Absolutely Flat Dimension of Modules

S. Mangayarcarassy

Department of Mathematics, Pondicherry Engineering College, Pondicherry-605014, India. E-mail: dmangay@pec.edu

Abstract

For an R-module M, we define absolutely flat dimension which we denote it as A.fd(M). We show that A.fd(M) $\leq n$ if and only if $\operatorname{Tor}_{n+1}^R(M \otimes N, L) = 0$ for every finitely generated R-module N and for any R-module L. We also prove that if R is noetherian local ring, with k as its quotient field then A.fd(M) $\leq n$ if and only if $\operatorname{Tor}_{n+1}^R(M \otimes N, k) = 0$ for every finitely generated R-module N.

AMS subject classification: 13C11, 13D07, 13E05.

Keywords: Flat modules, Absolutely flat modules, flat dimension, Tor functor.

Throughout this article, *R* denotes a commutative ring with identity and all modules are unitary. For standard terminology and notations, the references are [1], [4] and [5].

Absolutely flat modules are introduced and studied in [3]. An R-module M is called absolutely flat module if for every R-module N, $M \otimes_R N$ is flat R-module. In this article for an R-module M, we define a numerical constant, absolutely flat dimension, which we denote it as A.fd(M). We prove that $A.fd(M) \leq n$ if and only if $Tor_{n+1}^R(M \otimes N, L) = 0$ for every finitely generated R-module N and for any R-module N. We also prove that if N is noetherian local ring, with N as its quotient field then N.

We need the following definitions and results. The concept of flat dimension is introduced in [2].

Definition 1. Let M be an R-module, the flat dimension of M over R, denoted by fd(M), is equal to the least non-negative integer n, for which there is an exact sequence $0 \to F_n \to F_{n-1} \to \dots \to F_2 \to F_1 \to F_0 \to M \to 0$. with F_i flat R-modules. If no such n exists set $fd(M) = \infty$.

The flat dimension of M, satisfies the following equalities [6]:

$$\begin{array}{ll} \operatorname{fd}(M) &= \sup\{n \geq 0 \mid \operatorname{Tor}_n^R(M,N) \neq 0, \text{ for some } R - \operatorname{module} N\} \\ &= \inf\{n \geq 0 \mid \operatorname{Tor}_{n+1}^R(M,N) = 0, \text{ for every } R - \operatorname{module} N\}\}. \end{array}$$

Definition 2. For a ring R, the weak dimension, abbreviated w.dim(R), is defined as follows:

w.dim
$$(R) = \sup\{fd(M) \mid M \text{ is an } R - \text{module}\}.$$

Proposition 2. (Flat Dimension Theorem) (p.76, [6]) Let M be an R-module. The following are equivalent:

- 1. fd(M) < n
- 2. $\operatorname{Tor}_{n+1}^{R}(R/I, M) = 0$, for all finitely generated ideal I.
- 3. The *n*th kernel of any flat resolution of *M* is flat.
- 4. There exist a flat resolution of M whose nth kernel is flat.
- 5. There exists a flat resolution $\{F_k, d_k\}$ of M for which $F_k = 0$ when k > n.

Proposition 3. Let R be a Noetherian local ring, m its maximal ideal and k its residue field, and let M be a finitely generated R-module. Then the following are equivalent:

- 1. M is free
- 2. M is flat
- 3. the mapping of $\mathfrak{m} \otimes_R M$ into $R \otimes_R M$ is injective.
- 4. $Tor_1^R(k, M) = 0$.

Proposition 4. If *M* is an *R*-module, the following are equivalent:

- 1. *M* is flat
- 2. $\operatorname{Tor}_n^R(M, N) = 0$ for all n > 0 and all R-modules N
- 3. $\operatorname{Tor}_{1}^{R}(M, N) = 0$ for all *R*-modules *N*.
- 4. $\operatorname{Tor}_{1}^{R}(R/I, M) = 0$ for all finitely generated ideal I in R.

Next we define absolutely flat dimension for an R-module M.

Definition 5. Let M be an R-module. The absolutely flat dimension of M, denoted by A.fd(M) is equal to $\sup\{fd(M \otimes_R N) \mid N \text{ finitely generated } R\text{-}module\}$.

The absolutely flat dimension of a R-module M is related with the flat dimension of M and weak dimension of R as follows:

Proposition 6. For an *R*-module M, $fd(M) \le A.fd(M) \le W.dim(R)$ and the equality holds if R is an absolutely flat ring.

Proof. We note that $fd(M \otimes_R N) \leq A.fd(M)$, for every finitely generated R-module N. In particular, for N = R, we get $fd(M) \leq A.fd(M)$. The other inequality follows from the definition of weak dimension.

Next we characterize absolutely flat dimension using Tor functor.

Theorem 6. (Absolutely flat dimension theorem) Let M be an R-module. Then the following are equivalent:

- 1. A.fd(M) $\leq n$
- 2. $\operatorname{Tor}_k^R(M \otimes_R N, L) = 0$, for all finitely generated *R*-module *N*, and any *R*-module *L* and for all $k \geq n+1$
- 3. $\operatorname{Tor}_{n+1}^R(M\otimes_R N,L)=0$, for all finitely generated *R*-module *N*, and any *R*-module *L*
- 4. $\operatorname{Tor}_{n+1}^R(M \otimes_R N, R/I) = 0$, for all finitely generated R-module N, and all finitely generated ideal I.

Proof. (1) \Rightarrow (2) Let A.fd(M) $\leq n$, Then fd($M \otimes_R N$) $\leq n$ for all finitely generated R-module N. Hence $\operatorname{Tor}_k^R(M \otimes_R N, L) = 0$ for $N, L, k \geq n + 1$.

 $(2) \Rightarrow (3)$ and $(3) \Rightarrow (4)$ are obvious.

 $(4)(\Rightarrow)(1)$ Assume that $\operatorname{Tor}_{n+1}^R(M\otimes_R N,R/I)=0$ for all finitely generated R-module N and I, any finitely generated ideal. By flat dimension theorem, (proposition 2), $\operatorname{fd}(M\otimes_R N)\leq n$ for all N. This implies $\operatorname{A.fd}(M)\leq n$.

Theorem 7. Let (R, \mathfrak{m}, k) be a Noetherian local ring and M be a finitely generated R-module. Then

$$A.fd(M) \le n \Leftrightarrow Tor_{n+1}^R(M \otimes_R N, k) = 0$$
 for any finitely generated

R – module N.

Proof. Assume that A.fd(M) $\leq n$. This implies that fd($M \otimes_R N$) $\leq n$ for any finitely generated R-module N. Therefore $\operatorname{Tor}_{n+1}^R(M \otimes_R N, L) = 0$, for any R-module L. Hence $\operatorname{Tor}_{n+1}^R(M \otimes_R N, k) = 0$.

Conversely, assume that $\operatorname{Tor}_{n+1}^R(M \otimes_R N, k) = 0$ for all finitely generated R-module N. Consider a flat resolution of $M \otimes_R N$,

$$0 \to K_{n-1} \to X_{n-1} \to \cdots \to X_2 \to X_1 \to X_0 \to M \otimes_R N \to 0.$$

That is, the above sequence is exact, $X_0, X_1, X_2, \ldots, X_{n-1}$ are finitely generated flat R-modules and K_{n-1} is the $\ker(X_{n-1} \to X_{n-2})$. We split the above long exact sequence into short exact sequences as

$$0 \to K_0 \to X_0 \to M \otimes_R N \to 0$$
$$0 \to K_1 \to X_1 \to K_0 \to 0$$
$$\dots$$
$$0 \to K_{n-1} \to X_{n-1} \to K_{n-2} \to 0,$$

where K_i is the kernel of the homomorphisms $X_i \to K_{i-1}$ for $1 \le i \le n$. Since X_i' s are flat, by successively applying the functor $\text{Tor}(M \otimes_R N, -)$ on each of these short exact sequence, we have the isomorphisms,

Therefore

$$0 = \operatorname{Tor}_{n+1}^R(M \otimes_R N, k) \cong \operatorname{Tor}_n^R(K_0, k) \cong \operatorname{Tor}_{n-1}^R(K_1, k) \dots \cong \operatorname{Tor}_1^R(K_{n-1}, k).$$

Since $M \otimes_R N$ is finitely generated and X_i 's are finitely generated and flat, K_{n-1} is finitely generated.

Then by proposition 3, K_{n-1} is flat. Hence we have the flat resolution of $M \otimes_R N$

$$0 \to K_{n-1} \to X_{n-1} \to \dots \to X_2 \to X_1 \to X_0 \to M \otimes_R N \to 0.$$

This implies $fd(M \otimes_R N) \leq n$ where N is any finitely generated R-module. Hence $A.fd(M) \leq n$.

References

- [1] Bourbaki N., 1985, Commutative Algebra, Springer Verlag.
- [2] Cartan H., and Eilenberg S., 1956, *Homological Algebra*, Princeton Mathematical Series 19, Princeton University Press.
- [3] Duraivel T., 1994, *Topology on Spectrum of modules*, J. Ramanujan Math. Soc., Vol.9, No.1, pp. 25–34.
- [4] Matsumura H., 1986, Commutative Ring theory, Cambridge University Press.
- [5] Glaz S., 1989, *Commutative Coherent Rings*, Lecture Notes in Mathematics, Springer Verlag.
- [6] Scott Osborne M., 1998, Basic Homological Algebra, Springer Verlag.