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Abstract

In this work, we propose a modified scheme for simulating irregular wave
trains (IWTs) propagation dispersive of tsunami with suitable initial and
boundary conditions by applying the alternating direction implicit (ADI)
method. The convergence, stability and consistency criteria of the scheme
have been studied. We introduce a weakly dissipative terms into improved
linear Boussinesq equations (ILBqgs) that permits the mathematical tool to
simulating a transoceanic propagation dispersive of tsunami in both ocean and
laboratory experimental. The new numerical dispersion of the proposed model
is manipulated to replace the physical dispersion of (ILBgs) by controlling
dispersion-correction parameters. The new model developed in this study is
applied to propagation of Heraklion tsunami scenariol(HTS1)of the 365 AD
earthquake. The resulting scheme is efficient and practical to implement.
Furthermore, a comparison between the present results with another existing
numerical method has been reported and we found that they are in a good
agreement.
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Nomenclature

B****Pure curve fitting parameter
BW***Bichromatic Wave

c*** Phase velocity of a linear shallow-water wave
C,.****Courant number

g***Gravity acceleration

h***Still-water depth

I***]dentity matrix

M, N**Depth-average volume fluxes in the x — and y —axis directions
My, No*Initial value of M and N

t*** Time

Greek Symbols

a4, oz, az**Dispersion-correction factors
n***Free surface displacement

no*** Initial value of n

. . . 1 1
N1 M1 ***Numerical solutions of the free surface displacement at Ax = 76" 100
10' 100

v***  Kinematic viscosity (Constant)

pAt=+*  Amplification factor

A F**** Sub-interval number which discretize x —interval
Ay ***** Sub-interval number which discretize y —interval
AX, Ay***** Spatial grid sizes

At*****Time step size

§ -***** Derivative operator

Abbreviations

ADI *** Alternating direction implicit

CLBqgs Classical linear Boussinesq equations
CPU***Computational process uniform

HTS1 * Heraklion tsunami scenario 1

ILBgs **Improved linear Boussinesq equations
IWTs **Simulating irregular wave trains
LSWags*Linear shallow-water equations

PC *** Predictor Corrector

Subscripts
I, J******Spatial nodes in x —and y —axis directions

Superscripts
k****Time level
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1. Introduction

The first model for the propagation of surface waves over shallow
inviscid*******fluid layer is Boussinesq’s equation. A perturbation method to solve
the Laplace equation in the bulk is developed by Boussinesq [1-2]. He arrived at a
generalized wave equation that contains dispersion in addition to the standard terms,

[3].

Analytical and numerical studies with improved characteristics of the
Boussinesq models have received considerable attention of scientists. Daripa and Hua
[4] considered an ill-posed Boussinesq equation which arises in shallow water waves
and nonlinear lattices. They used a finite difference scheme to investigate the effect of
the short-wave instability on the numerical accuracy of the exact solitary wave
solution of the equation in order to develop numerical techniques for constructing
good approximate solutions. They presenteda computational evidence which indicates
that numerical accuracy of the solutions is lost very quickly due to severe growth of
numerical errors, round off as well as truncation. Filtering and regularization
techniques are used to control growth of these errors and to provide better
approximate solutions of the equation.

Bratsos et al. [5] applied two different linearized schemes to the parametric
finite-difference scheme concerning the numerical solution of the Boussinesq
equation. The nonlinear term of the equation is substituted by an appropriate value at
the first linearized scheme. They used Taylor’s expansion at the second scheme. For
local truncation error, stability and convergence, both schemes are analyzed. They
examined the results of the experiments for their accuracy for the single and the
double-soliton waves to known from the bibliography numerical schemes.

Antonopoulos et al. [6] considered the one-parameter family of Bona-Smith
systems, which belongs to the class of Boussinesq systems modelling two-way
propagation of long waves of small amplitude on the surface of water in a channel.
They studied numerically three initial*****boundary***value problems for these
systems corresponding to homogeneous Dirichlet, reflection, and periodic boundary
conditions posed at the endpoints of a finite spatial interval. The standard Galerkin-
finite element method for the spatial discretization and a fourth-order explicit Runge-
Kutta scheme for the time stepping, and analyze the convergence of the fully discrete
schemes are used to approximate these problems.

Mitsotakis [7] applied the standard Galerkin-finite element method to the
simplified Boussinesq model of surface water wave theory over a variable bottom
with homogeneous Dirichlet boundary conditions. They studied the generation and
propagation of tsunami waves. The tsunami waves generated by Boussinesq model
are compared by the linearized Euler equations. They studied tsunami wave
propagation in the case of the Java 2006 event, comparing the results of the
Boussinesq model with those produced by the finite-difference code MOST, that
solves the shallow water wave equations.

Dougalis et al. [8] considered a three-parameter family of Boussinesq type
systems in two space dimensions.The three-dimensional Euler equations*****are
approximated by these systems, and consist of three nonlinear dispersive wave
equations that describe two-way propagation of long surface waves of small
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amplitude in ideal fluids over a horizontal bottom. They applied Galerkin-fmite
element method to discretize a class of these systems and error estimates are proved
for the resulting continuous time semi-discretizations.

Antonopoulos and Dougalis [9] considered the classical Boussinesq system of
water wave theory, which belongs to the class of Boussinesq systems
modeling*****two-way propagation of long waves of small amplitude on the surface
of water in a horizontal channel. The initial-boundary-value problem for these
systems, corresponding to homogeneous Dirichlet boundary conditions on the
velocity variable at the endpoints of a finite interval is discretized, using fully discrete
Galerkin-finite element methods of high accuracy. They used the numerical schemes
as exploratory tools to study the propagation and interactions of solitary-wave
solutions of these systems, as well as other properties of their solutions.

Dutykh and Goubet [10] combined the visco-potential approach with
Dirichlet-to-Neumann operator formulation of the water wave problem which can
be successfully used for water wave modeling purposes. A long wave model of
Boussinesq type is derived by using this novel visco-potential formulation and an
asymptotic expansion of the Dirichlet-to-Neumann operator. They also derived the
dissipative Boussinesq*****equations.

The Boussinesq numerical models require a small mesh size to suppress
numerical dispersion errors, [11-12]. This consumes huge amounts of computer
resources due to the implicit nature of the solution technique to deal with dispersion
terms. Thus, the Boussinesq model is not preferred for the simulation of the far-field
tsunamis, and linear shallow-water equations (LSWqs) are generally employed
instead. Numerical models based on (LSWgs) will suffer from a lack of accuracy. In
order to improve that model, we will propose a new numerical scheme in this work.

The effects of frequency dispersion are accumulative and become increasingly
important as tsunamis travel a long distance, [13]. The dissipation is an important
mathematical concept in both theoretical and experimental physics.

Many tsunamis have highly (IWTs) patterns. Some of them have a high initial
peak, followed by successively smaller wave crests and this is related to the nature of
the triggering mechanism that formed the wave train, [14].This phenomenon is called
dispersion. For example, a splash induced by an earthquake in ocean, [15].
Consequently, (IWTs) have become interest topical themes research in laboratories
worldwide.

The classical linear Boussinesq equations (CLBqgs) including the Coriolis force
describe the propagation of distant tsunami are given by

am . OM . 9N
LR

i ay=0, (1.1)

oM on hz( o3M 93N )

— + —_— = — + .
ot gh ox 3 \dtox2 9dtoxay/’ (1.2)
oN i} hZ / 93N a3M

w5 =3 G e (1.3
at ay 3 \9tady? 9t ox dy
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where the variables are given in the nomenclature. The right-hand side terms of Egs.
(2.2)- (1.3) represent the frequency dispersion.

Madsen et al. [11] proposed a new form of the (CLBgs) in order to improve
their dispersion characteristics. They demonstrated that, the depth-limitation of the
new equations is much less restrictive than (CLBqs), and it is possible to simulate the
propagation of (IWTs) travelling from deep water to shallow water by introducing the
bidimensional****(ILBgs) which given by

o oM oN

ot  9x Ay =0, (14)
6_M 6_1] 2 1 GE Y| 93N 3 ﬁ 631']
ot +gh ox h (B * 3) (Ot 0x 2 * at ox ay) +Bgh (ax3 * ax 6y2)' (1.5)
a_N a_T] _ 2 l 63N 03M 3 63_‘[] 6311
ot +gh ay h (B * 3) (6t dy 2 * ot 9x 6y) +Bgh (6y3 * ax2 Oy)' (1.6)

Substitution from (1.5)- (1.6) into (1.4) and eliminate M and N, yields

22 22 a2 o* 04 o+ 1 o+
20 _gh (_“+_“):_ths(_“+2_“+_“)+h2(8+_)( n
at? ox%  0dy? ax* dy20x%z  oy* 3/ \at2 ox2

9%
at? ayZ)' 1.7)

Eq.(1.7) is called (ILBq). The frequency dispersion given by the right-hand
side terms of Eqg.(1.7) may cause serious numerical difficulty in practice because of
higher order derivatives. An alternative way is to solve a set of lower order partial
differential equations, it is the (LSWqs). The numerical dispersion induced by the
numerical scheme can be manipulated to represent the physical frequency dispersion
of the (ILBqQ).

In this study, weakly dissipative terms are introduced into (LSWqs) modified
system. We employ the third-order ADI predictor corrector (PC) scheme for
spatial*****derivatives with three-time level. As a result, both numerical weakly
dissipation and linear dispersion are kept with good precision. Subsequently, we shall
show that even oceanic propagation of dispersive waves can be quite efficiently
modeled using mathematically well-founded (LSWqs) modified scheme.***The
convergence, stability and consistency criteria of the scheme are also studied. The
results are compared with the work of Madsen et al.[11].

2. Mathematical Formulation and Discretization of the Problem

Using transoceanic propagation of (HTS1) well described and realized for the site
(35.3635°N, 25.1236°E) in [16]. We require the explicit inclusion of weak dissipative
effects, to make the dispersion phenomenon more realistic than the traditional
problems whose neglected all effects of the viscosity. Hence, the theory of visco-
potential flows [10] has been introduced. In tsunami propagation problems, one can
suppose a condition of full reflectivity, which is equivalent to limiting the domain by
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means of an infinitely high vertical wall and is useful to handle waves travelling in
closed basins and in laboratory tanks, see Figurel.**In Figurel, ly.acn represents the
region where the artificial damping terms to the kinematic and dynamic free surface
boundary condition are added in order to suppress reflections.

The (LSWEsS) are given by

on , OM , ON _

E+E+6_y_0’ (2.1)
oM on _

E+gh&—0, (2.2)
oN on __

i gha—y = (2.3)
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Figurel.Phenomenon description

Using the finite difference method, where the domain is discretized in a
regular grid A, < A, with a finite number of nodes spaced Ax and Ay,*****the time
axis is discretized in regular steps At, and the derivatives are replaced by differences
over small intervals. The accuracy of the method depends on the density of points
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considered and on the truncation error of the computation. The fluxes M and N are
calculated over a grid that is shifted with respect to the grid used to compute by a grid
half-step in all the variables, i.e., along x,y and t, respectively, Figure 2. All the
quantities can be calculated using the information of the previous time step, identified
by the index k, while i and j refer to x and y coordinates, respectively. The numerical

computations are performed in the order indicated by the previous equations. At the

time step k, firstly, one calculates the discharge fluxes Mf:ll/zz’j and Ni$t%/, and then

the sea surface elevation n}‘]* by using the values available at the previous time step
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Figure 2.Sketch of the staggered grid technique.

In Figure 2, the left upper panel represents the definition of the discretized
variables on a space cell while the right upper panel represents the time axis but
restricted to sea surface elevation and the flux in the x direction M. Elevation is
computed in the centre of the cell, while fluxes M and N are shifted by a half spatial
step along their respective directions. The lower panel is a sample of a grid with grey
cells on the bottom and on the left side of the grid. These are ghost cells that are
outside the computational domain where only the discharge flux component on the
side in common with white cells is computed.

2.1Dispersion-dissipation Scheme
Now we are going to introduce weak dissipative effects directly into

(LSWgs)***which will be modified to (ILBgs). We put 2v (37“+37“) 222 and




800 A.Boussaha et al

%"% into Eqgs.(1.4)-(1.6), respectively. The new set of equations with the above
additional expressions describe a (PDEs) problem that we shall restrict our study to
the non-advective term, numerical linear dispersion and weak dissipation terms. The

new proposed scheme is given by the foIIowing procedure.

1

K+
The x —sweep equations, in which n;; 2 and M * are the unknown variables:
]

Predictor stage

K+ K+

k+_ — M 12. - M 12. Nk 1 Nk 1
T] Th ] i+3] i-2j Lj+s ij—3
+
At Ax Ay
2
2 K= ktz K+
= (A)Z)Z <n1+1] - 2“1] ‘+ LI 1] + n1]+1 271%} + n%fj—1>- (2.4)

Corrector stage

M 2 — MKk, k+s k43
1+5*’ i+] Niy1j — My a, k+3 K+ ki kel
At *gh AX + 12Ax gh n1+21 = 3Myygy ¥ 30 ° Ny

a, k+3 +2 k+3 k+3 +5 k43
+ 12AX gh n1+1]+1 2111+1] ni+1,j—1 T]1]+1 - an] ni,j—1

(08} 1 k+l
+mgh I(n}(jllj 2T]1+1] + n1+1]> (ni(;—l Zﬂi,j 2+ T]i(,])l

(2.5)

The y —sweep equations, in which nf* and Nki +xxare the unknown
2
variables:
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Predictor stage

1 k+ k+=
ki1 k+§ M 12. - M 12. N.k.-f-1 Nk+1
Nij r]i,j 1+2)] 1-3] Lj+s 1j—3
+ +
At
2t AX Ay
2
1 1
_2v k+=> k+5 k+ k41 K1 k+1
- (Ax)? (n1+11 - 2“1] + nl 1] + n1]+1 27]1 + n (2.6)
Corrector stage
Nk+1 - k% k+1 k+1
. + +
1]+ 1,]+1 lH — N a
2 J+1 1 1 k+1l _ a.k+1 K+1 _ k+1
g + gh Ay 12Ay gh(nl]+2 3ni,j+1 + 37] nl] 1

2

12Ay [(n}(:11,j+1 - 2“%(,;}1 + T]%(—-F11,j+1) - (n%(,j-:-ll A S+ n}<+11’]_ ]

+2 K42
l(ni(;ll - 2n1]+1 + nl]+1> <n}(]+1 2n1,] : + nf})‘|

2v
— Nk+1 2Nk+1 Nk+11 .
h(Ay)?2 1]+ +2 Lj—3

4Ay

(2.7)

The values of the dispersion-correction factors a4, a, and az****will be
determined later on.*****To the best of our knowledge, this is the first dissipative
(LSW) modified scheme which contains a third order derivative of space at three
times level. We can consider the inviscid case as a particular problem of the system of
Egs.(2.4)-(2.7) if v vanishes, i.e., when we neglect all viscosity effects.

2.1.1 Initial and Boundary Conditions
In case of a tsunami induced by an earthquake, the initial conditions assigned for
t = 0 are expressed by n(x,y,0) =no(x,y) = —h and M(x,y,0) = N(x,y,0) = 0. In

terms of discretized variables, it can be written as MY, = N, = N11]/z =0 =

no(X;, y;) = —h. At the boundaries of the computational domain, it is required to set
conditions prescribing specific behaviour for the wave fields. In the actual model,
boundary conditions are applied to the discharged fluxes in the nodes that are placed
in the right (east) and the upper (north) sides of the boundary cells. Instead, all the
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cells of the last column, i.e., cells (A, j;j =1.2,...,2;), are an integral part of the
domain, and their right sides constitute the right side of the grid.

The boundary conditions for the considered grid can be given through the
following formulas:

M MEFH2 0, vertical wall on the left side,

1+1/2,
(ii) Ml}f:jﬁzj = 0, vertical wall on the right side,
(iii) Mi‘ﬁgl = Al—x [(Ax — ¢ AME, /55 + C AtME,,, ], open on the left side,

(iv) M;\‘:jﬁzvj = i [(Ax — ¢ AMY /55 + CAtMY _, /5], open on the right side,
2.8)

where,

c=./gh. (2.9)

Analogous conditions can be imposed on the lower and upper boundary of the
mesh involving the y component of the flux N.****The Egs. (2.4)-(2.7) can be easily
generalized to domains of arbitrary shape. If the grid considered before contains a
basin covered only by a subset of the grid cells, and if the right side of cell
(i,]) happens to form part of the left boundary of the basin, i.e. the cell (i,j) does not
belong to the basin, but the cell (i + 1,j)****belongs, hence the boundary conditions
(2.8) can be re-written as

Mik++11//22’]_ = 0, vertical wall on the left side, (2.10)
Mik:f/zzj = i [(Ax — ¢ AYME, 1/, + € AME, 5, ;],0pen on the left side. (2.11)

2.2 Determination of Dispersion-correction Parameters

Following the approach suggested by Warming and Hyett in [17], the Taylor series
expansions of the variables n,M and N at the point represented by (k, i,j) are applied
to Egs. (2.4)-(2.7) when v****is equal to zero. To derive a resulting modified
equation, some higher time derivatives are replaced by the corresponding spatial
derivatives and the volume flux components, M and N, are eliminated. After a lengthy
algebra, a modified equation for 1 is obtained as follow:

62n_ 5 62n+62n —CZ%
ot? ox?  0y? 12

o* o* o*
racp(Thez, 2L 2)

4 2 2 2 + 4
ax dax?2ady? oy

At)? 0* 0*
~c2ER (1 - ) (5555 + ram) = O (1074t (A0)2Ax, (A1)?),

(2.12)
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in which a uniform grid is used, i.e. Ax = Ay.The Courant number is given by
C, = c At/Ax. The leading order terms in Eq.(2.12) are the same as those in the wave
equation. The terms of O((Ax)2) and of higher order are the results of numerical
discretization. Comparing Eq.(2.12) with the (ILBq) (1.7), these equations are seen to
be identical as long as the following relations are satisfied:

12Bh?
a; = C% — @z (2.13)
0(2 = 0(1 + 1, (2'14)
And
(B+§)h2
a; =1 — ENTVrR (2.15)

The value of B is not limited to the values discussed in [11]. To verify the
stability condition of the current ADI (2.4)-(2.7) scheme, the value of B****can be
chosen as

( _ 2) (Ax)? g(At)2 (2.16)

12h2 — ~ — 12h°

The following relation is obtained if B unique in Egs. (2.4)-(2.7)
(AX)? = 4h? — 2gh(At)2. (2.17)

In our study, the spatial grid size Ax and time step size At*****will be
determined from Eq.(2.17).

2.3 Existence and uniqueness of the Solution

A mesh of more delicate is considered, taking into account the effects of both
numerical linear dispersion and weak dissipation effects. Then, fromEqgs.(2.4)-(2.7)
we get

ANz = Uk + V,NK, (2.18)
M = By [Zan+ Wn' 2 + 5,1 219)
Nk = [N;;,...,N‘;X%; Nng‘;z ka 2 N‘; A +1]T (2.20)

= [Mk+_,...,M§;; VI VISt Ve S 1", 2.21)

> >Ny 211 E,)Ly }\X+E,1 )LX+ Xy
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where,

M= Mg oM M2 M2 Ay My 1T (2.22)

is applied to iterate k + 1/2 and k + 1.

In Egs. (2.18)-(2.19) we can replace i by j, x by y, M by N and vice versa, then
we can also replace k by (k+ 1/2) and (k + 1/2) by (k + 1).Except we keep the
last term of Eq. (2.19) as it is. Like this we get the full matrix form of (2.4)-(2.7)
system. All the matrices are presented and described in the Appendix. We use the
Gauss-Seidel iterative method because of its high stability with respect to rounding
errors. When the terms located on the diagonal of triangular matrix A, (resp., A,) are

all different from zero, the rank of this matrix is equal to matrix order A.(resp., A,), s0

it exists a solution for (2.4)-(2.7) system. On the other side, the rank is equal to
unknown numbers, then the solution of (2.4)-(2.7) system is unique.

2.4 Convergence of the Scheme

In this section, we shall demonstrate that ADI defined by Eqs (2.4)-(2.7) is stable. By
obtaining the local discretization error*****and the well-known classical theorem
[18], we concluded that,****the scheme is convergent.

2.4.1 Stability Analysis

The solution of****the Eqs. (2.4)-(2.7) can be written in the following Fourier
forms,[19]:

n = neptei™*elly, (2.23)
M = Mopteimxeily’ (224)
N = Nyptemxelly, (2.25)

In the stability analysis, the amplification factor, |p2t|, should be less than or
equal to unity.

Substitution****from Eqs.****(2.23)-(2.25) into Eqgs.(2.4)-(2.7) and using the
notations

t = koAt *xx (kg =0,1,2,...,k,...),
X = igAx**x (ip = 0,1,2,...,0,...),

y =j°Ay#+x (jo=0,1,2,...,j,...),
(2.26)

yields the following matrix form of a linear system
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At
2 P; _1) + 4vrx(sm29x+sm29y). i, sind,. irysiney. o
(p7+1) hAx
! ghsi & 02 ) At
5 Txghsingy [pz (8 — a;5in?6y — azSin?6y), (p% 1) , vrpsin’e, o M,
At - Ao — 01
+30a (pAt —2pz + 1) /4] . hax
L ryghsing [ %(3—0( sin?0y — a,sin?6y) at
3 v9 y [P 1 y 2 xp 0 (p& 1) +4vryp75in29y
At 2 — _— =
+303 (pAt —2pz + 1) /4] . hay ] No
(2.27)
where,
At At 0 MAX 46 Ay
ry=—, r,=—, 6, =—— an =—.
*OA Y Ay Y2 yo 2

Since the system of linear equations given in matrix form (2.27) is
homogeneous, the determinant of the coefficient matrix must vanish to get nontrivial
solutions. Assume, Ax = Ay for simplicity.

For the amplification factor

plt =1, (2.28)

The*****Courant number can be found from
Cr

_ JO.ZS 4 gh(3 —sin26,) + (3 — sinzey) — oy (gh + 1)(sin20, + sinzey)'

(2.29)

12v2(sin26, + sin26,)

In the proposed scheme, the dispersion-correction factor a is ranged from
—1 #5xxt0 (1+(gi—‘fl)),****to satisfy the stability condition (2.28), while, in the
transoceanic propagation, as h > v, the value of o;****lies between is -1 < a; < 1.
In (2.29), the largest value of the Courant number is 0.5, when sin6, = sing, =
1****at a; = 1. If the water depth is zero, the dispersion-correction factor a;=—1,
so, the value of the Courant number will be C, < [0.25 + 1/6v2]%°. Thus, in the real
problem, the proposed scheme has the largest allowable Courant number.*****Then,

the dispersion-correction factor a; plays an important role in the stability condition.
As a4 increases the largest allowable Courant number decreases.

2.4.2 Consistency of the Numerical Scheme

The intermediate ADI solution introduces an added complication, thus we can either
combine separate estimates of the local discretization errors of the predictor and
corrector steps, [20].
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+1
*2

We can eliminate M;; by adding (2.4) and (2.6) in predictor stage. The result

is

I
ni<]+1 - n}; = (_XSXX Ay yy) (nl 1 + nl]) - _6 (Mk+1 =+ Mlkj

AX
esy(Nk+1 +Nf), (2.30)
where,
8x =ity il
S, -

8xx =il T 2- 1]+ i—-1,j

(2.31)

Dividing by At, gathering all terms on the right side, replacing the numerical
approximation by any smooth function, and subtracting the result from the differential
equation (2.4) or (2.6), yields the local discretization error as

k vr
At Tg(,j = Atne + My + I\Iy - V(nxx + nyy)li’j - <1 - A_;((Sxx A;/, 8yy) Tlhﬂ

ESXX YG ) 8 (Mk+1+Mk)——y§ (Nk+1+Nk

+<1+ Ay O

(2.32)

Equation (2.32) is the product of At and the local discretization error of the
Crank-Nicolson scheme, that is

(At Tf)en = At T (2.33)

Repeat the same steps for corrector stage, from Eq.(2.5), we can formulate the
local discretization error as follow
\% k (Xl (Xz (X3 k
AtT 1 = At (Mt - HMXX) 1. + At (gh Tx +E gh Nxxx + E ghnxyy +Z gh nxtt)|”

1+E'] 1)
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ry a a a
- (gh§ 6x + Z_Z-gh rxsxxx + ﬁgh r-ngyy + 53 rxgh Sxtt) (n§]+1 + Tﬂ(,])
41
2

* ohax O <M1+1j Mi+§,j>

1 Iy a
- E (gh 2 + gh r 8xxx -2 gh rxsxyy + §3 ngh 8Xtt) (nﬁ-‘-l - n%(,j)’

(2.34)
where,
Byxx: =riwz2j— Sit1jF 3uij—i-1s
_ [ x+1 K+ ki1 o Ko K
8xtt- | i+l 2-i+1,j+-i+1,j i T 2'1,] +i ij
Bxyy = (-i+1,j+1_ 21 i1 ) - (-i,j+1_ 2.4j+ij-1 )-
(2.35)
Repeat the same steps for Eq (2.7), yields the local discretization error as
follow
K _ \ k h a h a, h as h k
At Ti,j+§ = At (Nt - E Nyy)|i’j+% + At (g Ny + E gnMyyy + E gn Nyxx + Z g T]ytt)|i’j

vy k41 vy K
- (1 ~hay 8”’) s (1 N h_AyéSyy> N”*%
*on Ay >h Ay Ovy Ni,j+§ Ni,j+§

(gh * 49h FyByyy + 249h FyByxx + 8 ~rygh ‘Sytt) (ni§* — i),
(2.36)

where,

8yyy =r1je2= 3 141+ 3 -1
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K= K=
= .kt1 _o "2 L k _ | .k+t1i_o "2 k
Sytt - ( iLj+1 2 i,j+1+ 1,]+1> < 1,j 2 ij + 1,}):

Byxx = Cirrjer— 2 ijrrtionjer) — Cisnj— 2 -5+ im1))-
2.37)

The first five terms at the right hand sides of Egs. (2.34) and (2.36) are equal
to zero but the last two terms remain such as they contain the numerical error of both
linear dispersion and weakly dissipative.

A Taylor's series expansion would reveal that

k — k k k
= () + Tl 23

Expanding the remaining terms in a Taylor's series, yields

vry K+2 K 1 ry o oy as K K
2 iy O Nivjé -Na) =3 (ghE + g UN T8,y + 2 g1y B+ rygh Syee) (nl5 = k)

My . r @ a a K2
— y k y 1 2 3
= dhay At&nytNi,j% ~3 (gh 58y + 5500 1y8yyy + 57 ON ry8y + 5 rygh 5ytt) Atsm, .

(2.39)

Thus, the local discretization error of the ADI method depends****on the
error of Crank-Nicolson scheme. From Eq. (2.39),****when At— 0, we get

rirl]_(resp., r:‘j#) — 0.****Then, the system of Egs.(2.4) - (2.7) converges and has a
2’ "2

truncated error given by

= (1) o + (807 + (M) (A0 + (Ax)*(AY). (2.40)

3. Numerical Results and Discussion

The goal of this numerical study is recognition of mathematical aspect when nonlocal
terms give a more realistic profile to dispersive free surface of tsunami. Surpass the
obstacle that appears in the experimental when we introduce delicate values of v, i.e.,
values of v in nature.****There are some time intervals for which the solution is
Bichromatic Wave (BW). These intervals intersect only at the points x € [0, 15 m], so
that (BW) for this mode is established only at these values.

3.1Free Surface Profile

Free surface elevation of (HTS1) propagation into ocean is well discussed in [16].
Following this application, our simulation focuses at waves dispersive affected by
weak dissipation. (IWTs) propagation generated by tsunami source didn’t discuss in
the literature, for this we will explain the effects of ocean viscosity by virtue of
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mathematical aspect. The choice of the kinematic viscosity for the practical
simulations of water waves is not obvious. However, in various experimental and
theoretical studies,researchers independently concluded that, a value of v =
1073 m2/s fits very well available data (see, [10]). The most recent experimental
study of plunging breakers confirms this value again. Consequently, we retain this
value for our numerical illustrations as well. Then, according to the criteria provided

in [11] and satisfying Eq.****(2.16), it is advisable to choose B = 1/21. Firstly, we
study tendency of numerical solution convergence.

0.2
1/10
=== 1/100
— 1/1000
0.1
E
C
@
0

015 92 94 96 98 100
t (min)

Figure 3. Free surface profile along with 6 mof the beginning dispersion for grid

. 1 1 1
SIzes:Ax = —, — ,——.
10 100 1000

The relative error (rerr) is defined by following relationship:

A
X 3 G -nrer(if)]?
rerr=\/ =1 o= T el (3.1)

5% 50 et

where,****n_..¢(i,]) is calculated at Ax = 1/1000 as a reference among the proposed
solutions.
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Table 1. Relative error for refining proposed.

Time (min) rerr ofn rerr of*n 1+
10 100
92 2.13457e — 02 | 1.34467e — 04
94 2.81415e — 02 | 1.77726e — 04
96 5.65162e — 01 | 3.56673e — 05
98 6.95978e — 01 | 4.36707e — 06
100 2.81622e — 03 | 1.76797e — 05

A.Boussaha et al

Figure 3 and Table 1, show that the error****decreases*****gradually as Ax
approaches zero. Then, the error*****phetween the approximate solution and the exact
solution decreases****corresponding *to*the* theoretical*convergence of order
wxxk Q((AX)3, (AX) (At)Z, (AX)2(At)), (see section:****Convergence of the Scheme).

0.3

—o— Inviscid fluid

— Fluid of weak viscosity 0.001 m%/s

0.2r

eta (m)

030

Figure 4.(BW) propagation in deep water with surface elevation 15 m from west
boundary at****

Ax =0.001 m,At =4.16 sec,h =50 m.



A new modified scheme for linear shallow-water equations 811

— HS1 sea
0.3F

------------- Fluid of viscosity 0.001 m%s and h=50 m

“90 100 120 133 140 160 180 200
t (min)

Figure 5.Comparison (BW) frees surface profile between fluid of viscosity (0.001
m?/s) and (HS1) fluid.

(BW) propagates at 15 mand it travels down at an interval of timessxx
[90 min, 150 min] which almost undisturbed as shown in Figure 4. By using the
same data for inviscid fluid which solved by (2.4)-(2.7) system with v =0 m?2/s.
Figure 4 shows a clear decreased in train amplitudes for the viscous fluid compared to
the inviscid.****Also, the wave propagation is slightly slow down by viscous effects.
Mathematically this effect is ascribed to nonlocal terms which are more important in
magnitude for small wave-numbers,****(see, [10]).

For comparison, the molecular viscosity of (HTS1)is of the order v =
107° m2/s which is too small to model the energy dissipation phenomena in a
laboratory wave tank. Hence, the molecular viscosity replaced in the Figures 3 and 4
by an effective value 1073 m2/s.We quote that (BW) begins to propagate after one
hour and half of the initial free surface movement, but it appearing in Heraklion ocean
site after two hour. Therefore, in the real problem, irregular wave has more than half
an hour retard time comparing to fluid of v = 1073m?2/s, see Figure 5.

3.2 Validation of the Numerical Scheme

Current method is validated against published numerical data in [11]. So, we compare
our numerical results to the same it data, which investigated the propagation of
(IWTs) over a constant water depth.
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0.15

—— Madsen et al. [11]

©  present model

0.1

eta (m)

Figure 6. Comparison of (BW) free surface calculated using present finite
difference method and the numerical scheme of [11] for the case h = 4.2 m.

Figure 6 shows a correlation between the work of [11] and our work. The use
of [11] is performed with a uniform grid size of 0.6 m, it conducted into 12 m of
channel. On the other hand, employing the present model (2.4)-(2.7) with v = 0 m2/s
is made with a same grid size; but the time step At is determined from the stability
criteria (2.17). The algorithms to compute various physical processes, such as
nonlinear advection, nonlinear dispersion and wave dissipation due to bottom friction
and breaking, are eliminated from the source scheme of the both [11] and (2.4)-(2.7)
models.****Thus, the computational time for the [11] model to calculate the free
surface of (BW)can be measured for fair comparison with that of the present model.
The numerical simulation is conducted for 90 sec after the initial water surface
displacement imposed along x = 0 is released.****The computational time elapsed
for the two models are presented in Table 2. The [11] model employing a PC scheme
consumes a long computational time, while the present fully implicit model takes
about 1/10 of the computational time required for [11]. The computational efficiency
of the present model can be realized even more dramatically if the computational time
is compared with that of [11] of the best grid size of Ax = 0.6 m. The present model is
approximately 10 times faster than the [11] model. It can be concluded that the
present model is well efficient for practical problems.
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Table 2. Comparison of computational time

Model Madsen et al.[11] | Present modified scheme
Ax (m) 0.6 0.6
Number of grids 20x 10 20 x 20
At (sec) 0.1 0.9
Number of time steps 14 7
CPU time (sec) 770 72
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4. Conclusion

We have applied a novel scheme of dispersive propagation model for earthquake
generated tsunami. It was also shown that simulations including both dispersive long
distant tsunami propagation as well as weak dissipation are well achieved. As a
benefit, our work can model the earthquake source flexibly in the propagation model.
It is a useful numerical solution when existing theories are not available to find exact
solution; this last is ideal and sometimes is not compatible with the physical
phenomenon. Also experimental study is unable to achieve natural profile of solution
because the inability to employ natural values.

In this model, we proposed the introducing an additional term to the novel
modified scheme. This latter is comparatively has some limitations, i.e., the grid size
has to be equal in both horizontal directions and check stability criteria (2.17). In
other words, our approach calculates the dispersion-correction factors instead of
choosing spatial grid size and step size again to mimic the frequency dispersion of the
(ILBgs), [11]. The obtained numerical solutions are validated by [11] model.
Remarkable results are more agreeable to our numerical model.

The relative danger of viscosity when its values decrease at greater
temperatures which are due by Global Warming effect. Although the inverse
temperature-viscosity relationship is a universal feature of aquatic systems, little
mathematical research has been done to study the mathematical consequences of
simultaneous changes in temperature and viscosity in (CLBgs). The effect of new
viscous-temperature terms is to be revealed in futures studies. For inviscid case, we
hope to solve Eq.(2.7) by numerical technique.
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—C rXFX) - FX’ D; = a)é(Hx -

—cryFy) — 1]+ F, + 2}
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e)l(O = a)é(Hx - Cerx)[a)é(Hx - Cerx) + Fx] - a)3( (Hx - CrXFX) + Fx
—FX(—Z(X]_ + 24(X2 + 3(13 + 6)

e¥, = [Hy + a(H, — crF)Had[al(H, — crgFy) + FJ(Hy —crgFy) + F4
+ (_20(1 + 24'0(2 + 3“3 + 6)[Fx + Hx(l - a)é)][a)?f(HX - CrXFx)
+ Fy] + Hy + Fy (=204 + 240, + 3a; + 6)},

el, = —H, — aj(Hy — cryFy) — Fy(—2ay + 24a, + 3a; + 6).

Similarly, we can get the matrices and their coefficients according to
y —direction; except the matrix Sywhich is defined only for x —direction.
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