International Journal of Applied Engineering Research

ISSN 0973-4562 Volume 10, Number 10 (2015) pp. 24883-24892
© Research India Publications

http://www.ripublication.com

Hazards Analysis In A Processor Using Bluespec
System Verilog

'Siva Kumar Nagulapati and *Dr. Jayanta Biswas

'M.Tech. VLSI Design, SASTRA University, Thanjavur, Tamil Nadu, India
’Department of ICT, SASTRA University, Thanjavur, Tamil Nadu, India
nagulapatisivakumarreddy@gmail.com, 2jayantab2002@gmail.com

Abstract

This paper implements a prototype (sequential) processor and a simple
pipeline processor with Bluespec System Verilog (BSV). Hazards are
analysed in the processors, designed with atomic rules and methods, using
Bluespec System Verilog Hardware Description Language. The pipeline
processor operation methodologies and performance is compared with a
prototype sequential processor in terms of hazards, processor cycles consumed
for each instruction. The functionality of the designed processors is verified
with GTK cycle accurate simulator. Altera design flow is adopted to verify the
static timing which provides a flexible platform for fast exploration of micro-
architectures for multithreaded and multicore CPUs. The concepts of
concurrency, scheduling, parallelism and pipeline hazards optimization are
used for better performance, flexibility and productivity.

Keywords—Bluespec, BSV, pipeline, mnemonic, opcode, hurdles,
sequential, instruction, hazards

1. Introduction
Instruction pipelines, also called as RISC pipelines, are used in designing central
processing units (CPUSs) to allow overlapping execution of multiple instructions with
the same circuitry. These uses RISC design philosophy. Pipeline technique speeds up
the execution by fetching the next instruction while other instructions are being
decoded and executed. The circuitry is partitioned into multiple stages with each stage
processing an instruction at a time and total throughput increases by a factor equal to
number of pipeline stages.

Fig. 1 shows the pipeline concept of executing three instructions — ADD, SUB
and AND in a three stage pipeline containing fetch, decode and execute blocks. Add

24884 Siva Kumar Nagulapati and Dr. Jayanta Biswas

instruction is fetched in cycle 1. In cycle 2, subtraction instruction is fetched and
addition instruction is decoded. Likewise, in cycle 3, immediate logical AND
instruction is fetched, subtraction instruction is decoded and addition instruction is
executed. Hazards associated with the design should be monitored throughout the
execution time for optimization and performance enhancement of the processor. RISC
processors have reduced number of instruction classes which provide simple
operations and the instructions can be executed in a single cycle.

Fetch Decode Execute
Cycle 1 ADD) E—

Cycle2 | SUB mmms) ADD mem)

Cycle 3 AND » SUB mmm) ADD

Fig. 1: Pipeline Instruction Flow

1.1 Paper Organization

Section 2 provides a brief introduction to Bluespec tool and its HDL features. Section
3 presents the concepts on pipeline technique and hazards associated with the
prototype and pipeline processors. In Section 4, results are viewed concluded in
Section 5.

2. Bluespec System Verilog

The Hardware Description Language (HDL) for Bluespec tool is BSV. It is a strongly
typed hardware synthesis language which uses the Term Rewriting System (TRS) to
compute a series of atomic actions. BSV is an object-oriented hardware description
language. BSV borrowed its ideas from two sources - System Verilog and Haskell for
its structural abstractions. Concepts of modules and module hierarchy, separation of
interfaces from modules, syntax for user-defined types, syntax for blocks and loops
are chosen from System Verilog. For more advanced types, parameterization and
static elaboration, Haskell is used, which is a pure functional programming language
and has powerful features than those in languages like C#, C++ and Java.

BSV’s behavioral model is popular among formal specification languages for
complex concurrent systems as the motivations behind this model are extraction of
parallelism and correctness. Every program or code has its own package and package
name as its file name with.bsv extension. A module inside the package represents the

Hazards Analysis In A Processor Using Bluespec System Verilog 24885

design. A program can contain multiple packages or multiple modules in a single
package. It is not advisable to include multiple modules in a single package because
when the concept of complex processing is accessed, it may contain more than
expected functional units or modules and rises the confusion of module descriptions at
the interfaces acting between modules and its sub-modules.A module is treated as
fundamental unit of the design and is used for synthesizable architectural modeling,
exploration and validation at a system level.

The Fig. 2 describes the construction of a BSV design. The two stages of
compilation, type checking and code generation, are done by a single compile
command. Compiler completes type checking and static elaboration and compiles the
design into a TRS. TRS is converted into WVerilog or C program.
Intermediate.bi/.bo/.ba/.h files are not directly viewed by the user. BSV compiler
maps the design into parallel clocked synchronous hardware and includes dynamic
scheduler which allows multiple rules to fire in a single clock cycle. Bluespec
Development Workstation (BDW) is a graphical design environment for creating,
building, analysing and simulating BSV designs. The source files are named with
extension ‘bsv’ and the project file is named after Top file name with extension
‘.bspec® while loading in the workstation.

bswv

High Level Description Bluespec

ihe rules for 2 aesign | Development
e == Workstation
g’ Window

Evaluate HLD

bitbo |
files | Pre-elaboration
BSWV '
Compiler L
translate rule
description into
hardware
description
.ba
files Post-elaboration
RV .h/.o
Verilog _ Bluesim
implementation implementation

Fig. 2: BSV Compilation Flow

24885

24886 Siva Kumar Nagulapati and Dr. Jayanta Biswas

3. PROCESSOR DESIGNING

The above Fig. 3 shows a five stage pipeline architecture. Instructions are fetched in
IF stage from the instruction memory. These instructions are decoded in the ID stage.
The opcode operation is executed in the EX stage. Data memory is used by load/store
instruction in MA stage. The results obtained from either execute stage or memory
access stage are written back to the destination address by the WB stage. There are
two forward paths from the execution stage, one to the memory access stage and the
other directly to the write-back stage. The shaded regions are the pipeline registers.
These registers cross the forward going paths and stores the previous stage data,
making available for next stage.

IF/ID ID/EX EX/MA MA/WB
Instruction ™ Instruction [Execute (] Memory Write Back
Fetch (IF) Decode (ID) (EX) Access (MA) (WB)
= Instruction \ M
PC M) Registers ALU| Data U
cmory Memory X

Buffer

Fig. 3: Pipeline structure

3.1 Instruction Format

A 24-bit instruction is used as shown in Fig. 4. Bits from 0 to 4 are dedicated for
mnemonics of instructions. Bit 5 is used as write acknowledgement for destination
register from bit 6 to 10, whether to write to a register or to be used in other data
transfer and control operations. Bits 11 and 17 are similar acknowledgement bits for
sources 1 and 2 respectively. Bit 23 is used as acknowledgement signal for accessing
the memory block. Based on the opcode at the beginning of the format, the destination
and source bits play different roles for better performance and optimization. The
acknowledgement bits are used to load the data from the memory or to use direct data.
If both sourcel acknowledgement and source2 acknowledgement bits are zero,
address is loaded from sourcel bits and source2 bits. If either of source’s
acknowledgement is 1, the other source is loaded with direct data from the instruction.

23 22 17 16 11 10 54 0

MB Ack. | Source2 Address | Sourcel Address | Destination Address Opcode
6-bit 6-bit 6-bit 5-bit (32 ins’s)

Fig. 4: Instruction format

Hazards Analysis In A Processor Using Bluespec System Verilog 24887

Table 1 shows the set of mnemonics and their respective opcodes used in this
work. These include arithmetic, logical, load-store, branching and machine control
instructions. All these are commonly utilized instructions in a RISC processor
architecture.

Table 1: Mnemonics & Opcodes

* Mnemonic | Opcode | * | Mnemonic | Opcode | * | Mnemonic | Opcode
01| ADD,ADI 00001 | 12 INC 01100 | 23 RSTR 10111
02 | ADDC,ADIC | 00010 | 13 DEC 01101 | 24 RLDR 11000
03 SUB,SBI 00011 | 14 CMP 01110 | 25 WSTR 11001
04 | SUBC, SBIC | 00100 | 15 SET 01111 |26 | WLDR 11010
05| MUL, MUI 00101 | 16 CLR 10000 | 27 CIMP 11011
06 DIV 00110 | 17 ROR 10001 | 28 UJMP 11100
07 | AND, ANI 00111 | 18 ROL 10010 | 29 CALL 11101
08 | ORR, ORI 01000 | 19 SHR 10011 | 30 RET 11110
09 | EOR,ERI 01001 | 20 SHL 10100 | 31 HLT 11111
10 NOT 01010 | 21 EXC 10101 | 00 NOP 00000
11 BIC,BCI 01011 | 22 | MOV, MVI | 10110

3.2 Hazards Analysis in Prototype Processor Design

A sequential prototype design resembling pipeline stages is designed without using
pipeline registers. Data transfer instructions also use the memory effectively. This
design follows the same procedure as a processor, fetching instruction from its
memory, decoding the instruction and loading required data, executing the operation
regarding the instruction and finally storing the result.

Sequentially, four instructions - insl, ins2, ins3 and ins4, are loaded and
executed in the design. These do not use memory access stage. First instruction is
loaded and passed to decode stage. While the insl is being decoded, ins2 is fetched.
Later, ins1 operation is executed based upon the opcode and in the same cycle ins2 is
decoded and ins3 is fetched. In the fourth cycle, insl result is recorded in this stage,
ins2 operation is executed, ins3 is decoded and final instruction, ins4 is fetched.
During 4™ execution cycle, as ins4 is fetched, the design considers ins4 destination
address as insl’s destination address and insl’s result is stored in the ins4’s
destination address. This leaves behind the ins1’s destination memory as empty.

Successive execution of instructions are delayed if a control transfer
instruction like jump or call instruction is executing in present cycle and consumes
more cycles, introducing delay slots. When control hazards are active, it chokes the
pipeline and causes the instructions next to branch or jump instruction to stall one
clock cycle. While shifting the execution control to branch target, the present data like
program counter value, flags status etc. are saved in a stack pointer and are retrieved
back to their respective positions after executing branch target data. Executing
proceeds with next instruction in the flow.

Structural hazards arise if functional units are not pipelined properly and if
there is not enough resources. These hazards effect the design primarily due to

24887

24888 Siva Kumar Nagulapati and Dr. Jayanta Biswas

asynchronized timing requirements between the stages of architecture. All the
instructions doesn’t execute in same number of processing cycles. Some instructions
consume one or two more processing cycles when compared to simple instructions.
These issues add up weight on data dependencies, resulting in data loss, missing the
instruction execution order, etc.

Constraints like these are suppressed by ordering the instructions in fetching
stage such that the next instruction is fetched after a certain delay. Thus the structure
becomes a single cycle design which executes one instruction at a time and fetches the
next instruction after fully executing the previous instruction. These dynamic hazards
can also be avoided by introducing pipeline registers and reservation stations.

Data hazards are based on instruction execution order where later instructions’
inputs are using outputs of present executing instruction. In such cases, pipeline stalls.
It is like a gap in the pipeline at that cycle time. Data forwarding method can be used
to reduce the stalls. This can also be avoided by reordering the instructions order in
such a way that independent instructions are placed between dependent instructions.

3.3 Pipeline Processor Design

The pipeline registers are initialized as shown in Fig. 5. These registers are not of
same size as each stage produces more data bits than its previous stage. These
registers are denoted by both the neighbouring stages. Register between IF and ID is
noted as IF/ID or IFDE, likewise for the others too. Backward passing paths do not
cross these registers.

f - 4 pipeline registers——-—
22)) ifde <- mkReg(0):

((
Reg# (Bit#(121)) idex <- mkReg(0);
Feg# (Bit#(153)) exma <- mkReg(0):;
Feg# (Bit#(24%)) mawb <- mkReg(0):;

Fig. 5: Pipeline registers initialization

After the instruction fetch, pipeline register ifde is loaded with instruction and
is masked. In the decode stage, the instruction is decoded and loads the data from the
memory. Some instructions act upon direct data where there is no need to load data
from the memory. This is specified using acknowledgement signals, whether an
instruction loads data bits from the memory or acts on direct data.

Scheduling plays a vital role in architecture modelling. Signal passing lines,
control signals, data forwarding paths are to be synchronized to one another. This
synchronization precisely reduces the slack in setup and hold timings for the module.
Proper predicates are defined to the rule bodies to fire them at necessary cycle.
Bluespec runs with atomic clock actions and the rules are fired with conditions and

Hazards Analysis In A Processor Using Bluespec System Verilog 24889

count values if necessary. A process counter runs in every cycle and is used to fire the
required rules.

In the schedule analysis window, scheduling information is viewed which
include warnings, conflicts between rules, rule relations and method calls for a
module. Conflicts between two selected rules is studied and optimized using rule
relations option. Rule Order tab in the schedule analysis provides the details about the
rules in the module and lists the available rules and methods in the left pane and the
information regarding selected rule or method in the right pane.

3.4 Data Forwarding

Table 2 shows the analysis of dependent instructions, with and without data
forwarding concept in the processor. The instruction consumes more processing
cycles till the availability of data in the destination address of previous instruction.
This degrades the performance of the processor and increases the timing constraints.

Table 2: Analysis of stalls

No. of processor cycles | No. of stalls
Without Data Forwarding 24 11
With Data Forwarding 15 2

The saving of ALU result prior to write-back stage helps in data forwarding
data to the successive dependent instruction. At the ALU operating stage, the result of
an executed instruction is stored in a register tagged with destination address. The
next dependent instruction in the queue is stalled for one processor cycle after the IF
stage of the instruction. During ID stage, the instruction is decoded and the previously
stored result tagged with the destination address is loaded in the register. This
procedure of data forwarding avoids stalls for true data dependencies between the
instructions and increases the performance of the processor. Data forwarding reduces
the delay incurred due to stalls to a minimum count, by making data available to the
next instruction at its decode stage.

4. RESULTS

The initial sequential design is simulated for basic arithmetic and logical instructions.
Due to structural hazards, it is hard to execute load-store instructions in between
instruction flow because of dependencies and timing mismatch between successive
stages of execution. The data forwarding concept cannot be implemented in the
design unless the hazards associated with the design are resolved. Fig. 6 shows the
simulation result of a sequential processor. From the simulation wave, we can
conclude that this design is suffering from structural hazards which stalls the pipeline.
The present executing instruction’s result is stored in the future fetched instruction’s
destination address and this procedure follows through subsequent fetched
instructions. ‘mdat32’ is the memory address to store the final result after write-back

24889

24890 Siva Kumar Nagulapati and Dr. Jayanta Biswas

stage for the first instruction which executes addition operation. During fourth cycle
of storing the result, fourth instruction is fetched and its output memory address is
considered as present first instruction’s write-back address. Processor stores in the
fourth instruction’s write-back address in ‘mdat35".

The waveform in Fig. 7 shows the pipeline design results. Pipeline registers
reduce data and structural hazards allowing timing synchronization between different
stages of pipeline. Hence only one instruction resides in a pipeline stage for a current
processor cycle. Resources conflicts are supressed by defining resources each stage
individually. Even though number of processor cycles increased, hazards are
optimized and timing synchronization issues are resolved for better performance and
productivity. The data shown in the figure is in hexa-decimal format for our
convenience of study. Data forwarding principles optimized the number of delay slots
during the execution of dependent instructions. This analysis is shown in table 2,
where without data forwarding idea, 24 processor cycles are consumed.

CLEK
acc[31:0]
ins[23:0]

mdat3i2[31:0]
mdatii[31:0]
mdati4[31:0]
mdati5[31:0] e [— S p—y5 g g 5 =)
mdat36e[31:0]
mdati7[31:0]
mdat38[31:0]
mdat3ig[31:0]
mdat40[31:0]
mdat41[31:0]
mdat42[31:0]
mdat43[31:0]
mdat44[31:0]
mdat45[31:0]
mdat46[31:0]
mdat47[31:0]
mdat48[31:0]
mdat49[31:0]
op_code[4:0] oo
op_code_ack |
pelil:o0] o0oo001 [oooooo0z i | o0000006 ooooo007
psr[7:0] (e | | N || | s |1
readl ack |
readl_data[31:0] poooooon [E7ES4szl
readl_ins[4:0] e
read?_ack | | [
read?_data[31:0] pooopoon Azzasers Don000IF
read2_ins[4:0] h i ar
sendl1[31:0] | j 00000006 00000007

Fig. 6: Prototype (Sequential) Processor Waveform

Hazards Analysis In A Processor Using Bluespec System Verilog 24891

Time
CLK
acc[31:0] 00000000 99999999 87654322
dl[31:0] 000
d2[31:0] poooooo0 12345678 /00000001
dl1[31:0] 0 y =
dl2[31:0]
dl4[31:0]
ins[23:0]
mdat32[31:0] ooo0000
mdat33[31:0] Gosoooo0 T amesaz
mdat34[31:0] oosooeo0 3333333
mdat35[31:0]
mdat36[31:0]
mdat37[31:0]
mdat38[31:0]
mdat39[31:0]
mdat40[31:0]
mdat41[31:0]
mdat42([31:0]
mdat43[31:0]
mdat44[31:0]
mdat45[31:0]
mdat46[31:0]
mdat47[31:0]
mdat48[31:0] (I
pcl[31:0] 0000000 100000002 3 0000000E
pc2[31:0] 00000000 00000003 00000007 |0000000B __ |0000000F
pc3[31:0] jooo000 ooooooos goosoooc
pcd[31:0] o0
peb[31:0]
pc6[31:0]
pcl0[31:0]

Fig. 7: Pipeline Processor Waveform

The Verilog version of the design is compiled in Altera Quartus 11 version 9.1
web edition, to meet the timing requirements. The design is loaded in a new project
directory and compiled for multi-corner timing analysis. Slack value for both setup
and hold times are verified. In the Altera Time-Quest Timing Analyzer, timing netlist
is created and clock values are updated. Fmax for the prototype processor is obtained
at 18 MHz and for pipeline processor the value of Fmax is 168 MHz. This variation is
due to resources overlapping in the sequential design along with data hurdles and
timing synchronization issues.

5. CONCLUSION

A Prototype Sequential processor is designed without pipeline registers initialization.
The verilog version of the design program is obtained from Bluespec and static timing
analysis is performed using Altera Quartus Il tool. Detailed analysis is performed on
the Pipeline design with optimization protocols for maximum throughput. Scheduling
analysis is throughly worked out for timing synchronization between the pipeline
stages. Timing analysis is performed using the same Altera tool and is determained to
work at 168 MHz for Stratix-111 platform.

24891

24892

Siva Kumar Nagulapati and Dr. Jayanta Biswas

References

(1]

[2

(31

(4]

(5]

(6]

[71

(8l

[9]

[10]

[11]

[12]

[13]

Yuan-Chu Yu and Yuan-Tse Yu, (2013), Design of a High Efficiency
Reconfigurable Pipeline Processor on Next Generation Portable Device, IEEE,
in the proceedings of Digital Signal Processing and Signal Processing
Education Meeting (DSP/SPE), pp: 42 - 47.

Rishiyur S. Nikhil, (2007), Composable Guarded Atomic Actions: A Bridging
Model for SoC Design, IEEE, in the proceedings of 7" International
Conference on Application of Concurrency to System Design (ACSD), pp: 23
- 28.

J. Robert Heath and Sreenivas Durbha, (2001), Methodology For Synthesis,
Testing, And Verification of Pipeline Architecture Pocessors From Behavioral
Level - Only HDL Code And A Case Study Example, IEEE, in the
proceedings of SoutheastCon, pp: 143 - 149.

Y. Li and W. Chu, (1996), Aizup - A Pipelined Processor Design and
Implementation on XILINX FPGA Chip, IEEE, in the proceedings of IEEE
Symposium on FPGAs for Custome Computing Machines, pp: 98 - 106.

John L. Hennessy and David A. Patterson, Computer Architecture-A
Quantitative Approach, 4th ed., vol. 2. Elsevier, 2007.

William Stallings, Computer Organization And Architecture - Designing For
Performance, 8" ed., Pearson, 2010.

Monica S. Lam and Robert P. Wilson, (1992), Limits of Control Flow on
Parallelism, IEEE, in the proceedings of 19th Annual International
Symposium on Computer Architecture, pp: 46 - 57.

Daniel L. Rosenband and Arvind, (2004), Modular Scheduling of Guarded
Atomic Actions, IEEE, in the proceedings of 41st Design Automation
Conference, pp: 55 - 60.

Arvind, Rishiyur S. Nikhil, Daniel L. Rosenband and Nirav Dave, (2004),
High-level Synthesis: An Essential Ingredient for Designing Complex ASICs,
IEEE, ACM International Conference on Computer Aided Design (ICCAD),
pp: 775 - 782.

Daniel L. Rosenband, (2004), The Ephemeral History Register: Flexible
Scheduling for Rule-Based Designs, IEEE, in the proceedings of 2nd ACM
International Conference on Formal Methods and Models for Co-Design
(MEMOCODE), pp: 189 - 198.

Arvind and Xiaowei Shen, (1999), Using Term Rewriting Systems To Design
And Verify Processors, IEEE, Micro, pp: 36 - 46.

Nirav Dave, (2004), Designing a Reorder Buffer in Bluespec, IEEE, in the
proceedings of 2nd ACM International Conference on Formal Methods and
Models for Co-Design (MEMOCODE), pp: 93 - 102.

Tomoyuki Nakabayashi, Takahiro Sasaki, Kazuhiko Ohno and Toshio Kondo,
(2011), Design and Evaluation of Variable Stages Pipeline Processor Chip,
IEEE, in the proceedings of 16™ Asia and South Pacific Design Automation
Conference (ASP-DAC), pp: 95 - 96.

