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Abstract

In this article, the Bayesian and non-Bayesian approaches have been used to obtain
the estimators of the parameter Generalized Compound Rayleigh Distribution. Bayes
estimators have been developed under symmetric loss function. These estimators are
derived using Natural Conjugate prior distribution for Scale parameter y. We compare
the performance of the presented Bayes estimators with known, non-Bayesian,
estimators such as the maximum likelihood (ML).
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1. Introduction

The three-parameter Generalized Compound Rayleigh Distribution is derived from the
three-parameter Burr type XII distribution(Burr(1942)). Mostert Roux, and Bekker
(1999) used this distribution as a Gamma mixture of Rayleigh distribution and obtained
the Compound Rayleigh model with unimodal hazard function. Bain and Engelhardt
(1991) studied this distribution (also known as the Compound Weibull distribution
(Dubey 1968) from a Poisson perspective. The pdf of Generalized Compound Rayleigh
Distribution is given by

1 —
f(:6,0,8) = 295x@ V(9 +x°) "™ x,0,0,6 > 0 (1.1)

The Quadratic loss function is commonly used loss function in estimation problems,
givenas L(A,A) = k(A — A)? where A is the estimate of A, the loss function is called
quadratic weighed loss function if k=1, we have
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L(A,A) = (A - 0)? (1.2)

A loss function that satisfies a symmetric condition because it associates the equal
importance to the losses due to overestimation and under estimation with equal
magnitudes. [Ferguson (1985), Canfield (1970), Basu and Ebrahimi (1991), Zellner
(1986) and Varion(1975)]. Soliman (2001) derived and discussed the properties of
symmetric and Asymmetric Loss Function and demonstrated its usefulness in weakly-
supervised learning, e.g., one can use asymmetric loss to simplify a risk estimator in
learning from positive-unlabeled data.

We have studied the sensitivity of the Approximate Bayes estimators of model and
presented a numerical study to illustrate the above technique on generated observations
and the comparison is done by R-programming.

2. The Estimators

Letx; < x, < ......... < x, bethe n failures in complete sample case. The likelihood
function is given by

L(x16,9,6) = (g)n ve s 2.1)

where

6-1

T =%7log [1 + %] and U =1Ij- 1(p+x
from equation(2.1), the log likelihood function is
Log L = nlog® +glog<p —nlogd + (60 — 1) X7, logx; — (§+

1) 271 log (¢ + %) 2.2)

differentiating the equation(2.2) with respect to 8,¢ and § yields respectively we
obtain the Maximum Likelihood Estimator of 8, ¢ and §.

Applying the Newton-Raphson method 8,,;,z and @,z can be derived and then from
them &,z can be obtained.

3. Bayes estimators for § with known parameter 8 and ¢

If & and ¢ is known we assume &(a, b) as conjugate prior for & as
a+1

g(Blr)=2(3) e (a,b,8) >0 (3.1)

combining the likelihood function equation(2.1) and prior density equation(3.1), we
obtain the posterior density of § in the form

[P RS 3
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6_(n+9_1) _(bgT)
h(8lx) = " (3.2)
Jyo §~(n+6-1)e™ 5 as
assuming
_ 1 x;° d — 1" x0t
T = Zj=110g<1+_) an U= H] lm
h(s y- -0 "5 ) 3.3
( |£) rn+a) ( ) )
Bayes Estimator of § under Quadratic loss function (QLF)
Under Quadratic loss function Bayes Estimator is
(b+T)(n+a) (n+a+1) —(b+T)/5
S50 = Jy 6 5y (5) e ds (3.4)
(n+a) ,oo (n+a)
ABSQ = & (l) exp—(b+T)/5
n+a) J, \6
o b+T
substituting y = 5
On solving which gives
_ (b+T)
Opsq = (ra-1) (3.5
4. Approximate Bayes Estimator of the unknown Location parameter .
The Joint prior density of the parameters 6, ¢, § is given by
G(,9,6) = g1(9)gz(<p)g3(6|¢)
-&58+1 +2
= 5@ 0% exp - ( u)] (4.2)
where
91(0) =c (4.2)
. 8
92(p) = ;9 H (4.3)
[
93(8) = ¢85 e (4.4)

The Joint posterior combing the likelihood equation(2.2) and joint prior
equation(4.1) is

@ ¢85+ exp|- (— 9)] L(x]6,9,6)

To Sy Is B-5vé*1exp|~(5+5)| Lxi0.0.6)a0apas

h*(6,¢,68]x) = (4.5)
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The Approximate Bayes Estimator is given by
Y(@) =Y(0,9,6) (4.6)

%) = Jo I, Js Y(@BY)G* (0,9,6)d0dgds

Yigso = E(Y
ABSQ ( | o f(p Js G*(6,9,6)d0dpads

(4.7)

Lindley Approximation Procedure

The Bayes estimators of a function v = v(d, p) of the unknown parameter 9 and p
under quadratic loss is the posterior mean
I v@.p)h*(0, p|x)as dp

Il h*(8,p|x)as ap

The ratio of integrals in equation (4.7a) does not seem to take a closed form so we must
consider the Lindley approximation procedure as

f)ABSQ = E(V|£) = (473.)

fv(ﬁ).e(lw“pw))dﬁ
E(V(ﬁ’ P) |§) = [ @+p®) g9 (4.70)

Lindley developed approximate procedure for evaluation of posterior expectation
of v(¥9). Several other authors have used this technique to obtain Bayes estimators (see
Berger(1980), Sinha(1986), Sinha and sloan(1988),Soliman(2001)).The posterior
expectation of Lindley approximation procedure to evaluate of v(9)in equation (4.7a
and 4.7b) under SELF, where where p(9) =logg(¥9) , and g(9) is an arbitrary
function of 9 and [(¥9) is the logarithm likelihood function (Lindley (1980)).

The modified form of equation (4.7) is given by

1
E(Y(a, ﬂ:V|£) =Y(0) + > [A(Yy011 + Y2015 + Y30u3) + B(Yy051 + Vo0, +
1
Y;053) + P (Yi03, + Vo053, + Y3035)] + (Yia, + Ysa, + Yza3 +a, +as) + 0 (ﬁ)

(4.8)
Above equation is evaluated at MLE = (8, ¢, 6)
where
Ay = P1011 + P2012 + P3013 (4.9)
ay = P1021 T P2022 + P3023 (4.10)
a3 = P1031 + P2033 + P3033 (4.11)
Ay = Y1201 + V13013 + Y330%3 (4.12)
as = %(Ynan + Y3202 + Y33033) ; (4.13)
And
A = [oy1l111 + 20131121 + 20131131 + 20230331 + 0321521 + 033l331] (4.14)
B = [o11l112 + 2015l125 + 20130135 + 20331335 + 0221522 + 033l332] (4.15)
P = [011l113 + 2013133 + 20150123 + 20331333 + 0220223 + 033l333] (4.16)
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To apply Lindley approximation on equation (4.8) , we first obtain
-1,

O-ij = [_ll]k] l,],k = 1,2,3

Likelihood function from equation (2.2) is

1
LogL = nlog6 +glog<p —nlogé + (0 — 1) Xi-, logx; — (5+

1) =1 log((p + xje) (4.17)
Now differentiating log likelihood function with respect to 8, ¢ and & ,we get
_22n_ (1 _ %% (¢ = x;°) (log x)°
L =33 (y + 1) W133 where w33 =X () (4.18)
_2n (1 —yn 1
Loz = o5 =2 (y +1)8;  where 6, =37, — (4.19)
2n 6nl 6
ligs = — 55—~ - +5 00 Wwhere 8y, =37, log (¢ +x°) (4.20)
_ (L _yn %0 =% (1ogx))"
li1z = (6 + 1) w13 Where w123 = Nj=1 () (4.21)
and Ly =l
=2 _ yn x7(ogx)?
Lz = 5 W12z where W122 = Lj=1 (prx,0). (4.22)
— l _on xjglong
i ==-2(5+1)wns where w3 =30, — (4.23)
lao1 = la12
L. = —" ! h 51, = 37" ! 4.24
223 = G2 T (5)2 012 where 12 = j=1m (4.24)
_ _i _on xj‘slong
l331 = =z 011 where  wqq = Xj ) (4.25)
l331 = l313
a ( d%L 2 (n
lsz2 = %(asaqa) - 5(5 a 511) (4.26)
l332 = l323
ls1 = — =5 (4.27)
las1 = lz13
Ly = — 22 4.28
123 = T 752 (4.28)
li2z = li32

0
_T2yn Xjlogx; = 2
liz3 = §2j=1 R — 52011 (4.29)
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—_2(1 _yn xjelong
li0 = —2 (5 + 1) w113 where w113 = Nj=1 (o) (4.30)
_2n 2 .an 1 2 (n
lyz3 = R DY b 5(5 — 511) (4.31)
The matrix of derivatives is given as
llll 1112 lll3
[_lijk] =—1l21 laz Iy (4.32)
l331 lzzz 333
2n /1 1 %
rFE (5 + 1) w133 ) (E + 1) w123 ~ 52 @122
1 2néd 1 n 1
= —2(5"' 1)(1)113 ,6_(p3_2(§+1)613 _(6[?)2_5612
-2 -2 /m 2n 6nlogep 6
lel :F(E‘é‘n) T3 T T st ﬁé‘lo

Qi1 Q12 Q13
[_lijk] = [Q21 Q22 Q23]
Q31 Q32 033

Determinant of [_lijk]

2125§Q11[Q22Q33 — Q23032] — Q12[Q21Q33 — Q31Q23] + Q13[Q21 032 — Q2203313

-1 (Adjoint of [—ly])’
[~lj] =

D
U1 Urz U13'|

D D
I -1 _|U21 Uz Uzs
™ =] e

Usp Uzz Uss
- D D D

(011 012 013
b

I
D D D J

-1
[—ll-jk] =021 022 023
031 032 033

(4.33)

Approximate Bayes Estimator

Y(a,B,y) =Y

?ABSQ = E(Y|x)

evaluated from equation number and from joint prior density , we have
G(6,9,6) = g(6)g2(¢)g3(519)

= élg—fyf—lexp [_ (% + 2)];

&
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p =logG =logC — loge — log[& + (§ — 1)logs — éloge

-(G+%) (4.34)
Log G= constant — élogp + (6 — Dlogy — % _g
p1= 2—;’ =0 (4.35)
=Tt (4.36)
p3:§_§:%‘i (4.37)

Using equation (4.14) to equation (4.37), we have

A= % :U11 (2_7: - (% + 1) w133) + 20U, (% + 1) w13 + 2Up3 %wuz — 2U3 % -
2U3; (% + 1) w113 — %U33w11] (4.38)

B=2 (% +1) wigsUsy — 4Us, (5 + 1) w115 — 2055 (—222) +

1 2
(Uzz+2U33) (ﬁ - g@z) + Uss <— 5 (% - 511))] (4.39)
1[U110 201w 4U 3w 4U n n 1
P = [P o — T - R T (5 60 ) + U (7 — 5 012) +
2n enl 6
o (-2-8 ) o
Now

?ABSQ = E(Y|[x)

E(Y|x) =u+ (wa; + uza; + uzaz + as,as) +%[A(u1011 + up01; + uz013) +

1

B(u10'21 + u20'22 + u30-23) + P(u10'31 + u20'32 + u30'33)] + O (ﬁ) (441)
EXY[X)=U+vY1+1,
where
Y, =uaq +uya, +uzas; +a, + as (4.42)
l/)z = %[(AO’H + BO_21 + PO_31).Y1 + (Ao_lz + BO—ZZ + PO-32). YZ + (AO_13 + BO-23 +
Po33)Ys] (4.43)
evaluated at the MLE ¥ = (8, §, §) where

_ “£, 6  N\hp  (em1  1\Vi
a1—0-11+((p+(p2 S)D +(6 (p)D (444)

_ Sy _ 1\l (-1 1)V
a = 0.0y +(F+E-3) 2+ (= -1)% (4.45)
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_ €8 I\ (el 1)
a3—a31+((p+(p2 E)D+((S (p)D (4.46)
a, = 22U, + By, + 22U (4.47)
4 = Uiz 77 Uiz T 7 Uss .
1
as = 5(U11Y11 + Uy,Y2p + UssYssz) (4.48)

Approximate Bayes Estimate Under Quadratic Loss Function
?ABSQ =EW) =19
where

JoJ ,J 566" (6,,6)00905
[ ol of 567 (61$.6)0009005

The above equation (4.49) is evaluated by method of Lindley approximation by
replacing 9 by Y (8,4, §) in equation (4.49)

Special cases:—
Y(6,9,6)=Y
?ABSQ = E(Y[x)

EY(19|£) =

(4.49)

3. Approximate Bayes Estimate of §
?ABSQ = E(Y|£)
=Y+y1+1,

Y=6; Y3

ay
= 35 =
Y=Y =Y3=Y3=0
Vi=Y,=Y,=Y3=0
SABSQ =6+, +9Y, (4.50)
where Y, =Y,a4 +Ysa, +Yza; +a, +as

ne i) (9%

1, Y31 =Y5, =Y;33=0

1
and Y, = 3 [(Aoy;, + Boyy + Po3q) Ui+ (Aogy, + Boyy, + Posy) Uy
+ (Aoy3 + Boys + Pos3) Us]

1
Y, = E(AUB + Bo,3 + Pos3)

—§ 6 1\ §—1 1\Y33

A 1
6ABSQ :6+(?+?_;)F+(T_5)F+E(AO—13+BO_23+PO_33)
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SABSQ = 6 + A, at (éML’ @ML,SML) (451)
Where

2= (G-m- )%+ (F )G - Gr)em) +2va (G4

2
4 w u 2 U 1U 1
1) Wiz3 + 2U1s 5 125 = 2Was 35 — 27 ( + 1) w113 ~ ﬁ%“)n)] *: o l(E +

U11 4U12 1 2U13 W14 U22+2U23 n 612 U33 2 n
Hons 3t =52 (5 + 1) ons =25+ (255 )'(62¢2_?)+T<6_3(5_
n

610))] + 1Usz [Yn(ﬂ Wiy — 2Y12 W14 k] Uiz w14 + 4% U2z i(ﬁ _ 611) U2z (

2 D |Ds2 D ¢t D &3 D &3 Tt 5202
812 Usz (—2n _ 6nlogy 6
#) (TR o (4.52)

Numerical Comparison
The numerical calculations are presented in table below.

1. The Random variable of Generalized Compound Rayleigh Distribution is generated
by R-Language programming by taking the values of the parameters 6, ¢, § , taken as
6 =1,¢p=0.5andé = 0.8 inthe equations[(4.2)-(4.4)] and equation(1.1).

2. Taking the different sizes of samples n=10(10)80 with complete sample, MLE's, the
Approximate Bayes estimator, and their respective MSE's (in parenthesis) are obtained
by repeating the steps 500 times, are presented in the tables(1) with parameters of prior
distribution a =2 and b =3.

3. Table (1) present the MLE of parameter of § (for known 6 and ¢ ), Bayes Estimator
of & under QLF and Approximate Bayes estimator under QLF (for 8, ¢ and §
unknown) and their respective MSE's. It also presents the mean and MSE’s of § and
Approximate Bayes estimator of § under QLF. All the estimators have minimum MSE's
for large sample sizes, as the sample sizes decrease, the MSE's increased. The MSE's
in all above cases are presented in parenthesis.

Table (2.1) Mean and MSE'S of &

n|10 20 30 40 50 60 70 80
3, | 0.59001 | 0.69226 | 0.68654 | 0.8697 | 0.8490 | 0.9490 | 0.9454 | 0.9657
24 01 78 568 01 11 54 32
MS | [0.0256 | [0.0265 | [0.0965 | [0.0036 | [0.0046 | [0.0042 | [0.003 | [0.001
E |4 7] 8] 5] 5] 6] 67] | 45]
85 | 0.55014 | 0.55558 | 0.65214 | 0.8170 | 0.8757 | 0.9757 | 0.9244 | 1.0524
82 57 63 933 61 63 43 43
MS | [1.6%- | [1.59%- |[1.6%- | [0.0018 |[0.0016 | [0.0016 | [0.003 | [0.004
E | 05] 05] 05] 4] 2] 4] 18] 12]
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8 4ps| 0-54632 | 0.56913 | 0.87458 | 0.8801 | 0.8592 | 0.9792 | 0.9873 | 1.0073
58 77 96 81 358 358 98 98

MS | [0.0042 | [0.0008 | [0.0009 | [0.0157 | [0.0154 | [0.0154 | [0.013 | [0.015
E |51] 22] 56] 8] 7] 7] 74] 44]
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