
International Journal of Applied Engineering Research

ISSN 0973-4562 Volume 10, Number 10 (2015) pp. 24883-24892

© Research India Publications

http://www.ripublication.com

Hazards Analysis In A Processor Using Bluespec

System Verilog

1
Siva Kumar Nagulapati and

2
Dr. Jayanta Biswas

1
M.Tech. VLSI Design, SASTRA University, Thanjavur, Tamil Nadu, India
2
Department of ICT, SASTRA University, Thanjavur, Tamil Nadu, India
1
nagulapatisivakumarreddy@gmail.com,

2
jayantab2002@gmail.com

Abstract

This paper implements a prototype (sequential) processor and a simple

pipeline processor with Bluespec System Verilog (BSV). Hazards are

analysed in the processors, designed with atomic rules and methods, using

Bluespec System Verilog Hardware Description Language. The pipeline

processor operation methodologies and performance is compared with a

prototype sequential processor in terms of hazards, processor cycles consumed

for each instruction. The functionality of the designed processors is verified

with GTK cycle accurate simulator. Altera design flow is adopted to verify the

static timing which provides a flexible platform for fast exploration of micro-

architectures for multithreaded and multicore CPUs. The concepts of

concurrency, scheduling, parallelism and pipeline hazards optimization are

used for better performance, flexibility and productivity.

Keywords—Bluespec, BSV, pipeline, mnemonic, opcode, hurdles,

sequential, instruction, hazards

1. Introduction

Instruction pipelines, also called as RISC pipelines, are used in designing central

processing units (CPUs) to allow overlapping execution of multiple instructions with

the same circuitry. These uses RISC design philosophy. Pipeline technique speeds up

the execution by fetching the next instruction while other instructions are being

decoded and executed. The circuitry is partitioned into multiple stages with each stage

processing an instruction at a time and total throughput increases by a factor equal to

number of pipeline stages.

Fig. 1 shows the pipeline concept of executing three instructions – ADD, SUB

and AND in a three stage pipeline containing fetch, decode and execute blocks. Add

24884 Siva Kumar Nagulapati and Dr. Jayanta Biswas

instruction is fetched in cycle 1. In cycle 2, subtraction instruction is fetched and

addition instruction is decoded. Likewise, in cycle 3, immediate logical AND

instruction is fetched, subtraction instruction is decoded and addition instruction is

executed. Hazards associated with the design should be monitored throughout the

execution time for optimization and performance enhancement of the processor. RISC

processors have reduced number of instruction classes which provide simple

operations and the instructions can be executed in a single cycle.

Fig. 1: Pipeline Instruction Flow

1.1 Paper Organization

Section 2 provides a brief introduction to Bluespec tool and its HDL features. Section

3 presents the concepts on pipeline technique and hazards associated with the

prototype and pipeline processors. In Section 4, results are viewed concluded in

Section 5.

2. Bluespec System Verilog

The Hardware Description Language (HDL) for Bluespec tool is BSV. It is a strongly

typed hardware synthesis language which uses the Term Rewriting System (TRS) to

compute a series of atomic actions. BSV is an object-oriented hardware description

language. BSV borrowed its ideas from two sources - System Verilog and Haskell for

its structural abstractions. Concepts of modules and module hierarchy, separation of

interfaces from modules, syntax for user-defined types, syntax for blocks and loops

are chosen from System Verilog. For more advanced types, parameterization and

static elaboration, Haskell is used, which is a pure functional programming language

and has powerful features than those in languages like C#, C++ and Java.

BSV’s behavioral model is popular among formal specification languages for

complex concurrent systems as the motivations behind this model are extraction of

parallelism and correctness. Every program or code has its own package and package

name as its file name with.bsv extension. A module inside the package represents the

Hazards Analysis In A Processor Using Bluespec System Verilog 24885

24885

design. A program can contain multiple packages or multiple modules in a single

package. It is not advisable to include multiple modules in a single package because

when the concept of complex processing is accessed, it may contain more than

expected functional units or modules and rises the confusion of module descriptions at

the interfaces acting between modules and its sub-modules.A module is treated as

fundamental unit of the design and is used for synthesizable architectural modeling,

exploration and validation at a system level.

The Fig. 2 describes the construction of a BSV design. The two stages of

compilation, type checking and code generation, are done by a single compile

command. Compiler completes type checking and static elaboration and compiles the

design into a TRS. TRS is converted into Verilog or C program.

Intermediate.bi/.bo/.ba/.h files are not directly viewed by the user. BSV compiler

maps the design into parallel clocked synchronous hardware and includes dynamic

scheduler which allows multiple rules to fire in a single clock cycle. Bluespec

Development Workstation (BDW) is a graphical design environment for creating,

building, analysing and simulating BSV designs. The source files are named with

extension ‘.bsv’ and the project file is named after Top file name with extension

‘.bspec‘ while loading in the workstation.

Fig. 2: BSV Compilation Flow

24886 Siva Kumar Nagulapati and Dr. Jayanta Biswas

3. PROCESSOR DESIGNING

The above Fig. 3 shows a five stage pipeline architecture. Instructions are fetched in

IF stage from the instruction memory. These instructions are decoded in the ID stage.

The opcode operation is executed in the EX stage. Data memory is used by load/store

instruction in MA stage. The results obtained from either execute stage or memory

access stage are written back to the destination address by the WB stage. There are

two forward paths from the execution stage, one to the memory access stage and the

other directly to the write-back stage. The shaded regions are the pipeline registers.

These registers cross the forward going paths and stores the previous stage data,

making available for next stage.

Fig. 3: Pipeline structure

3.1 Instruction Format

A 24-bit instruction is used as shown in Fig. 4. Bits from 0 to 4 are dedicated for

mnemonics of instructions. Bit 5 is used as write acknowledgement for destination

register from bit 6 to 10, whether to write to a register or to be used in other data

transfer and control operations. Bits 11 and 17 are similar acknowledgement bits for

sources 1 and 2 respectively. Bit 23 is used as acknowledgement signal for accessing

the memory block. Based on the opcode at the beginning of the format, the destination

and source bits play different roles for better performance and optimization. The

acknowledgement bits are used to load the data from the memory or to use direct data.

If both source1 acknowledgement and source2 acknowledgement bits are zero,

address is loaded from source1 bits and source2 bits. If either of source’s

acknowledgement is 1, the other source is loaded with direct data from the instruction.

Fig. 4: Instruction format

Hazards Analysis In A Processor Using Bluespec System Verilog 24887

24887

Table 1 shows the set of mnemonics and their respective opcodes used in this

work. These include arithmetic, logical, load-store, branching and machine control

instructions. All these are commonly utilized instructions in a RISC processor

architecture.

Table 1: Mnemonics & Opcodes

* Mnemonic Opcode * Mnemonic Opcode * Mnemonic Opcode

01 ADD,ADI 00001 12 INC 01100 23 RSTR 10111

02 ADDC,ADIC 00010 13 DEC 01101 24 RLDR 11000

03 SUB,SBI 00011 14 CMP 01110 25 WSTR 11001

04 SUBC, SBIC 00100 15 SET 01111 26 WLDR 11010

05 MUL, MUI 00101 16 CLR 10000 27 CJMP 11011

06 DIV 00110 17 ROR 10001 28 UJMP 11100

07 AND, ANI 00111 18 ROL 10010 29 CALL 11101

08 ORR, ORI 01000 19 SHR 10011 30 RET 11110

09 EOR, ERI 01001 20 SHL 10100 31 HLT 11111

10 NOT 01010 21 EXC 10101 00 NOP 00000

11 BIC,BCI 01011 22 MOV, MVI 10110

3.2 Hazards Analysis in Prototype Processor Design

A sequential prototype design resembling pipeline stages is designed without using

pipeline registers. Data transfer instructions also use the memory effectively. This

design follows the same procedure as a processor, fetching instruction from its

memory, decoding the instruction and loading required data, executing the operation

regarding the instruction and finally storing the result.

Sequentially, four instructions - ins1, ins2, ins3 and ins4, are loaded and

executed in the design. These do not use memory access stage. First instruction is

loaded and passed to decode stage. While the ins1 is being decoded, ins2 is fetched.

Later, ins1 operation is executed based upon the opcode and in the same cycle ins2 is

decoded and ins3 is fetched. In the fourth cycle, ins1 result is recorded in this stage,

ins2 operation is executed, ins3 is decoded and final instruction, ins4 is fetched.

During 4
th

 execution cycle, as ins4 is fetched, the design considers ins4 destination

address as ins1’s destination address and ins1’s result is stored in the ins4’s

destination address. This leaves behind the ins1’s destination memory as empty.

Successive execution of instructions are delayed if a control transfer

instruction like jump or call instruction is executing in present cycle and consumes

more cycles, introducing delay slots. When control hazards are active, it chokes the

pipeline and causes the instructions next to branch or jump instruction to stall one

clock cycle. While shifting the execution control to branch target, the present data like

program counter value, flags status etc. are saved in a stack pointer and are retrieved

back to their respective positions after executing branch target data. Executing

proceeds with next instruction in the flow.

Structural hazards arise if functional units are not pipelined properly and if

there is not enough resources. These hazards effect the design primarily due to

24888 Siva Kumar Nagulapati and Dr. Jayanta Biswas

asynchronized timing requirements between the stages of architecture. All the

instructions doesn’t execute in same number of processing cycles. Some instructions

consume one or two more processing cycles when compared to simple instructions.

These issues add up weight on data dependencies, resulting in data loss, missing the

instruction execution order, etc.

Constraints like these are suppressed by ordering the instructions in fetching

stage such that the next instruction is fetched after a certain delay. Thus the structure

becomes a single cycle design which executes one instruction at a time and fetches the

next instruction after fully executing the previous instruction. These dynamic hazards

can also be avoided by introducing pipeline registers and reservation stations.

Data hazards are based on instruction execution order where later instructions’

inputs are using outputs of present executing instruction. In such cases, pipeline stalls.

It is like a gap in the pipeline at that cycle time. Data forwarding method can be used

to reduce the stalls. This can also be avoided by reordering the instructions order in

such a way that independent instructions are placed between dependent instructions.

3.3 Pipeline Processor Design

The pipeline registers are initialized as shown in Fig. 5. These registers are not of

same size as each stage produces more data bits than its previous stage. These

registers are denoted by both the neighbouring stages. Register between IF and ID is

noted as IF/ID or IFDE, likewise for the others too. Backward passing paths do not

cross these registers.

Fig. 5: Pipeline registers initialization

After the instruction fetch, pipeline register ifde is loaded with instruction and

is masked. In the decode stage, the instruction is decoded and loads the data from the

memory. Some instructions act upon direct data where there is no need to load data

from the memory. This is specified using acknowledgement signals, whether an

instruction loads data bits from the memory or acts on direct data.

Scheduling plays a vital role in architecture modelling. Signal passing lines,

control signals, data forwarding paths are to be synchronized to one another. This

synchronization precisely reduces the slack in setup and hold timings for the module.

Proper predicates are defined to the rule bodies to fire them at necessary cycle.

Bluespec runs with atomic clock actions and the rules are fired with conditions and

Hazards Analysis In A Processor Using Bluespec System Verilog 24889

24889

count values if necessary. A process counter runs in every cycle and is used to fire the

required rules.

In the schedule analysis window, scheduling information is viewed which

include warnings, conflicts between rules, rule relations and method calls for a

module. Conflicts between two selected rules is studied and optimized using rule

relations option. Rule Order tab in the schedule analysis provides the details about the

rules in the module and lists the available rules and methods in the left pane and the

information regarding selected rule or method in the right pane.

3.4 Data Forwarding

Table 2 shows the analysis of dependent instructions, with and without data

forwarding concept in the processor. The instruction consumes more processing

cycles till the availability of data in the destination address of previous instruction.

This degrades the performance of the processor and increases the timing constraints.

Table 2: Analysis of stalls

 No. of processor cycles No. of stalls

Without Data Forwarding 24 11

With Data Forwarding 15 2

The saving of ALU result prior to write-back stage helps in data forwarding

data to the successive dependent instruction. At the ALU operating stage, the result of

an executed instruction is stored in a register tagged with destination address. The

next dependent instruction in the queue is stalled for one processor cycle after the IF

stage of the instruction. During ID stage, the instruction is decoded and the previously

stored result tagged with the destination address is loaded in the register. This

procedure of data forwarding avoids stalls for true data dependencies between the

instructions and increases the performance of the processor. Data forwarding reduces

the delay incurred due to stalls to a minimum count, by making data available to the

next instruction at its decode stage.

4. RESULTS

The initial sequential design is simulated for basic arithmetic and logical instructions.

Due to structural hazards, it is hard to execute load-store instructions in between

instruction flow because of dependencies and timing mismatch between successive

stages of execution. The data forwarding concept cannot be implemented in the

design unless the hazards associated with the design are resolved. Fig. 6 shows the

simulation result of a sequential processor. From the simulation wave, we can

conclude that this design is suffering from structural hazards which stalls the pipeline.

The present executing instruction’s result is stored in the future fetched instruction’s

destination address and this procedure follows through subsequent fetched

instructions. ‘mdat32’ is the memory address to store the final result after write-back

24890 Siva Kumar Nagulapati and Dr. Jayanta Biswas

stage for the first instruction which executes addition operation. During fourth cycle

of storing the result, fourth instruction is fetched and its output memory address is

considered as present first instruction’s write-back address. Processor stores in the

fourth instruction’s write-back address in ‘mdat35’.

The waveform in Fig. 7 shows the pipeline design results. Pipeline registers

reduce data and structural hazards allowing timing synchronization between different

stages of pipeline. Hence only one instruction resides in a pipeline stage for a current

processor cycle. Resources conflicts are supressed by defining resources each stage

individually. Even though number of processor cycles increased, hazards are

optimized and timing synchronization issues are resolved for better performance and

productivity. The data shown in the figure is in hexa-decimal format for our

convenience of study. Data forwarding principles optimized the number of delay slots

during the execution of dependent instructions. This analysis is shown in table 2,

where without data forwarding idea, 24 processor cycles are consumed.

Fig. 6: Prototype (Sequential) Processor Waveform

Hazards Analysis In A Processor Using Bluespec System Verilog 24891

24891

Fig. 7: Pipeline Processor Waveform

The Verilog version of the design is compiled in Altera Quartus II version 9.1

web edition, to meet the timing requirements. The design is loaded in a new project

directory and compiled for multi-corner timing analysis. Slack value for both setup

and hold times are verified. In the Altera Time-Quest Timing Analyzer, timing netlist

is created and clock values are updated. Fmax for the prototype processor is obtained

at 18 MHz and for pipeline processor the value of Fmax is 168 MHz. This variation is

due to resources overlapping in the sequential design along with data hurdles and

timing synchronization issues.

5. CONCLUSION

A Prototype Sequential processor is designed without pipeline registers initialization.

The verilog version of the design program is obtained from Bluespec and static timing

analysis is performed using Altera Quartus II tool. Detailed analysis is performed on

the Pipeline design with optimization protocols for maximum throughput. Scheduling

analysis is throughly worked out for timing synchronization between the pipeline

stages. Timing analysis is performed using the same Altera tool and is determained to

work at 168 MHz for Stratix-III platform.

24892 Siva Kumar Nagulapati and Dr. Jayanta Biswas

References

[1] Yuan-Chu Yu and Yuan-Tse Yu, (2013), Design of a High Efficiency

Reconfigurable Pipeline Processor on Next Generation Portable Device, IEEE,

in the proceedings of Digital Signal Processing and Signal Processing

Education Meeting (DSP/SPE), pp: 42 - 47.

[2] Rishiyur S. Nikhil, (2007), Composable Guarded Atomic Actions: A Bridging

Model for SoC Design, IEEE, in the proceedings of 7
th

 International

Conference on Application of Concurrency to System Design (ACSD), pp: 23

- 28.

[3] J. Robert Heath and Sreenivas Durbha, (2001), Methodology For Synthesis,

Testing, And Verification of Pipeline Architecture Pocessors From Behavioral

Level - Only HDL Code And A Case Study Example, IEEE, in the

proceedings of SoutheastCon, pp: 143 - 149.

[4] Y. Li and W. Chu, (1996), Aizup - A Pipelined Processor Design and

Implementation on XILINX FPGA Chip, IEEE, in the proceedings of IEEE

Symposium on FPGAs for Custome Computing Machines, pp: 98 - 106.

[5] John L. Hennessy and David A. Patterson, Computer Architecture-A

Quantitative Approach, 4th ed., vol. 2. Elsevier, 2007.

[6] William Stallings, Computer Organization And Architecture - Designing For

Performance, 8
th

 ed., Pearson, 2010.

[7] Monica S. Lam and Robert P. Wilson, (1992), Limits of Control Flow on

Parallelism, IEEE, in the proceedings of 19th Annual International

Symposium on Computer Architecture, pp: 46 - 57.

[8] Daniel L. Rosenband and Arvind, (2004), Modular Scheduling of Guarded

Atomic Actions, IEEE, in the proceedings of 41st Design Automation

Conference, pp: 55 - 60.

[9] Arvind, Rishiyur S. Nikhil, Daniel L. Rosenband and Nirav Dave, (2004),

High­level Synthesis: An Essential Ingredient for Designing Complex ASICs,

IEEE, ACM International Conference on Computer Aided Design (ICCAD),

pp: 775 - 782.

[10] Daniel L. Rosenband, (2004), The Ephemeral History Register: Flexible

Scheduling for Rule-Based Designs, IEEE, in the proceedings of 2nd ACM

International Conference on Formal Methods and Models for Co-Design

(MEMOCODE), pp: 189 - 198.

[11] Arvind and Xiaowei Shen, (1999), Using Term Rewriting Systems To Design

And Verify Processors, IEEE, Micro, pp: 36 - 46.

[12] Nirav Dave, (2004), Designing a Reorder Buffer in Bluespec, IEEE, in the

proceedings of 2nd ACM International Conference on Formal Methods and

Models for Co-Design (MEMOCODE), pp: 93 - 102.

[13] Tomoyuki Nakabayashi, Takahiro Sasaki, Kazuhiko Ohno and Toshio Kondo,

(2011), Design and Evaluation of Variable Stages Pipeline Processor Chip,

IEEE, in the proceedings of 16
th

Asia and South Pacific Design Automation

Conference (ASP-DAC), pp: 95 - 96.

