineBuf, LB_SIZE+1, thisProcFile) != NULL)

printf(" %s", lineBuf);

fclose(thisProcFile);}

The function opens mounts file in /proc file system and reads and displays the

mounted devices.

26084 Rajamohan. L

