International Journal of Applied Engineering Research

ISSN 0973-4562 Volume 10, Number 10 (2015) pp. 26073-26083
© Research India Publications

http://www.ripublication.com

Enhancing Run-Time Configurable Features Using Kernel
Information

Rajamohan.L'", Dr.Ravi.S? and P.Revanth Mahesh Kumar Sai,

Y"Research Scholar, Department of ECE, St.Peters’ University, Chennai,
Email: rajamohan151@gmail.com
?Professor and Head, Department of ECE, Dr.M.G.R. Educational and Research
Institute University, Madhuravoyal,Chennai,
Email: ravi_mls@yahoo.com
Student, ECE department,
Dr.M.G.R. Educational and Research Institute,
Chennai - 95.

Abstract

An interface to internal data structures in the kernel is the proc file system.
The metadata information about the system, process id and changes occurring
in certain kernel parameters at runtime is obtained using this. The directory
/proc maintain one subdirectory for individual process running on the system,
which lists the process ID and the kernel data files give information about the
running kernel. The files used to obtain this information are contained in /proc.
Not all of these needs to be present in system and depending on the form-
factor the modules loaded in the kernel configuration are kept dynamic. This is
achieved using bmenuconfig and kmenuconfig commands. However, once
configured, the functionality gets customized and scalability is not possible
(without reloading). This paper includes how to use the System/Kernel
Information from /Proc file system and build suitable macros that can be
enabled or disabled to regulate the loading of kernel modules and also keeping
the design form-factor optimal.

Keywords: Kernel customization, Macros, form-factor, user interface

Introduction

proc file system is an interface provided to the user, to interact with the kernel and get
the required information about processes running on the system. This allows one to
change some parameters (by reloading a different image or environment setup into the
hardware) rather than on the fly (on current running system with immediate effect.).

26074 Rajamohan. L

This has the advantage of just in time compilation or ahead of time compilation.
However, the root file system, environment details, device drivers activated etc.
becomes customized but not instantly reconfigurable. To overcome this limitation,
this paper proposes macro enable and disable approach. Also, to know the process
behavior at realtime level (i.e. cellular level), virtual process timers are implemented.

Related Works

Prasad and Akhilesh Upadhyay (2012) implemented hybrid kernel in which the input
given by the Application Program interface will be submitted to the kernel.
Microkernel layer takes control, which are special for Interrupt Handler mechanisms
and Specific schedulers. Micro Kernel deals with real-time tasks and gives them main
priority. Monolithic Kernel is dealing with non-real-time applications and tasks.
However the intermediate layer of Micro kernel deals with the applications, but the
non-real applications will be scheduled by the monolithic kernel. Thus the advantages
of both the kernels will be achieved and make the system General purpose System.

Prasanna and VenkateswaraRao (2012) described an embedded monitoring system
based on pC/OS II RTOS operating system using ARM7. It dealt with the porting of
Micro C/OS-11 kernel in ARM powered microcontroller for the implementation of
multitasking and time scheduling. Here a real-time kernel is the software that
manages the time of a micro controller to ensure that all time critical events are
processed as efficiently as possible. Different interface modules of ARM7
microcontroller like UART, ADC, and LCD are used and data acquired from these
interfaces is tested using HC/OS-I1I based real-time operating system. This paper acts
as a gateway to implement RTOS for high end applications.

Jae Hwan Koh and byoung wook choi (2013) aimed to analyze the response
characteristics of real-time mechanisms in kernel and user space for real-time
embedded Linux: RTAI and Xenomai. The performance evaluations of real-time
mechanisms depending on the changes of task periods and load are also conducted in
kernel and user space. Real-time systems are generally implemented using multiple
tasks. Communication, synchronization, and resource management between tasks are
performed through real-time mechanisms. Therefore, the performance of real-time
systems can be determined by the time responses of real-time mechanisms. Thus,
benchmarking the time characteristics of real-time mechanisms is really important to
estimating the deterministic real-time performance. Test metrics are jitter of periodic
tasks and response time of real-time mechanisms including semaphore, real-time
FIFO, Mailbox and Message queue. The results are promising to estimate
deterministic real-time task execution in implementing real-time systems using RTAI
or Xenomai.

Implementation
A user-space interface is implemented to the /Proc file system. This operates in three
modes.

1. Standard Mode

Enhancing Run-Time Configurable Features Using Kernel Information 26075

2. Short Mode
3. Long mode

A. Standard Mode

It displays the CPU information (cpu and model), kernel version, and Uptime by
extracting from the /proc/cpuinfo, /proc/version, /proc/uptime respective files in /Proc
file system. The file format is listed in table 1.

Table 1: File format details in standard mode

File format Details Inference

processor: 0
vendor_id:Genuinelintel

The speed of processor 0
in group 0O is being limited

cpu family: 6 by system firmware. The
/Proc/cpuinfo | model:28 processor has been in this

model name: Intel(R) Atom(TM) | reduced performance state

CPU D410 @ 1.66GHz for 71 seconds since the

stepping:10 last report.

Linux version 2.6.32-38-generic | This file specifies the

(buildd@zirconium) (gcc version | version of the Linux

4.4.3 (Ubuntu 4.4.3-4ubuntub)) #83-
Ubuntu SMP Wed Jan 4 11:13:04
UTC 2012

kernel and gcc in use, as
well as the version of Red
Hat Enterprise Linux
installed on the system.

/Proc/version

Specifies how long the

8701.53 16009.36 4
system has been running.

/Proc/uptime

cpuinfo: processor (the value of which is zero for single-processor systems),
vendor_id (the value of which is Genuine Intel in the case of an Intel processor), cpu
family, model_name, cpu MHz (processor speed in millions of cycles per second),
cache size (the amount of high speed cache memory built into the processor)

Version: This string identifies the kernel version that is currently running. It
includes the contents of /proc/sys/ectype.

uptime: The current time, how long the system has been running, how many
users are currently logged on, and the system load averages for the past 1, 5 and 15
minutes.

B. Short Mode

It displays kernel statistics and memory information along with Standard mode
information by extracting from the /proc/stat, /proc/memento respective files in /Proc
file system. The file format is listed in table 2.

26076 Rajamohan. L

Table 2: File format details in short mode

File format | Details Inference
text 19611962 Context Switch is the process of storing
time 1423453071 and restoring the state of
processes 2193 process orthread so that execution can
IProc/stat procs_running 4 be resumed from the same point at a
procs_blocked 0 later time. This enables multiple

softirq 9625163 0 7983432 1 | processes to share a single CPU and is
26229 37805 0 6883 459811 | an essential feature of a multitasking

11191109883 Switches. operating system.
MemTotal: 2044764 kB This is used to report the amount of free
MemPFree: 537368 kB and used memory (both physical and
Buffers: 249588 kB swap) on the system as well as the
Cached: 638084 kB shared memory and buffers used by the
ﬁgrc;ci/nfo SwapCached: 0 kB kernel.
Active: 916128 kB
Inactive: 455424 kBs
Active(anon):492444 kB
Inactive(anon):57076 kB
C. Long Mode

It displays mounted devices and average load of CPU along with Short mode
information by extracting from the /proc/mounts, /proc/loadavg respective files in
[Proc file system.

C.1./Proc/mounts file format

rootfs / rootfs rw 0 0

none /sys sysfs rw,nosuid,nodev,noexec,relatime 0 0

none /proc proc rw,nosuid,nodev,noexec,relatime 0 0

none /dev devtmpfs rw,relatime,size=1018144k,nr_inodes=216368,mode=7550 0
none /dev/pts devpts rw,nosuid,noexec,relatime,gid=5,mode=620,ptmxmode=000 0 0
/dev/disk/by-uuid/c0358d6e-3074-40e5-alal-ca713774a753 /
ext4rw,relatime,errors=remount-ro,barrier=1,data=ordered 0 0

none /sys/fs/fuse/connections fusectl rw,relatime 0 0

none /sys/kernel/debug debugfs rw, relatime 0 0

none /sys/kernel/security securityfs rw, relatime 0 0

none /dev/shm tmpfs rw,nosuid,nodev,relatime 0 0

none /var/run tmpfs rw,nosuid,relatime,mode=755 0 0

none /var/lock tmpfs rw,nosuid,nodev,noexec,relatime 0 0

none /lib/init/rw tmpfs rw,nosuid,relatime,mode=755 0 0

binfmt_misc /proc/sys/fs/binfmt_misc binfmt_misc rw,nosuid,nodev,noexec,relatime
00

gvfs-fuse-daemon /home/rytelyne/.gvfs fuse.gvfs-fuse-daemon
rw,nosuid,nodev,relatime,user_id=1000,group_id=1000 0 0

Enhancing Run-Time Configurable Features Using Kernel Information

C.2. Iproc/loadavg file format
0.38 0.55 0.48 3/289 2292

26077

Table 3: Features extracted with reported works compared with present approach

Feature Reported works Present Approach
Release Date 1999-present 2009—present
Preemptive Multitasking Yes Yes
Maximum number of tasks 255 Dynamic
Number of tasks at each priority level 1 Dynamic
Round robin scheduling No Yes
Semaphores Yes Yes

Mutual exclusion semaphores Yes Yes(Nestable)
Event flags Yes Yes

Message mailboxes Yes No (not needed)
Message queues Yes Yes

Fixed sized memory management Yes Yes

Signal a task without requiring a semaphore No Yes

Option to post without scheduling No Yes
%eenstiagneeai%is to a task without requiring a No Yes

Software timers Yes Yes

Task suspend/resume Yes Yes(Nestable)
Deadlock prevention Yes Yes

Scalable Yes Yes

Code footprint 6K to 26K 6K to 24K
Data footprint 1K+ 1K+
ROMable Yes Yes

Run-time configurable No Yes
Compile-time configurable Yes Yes

Pend on multiple objects Yes Yes

Task registers Yes Yes

Built-in performance measurements Limited Extensive
User definable hook functions Yes Yes

Time stamps on posts No Yes

Built-in kernel awareness support Yes Yes
Optimizable scheduler in assembly language No Yes

Catch a task that returns No Yes

Tick handling at task level No Yes

Source code available Yes Yes

Deadlock prevention Yes Yes

Number of services ~90 ~90

26078 Rajamohan. L

Hardware Implementation

1-----(a) ARM core with root file system mounted in Sd-card
(b) Linux Kernel mounted as image file
2-----Hyperterminal to view the results.

Results and Discussion

1. Run as follows for standard mode,

Joutput

By default the program will run in standard mode and displays the hostname by
reading from the /proc/sys/kernel/hostname file and displays CPU info, kernel version
and model and program exists.

2. Run as follows for short mode,

Joutput —s

It displays kernel statistics and memory information along with Standard mode
information.

3. Runas follows for Long mode,

Joutput -1 2 4

It displays mounted devices and average load of CPU along with Short mode
information. Here 2 specify the interval and 4 specifies the duration for which the
average load is calculated.

Enhancing Run-Time Configurable Features Using Kernel Information

For Standard Mode

For Short Mode

For Long Mode

Linux version 3.0.1
Uptime:
Kernel Statistics
cpu 503 69 2041 39968 1
cpuB 503 69 2041 39968 1
procs_running 1
procs_hlocked 0
softirg 42848 0 42594 1 0 00253000
softirg 42848 0 42594 1 000253000
softirg 42848 0 42594 1 0 00253000
Memory Information:
Cached: 14192 kB
SwapCached: 0 kB
[root@FORLINK6A1B1# . foutput
Status report type Standard at Sat Jan 1 00:42:21 2000

Machine hostname: FORLINK6410
CPU Information
BogoMIPS : 928.79
Features : swp half thumb fastmult edsp java
Kernel version:
Linux version 3.0.1
Uptime: 0:9:24
[root@FORLINKG6A1O1#H _

[E—
=
MRS
oo
oo
oo

etc mnt output sdcard usr

lib ns proc sys var
[root@FORLINKG6A1DIH foutput -s
Status report type Short at Sat Jan 1 00:40:82 2000

Hachine hostname: FORLINK6418
CPU Information
BogoMWIPS - 528.79
Features : swp half thumb fastmult edsp java
Kernel version:
Linux version 3.8.1
Uptime: 0:7:5
Kernel Statistics
cpu D03 69 2041 39968 1
cpull 503 69 2041 39968 1
procs_running 1
procs_blocked B
softirg 42848 B 42594 1
softirg 42848 B 42594 1
softirg 42848 B 42094 1
Hemory Information:
Cached: 14192 K
SwapCached: B
[root@FORLINKGALIOTH _

—

]
]

[a=1]

9
8

=202

Hemory Information:
Cached: 14192 kB
SwapCached: 0 kB
File Systems Hounted:
rootfs / rootfs ru 00
/dev/root / yaffs? ru,relatinme 0 0
devtmpfs /dev devtmpfs ru,relatine,size=98804k,nr_inodes=24701,mode=755 0 @
none /proc proc rw,relatime 0 0
none /sys sysfs rw,relatime 0 0
none /proc/bus/usb usbfs rw,relatine 0 0
none /dev ranfs rw,relatime 0 0
/dev/sdcard /sdcard vfat rw,sync,noatime,nodiratime,fmask=0000, dnask=0000,allo
w_utime=0022, codepage=cp936, iocharset=utf8, shor tname=nixed, errors=remount-ro 0 0

none /dev/pts devpts ru,relatime, mode=622 0 0
tmpfs /dev/shm tmpfs ru,relatine 0 0
none /tmp ramfs rw,relatime 0 0
none /var ramfs rw,relatime 0 0
/dev/mtdblockd /mnt yaffs? rw,relatime 0 0
/dev/sdcard /mnt/sdcard vfat ru,sync,relatime, fnask=0000, dmask=0000,allow_utin
e=0022, codepage=cp936, iocharset=utf8, shor tname=mixed,errors=remount-ro 0 0
Load average: 0.08 0.63 0.05 2/44 132
Load average: 0.08 0.03 0.05 1/44 132
[root@FORLINKGA10T# _

26079

26080 Rajamohan. L

Target Hardware Results

Case(i) Extracting Kernel Info

output
[root@FORLINKGA1BIH Soutput
Status report tvpe Standard at Sat Jan 1 00:16:27 2000

Hachine hostname: FORLINXK6410
CPU TInformation
BogoMIPS : b28.19
Features : swp half thumb fastmult edsp java
Kernel wversion:
Linux version 3.8.1
Uptime: B:1:17
[root@FORLTNK6A10 1#

Case(ii) Extracting process info at Macro level

output

[root@-0RLINK6A101# . /output
fibarg = 30

Child 1 fib = 832040, real time -
Child 1 fib = 832040, cpu time =
Child 1 fib = 832040, user time -
Child 1 fib = 832040, kernel time
Child 2 fib = 832040, real time -
Child 2 fib = 832040, cpu time =
Child 2 fib = 832040, user time -
Child 2 fib = 832040, kernel time
Parent fib = 832040, real time =
Parent fib = 832040, cpu time =
Parent fib = 832040, user time =
Parent fib = 832040, kernel time
[root@FORLINKGA10]H#

Conclusion

In this paper, three modes standard, short and long modes where certain parameters
can be changed by using kernel info acquired using the proc file system is
demonstrated. The details of individual processes running on the system(s) along with
the process ID, device drivers activated are extracted dynamically. Subsequently, by
using macros certain features are enabled /disabled in runtime. Also, the number of
tasks in running state, priority levels, maximum number of tasks and optimal use of
semaphore are made dynamic. Nested features are extended to mutual exclusion
semaphore, message / Mailbox, Task suspend /resume.

References

[1] Dhruva, R, Rinku & Mohdarshad 2013, ‘Design and implementation of
free RTOS based online data acquisition and controlling system using
cortex m3core’, International Journal of Engineering Science & Advanced
Technology, vol. 3, no.5, pp. 259-263.

Enhancing Run-Time Configurable Features Using Kernel Information 26081

[2]

3]

[4]

[5]

[6]

[7]

[8]
[9]
[10]

[11]

[12]

[13]

[14]

[15]

Jae Hwan Koh & Byoung Wook Choi 2013, ‘Real-time Performance of
Real-time Mechanisms for RTAI and Xenomai in Various Running
Conditions’, International Journal of Control and Automation, vol. 6, no.
1, pp. 235-245.

JianFeng&Hongmei Jin 2011, ‘pC/OS-1lI Port for STM32F107VC
Processor’, Information Engineering Letters, vol. 1, no. 1, pp. 1-7.

Kim, W.-J., Ji, K., and Ambike, A. (2006). Real-time operating
environmentfor networked control systems.Automation Science and
Engineering, IEEE Transactions on[see also Robotics and Automation,
IEEE Transactions on], 3(3):287-296.

Koker, K. (2007).Autonomous Robots and Agents, chapter Embedded
RTOS: Perfor-mance Analysis With High Precision Counters, pages 171—
179. Springer Berlin / Hei-delberg.

J. H. Koh and B. W. Choi, “Performance Evaluation of Real-time
Mechanisms for Real-time Embedded Linux”, J. of Institute of Control,
Robotics and Systems (in Korean), vol. 18, no. 4, (2012), pp. 337-342.
Krodel, J. and Romanski, G. (2007). Real-time operating systems and
component integration considerations in integrated modular avionics
systems report. Technical report,U.S. Department of Transportation -
Federal Aviation Administration.

J.J.Labrosse,“uC/OS-Il The Real-Time Kernel”, Micrium (2009).

P. A. Laplante,“Real-time System Design and Analysis”, Wiley-IEEE
Press,(2004).

Prasad, PS & Akhilesh Upadhyay 2012, ‘Design of Hybrid Kernel and the
Performance Improvement of the Operating System’, International
Journal of Engineering and Technology, vol. 4, no. 2, pp. 162-165.
Prasanna,SL. & Venkateswara Rao, M 2012 (a), ‘Design of uC/ Os II
RTOS Based Scalable Cost Effective Monitoring System Using Arm
Powered Microcontroller’, International Journal of Scientific and
Research Publications, vol. 2, no. 4, pp.1-4.

Prasanna,SL& Venkateswara Rao, M 2012 (b), ‘Implementation of a
Scalable uC /OS-11 Based Multitasking Monitoring System’, International
Journal of Computer Science and Technology, vol. 3, no. 2, pp. 86-89.
SonaliGrover 2014, ‘Real-Time Operating Systems: An Overview’,
International journal of innovative research in technology, vol. 1, no. 4,
pp. 203-207.

Yan Liping&Song Kai 2011, Improvement and test of realtime
performance of embedded Linux 2.6 kernel’,International Journal of
Digital Content Technology and its Applications.vol. 5, no. 4, pp. 247-253.
Huiting Hou,Gao, Dengke Liu. 2014,”A support vector machine with
maximal information coefficient weighted kernel functions for regression”,
systems and informatics(ICSAI),2014 2" international conference,
Vol.2,n0.3, pp.938-942.

26082 Rajamohan. L

Appendix
The code snippet for Standard mode:

void sampleCpulnfo () {

char lineBuf[LB_SIZE];

FILE *thisProcFile;

thisProcFile = fopen("/proc/cpuinfo”, "r");
printf("CPU Information\n™);

fgets(lineBuf, LB_SIZE+1, thisProcFile); // Skip processor
fgets(lineBuf, LB_SIZE+1, thisProcFile); // cpu
printf(" %s", lineBuf);

fgets(lineBuf, LB_SIZE+1, thisProcFile); // model
printf(" %s", lineBuf);

fclose(thisProcFile); }

The function opens cpuinfofile in /proc file system and reads and displays the
cputypeand model from the opened file.

void sampleVersion() {

char lineBuf[LB_SIZE];

FILE *thisProcFile;

thisProcFile = fopen("/proc/version™, "r");
fscanf(thisProcFile, "%s", lineBuf);
printf("Kernel version:\n %s", lineBuf);
fscanf(thisProcFile, "%s", lineBuf);
printf(" %s", lineBuf);
fscanf(thisProcFile, "%s", lineBuf);
printf(" %s\n", lineBuf);
fclose(thisProcFile);

¥

The function opens version file in /proc file system and reads and displays the
kernel version.

void sampleUptime() {

inti;

char lineBuf[LB_SIZE];

FILE *thisProcFile;

thisProcFile = fopen("/proc/uptime”, "r");
fscanf(thisProcFile, "%s", lineBuf);

i = atoi(lineBuf);

printf("Uptime: %d:%d:%d\n", i/3600, i/60, i%60);
fclose(thisProcFile);

¥

Enhancing Run-Time Configurable Features Using Kernel Information 26083

The function opens uptime file in /proc file system and reads and displays the time
elapsed.
The code snippet for Short mode:

void sampleStat() {

char lineBuf[LB_SIZE];

FILE *thisProcFile;

thisProcFile = fopen("/proc/stat”, "r");

printf("Kernel Statistics\n™);

fgets(lineBuf, LB_SIZE+1, thisProcFile); // Jiffies

printf(" %s", lineBuf);

fgets(lineBuf, LB_SIZE+1, thisProcFile); // Disk operations
printf(" %s", lineBuf);

fgets(lineBuf, LB_SIZE+1, thisProcFile); // Disk reads
fgets(lineBuf, LB_SIZE+1, thisProcFile); // Disk writes
fgets(lineBuf, LB_SIZE+1, thisProcFile); // Disk read sectors
fgets(lineBuf, LB_SIZE+1, thisProcFile); // Disk written sectors
fgets(lineBuf, LB_SIZE+1, thisProcFile); // Memory pages
printf(" %s", lineBuf);

fgets(lineBuf, LB_SIZE+1, thisProcFile);

printf(" %s", lineBuf);

fgets(lineBuf, LB_SIZE+1, thisProcFile); // Interrupts
fgets(lineBuf, LB_SIZE+1, thisProcFile);

printf(" %s", lineBuf);

fgets(lineBuf, LB_SIZE+1, thisProcFile); // Boot time
printf(" %s", lineBuf);

fgets(lineBuf, LB_SIZE+1, thisProcFile);

printf(" %s", lineBuf);

fclose(thisProcFile);}

The function opens stat file in /proc file system and reads and displays Jiffies, Disk
read/writes, Memory pages, Interrupts, Boot time and Process started.
The code snippet for Long Mode:

void sampleMounts() {char lineBuf[LB_SIZE];

FILE *thisProcFile;

thisProcFile = fopen("/proc/mounts”, "r");

printf("File Systems Mounted:\n");

while(fgets(lineBuf, LB_SIZE+1, thisProcFile) '= NULL)
printf(" %s", lineBuf);

fclose(thisProcFile);}

The function opens mounts file in /proc file system and reads and displays the
mounted devices.

26084 Rajamohan. L

