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Abstract 
 

In this work, we propose a modified scheme for simulating irregular wave 
trains (IWTs) propagation dispersive of tsunami with suitable initial and 
boundary conditions by applying the alternating direction implicit (ADI) 
method. The convergence, stability and consistency criteria of the scheme 
have been studied. We introduce a weakly dissipative terms into improved 
linear Boussinesq equations (ILBqs) that permits the mathematical tool to 
simulating a transoceanic propagation dispersive of tsunami in both ocean and 
laboratory experimental. The new numerical dispersion of the proposed model 
is manipulated to replace the physical dispersion of (ILBqs) by controlling 
dispersion-correction parameters. The new model developed in this study is 
applied to propagation of Heraklion tsunami scenario1(HTS1)of the 365 AD 
earthquake. The resulting scheme is efficient and practical to implement. 
Furthermore, a comparison between the present results with another existing 
numerical  method has been reported and we found that they are in a good 
agreement.   
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Nomenclature 
B****Pure curve fitting parameter 
BW***Bichromatic Wave 
c***    Phase velocity of a linear shallow-water wave 
C୰****Courant number 
g***Gravity acceleration 
h***Still-water depth  
I***Identity matrix 
M, N**Depth-average volume fluxes in the x − and y−axis directions  
M₀, N₀*Initial value of M and N 
t*** Time 
 
Greek Symbols 
α₁,α₂,α₃**Dispersion-correction factors 
η***Free surface displacement  
 ߟ Initial value of   ***₀ߟ
η భ
భబ ,η భ

భబబ
***Numerical solutions of the free surface displacement at  Δx = ଵ

ଵ଴
, ଵ
ଵ଴଴

 

ν***    Kinematic viscosity (Constant) 
ρ୼୲***   Amplification factor 
λ୶***** Sub-interval number which discretize x −interval 
λ୷***** Sub-interval number which discretize y −interval 
Δx,∆y***** Spatial grid sizes 
Δt*****Time step size 
δ ⋅***** Derivative operator 
 
Abbreviations  
ADI *** Alternating direction implicit   
CLBqs   Classical linear Boussinesq equations 
CPU***Computational process uniform 
HTS1 *  Heraklion tsunami scenario 1 
ILBqs **Improved linear Boussinesq equations 
IWTs **Simulating irregular wave trains 
LSWqs*Linear shallow-water equations  
PC ***   Predictor Corrector 
 
Subscripts 
i, j******Spatial nodes in x−and y−axis directions 
 
Superscripts 
k****Time level 
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1. Introduction 
The first model for the propagation of surface waves over shallow 
inviscid*******fluid layer is Boussinesq’s equation. A perturbation method to solve 
the Laplace equation in the bulk is developed by Boussinesq [1-2]. He arrived at a 
generalized wave equation that contains dispersion in addition to the standard terms, 
[3].  

Analytical and numerical studies with improved characteristics of the 
Boussinesq models have received considerable attention of scientists. Daripa and Hua 
[4] considered an ill-posed Boussinesq equation which arises in shallow water waves 
and nonlinear lattices. They used a finite difference scheme to investigate the effect of 
the short-wave instability on the numerical accuracy of the exact solitary wave 
solution of the equation in order to develop numerical techniques for constructing 
good approximate solutions. They presenteda computational evidence which indicates 
that numerical accuracy of the solutions is lost very quickly due to severe growth of 
numerical errors, round off   as well as truncation. Filtering and regularization 
techniques are used to control growth of these errors and to provide better 
approximate solutions of the equation. 

Bratsos et al. [5] applied two different linearized schemes to the parametric 
finite-difference scheme concerning the numerical solution of the Boussinesq 
equation. The nonlinear term of the equation is substituted by an appropriate value at 
the first linearized scheme. They used Taylor’s expansion at the second scheme. For 
local truncation error, stability and convergence, both schemes are analyzed. They 
examined the results of the experiments for their accuracy for the single and the 
double-soliton waves to known from the bibliography numerical schemes. 

Antonopoulos et al. [6] considered the one-parameter family of Bona-Smith 
systems, which belongs to the class of Boussinesq systems modelling two-way 
propagation of long waves of small amplitude on the surface of water in a channel. 
They studied numerically three initial*****boundary***value problems for these 
systems corresponding to homogeneous Dirichlet, reflection, and periodic boundary 
conditions posed at the endpoints of a finite spatial interval. The standard Galerkin-
finite element method for the spatial discretization and a fourth-order explicit Runge-
Kutta scheme for the time stepping, and analyze the convergence of the fully discrete 
schemes are used to approximate these problems.  

Mitsotakis [7] applied the standard Galerkin-finite element method to the 
simplified Boussinesq model of surface water wave theory over a variable bottom 
with homogeneous Dirichlet boundary conditions. They studied the generation and 
propagation of tsunami waves. The tsunami waves generated by Boussinesq model 
are compared by the linearized Euler equations. They studied tsunami wave 
propagation in the case of the Java 2006 event, comparing the results of the 
Boussinesq model with those produced by the finite-difference code MOST, that 
solves the shallow water wave equations. 

Dougalis et al. [8] considered a three-parameter family of Boussinesq type 
systems in two space dimensions.The three-dimensional Euler equations*****are 
approximated by these systems, and consist of three nonlinear dispersive wave 
equations that describe two-way propagation of long surface waves of small 
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amplitude in ideal fluids over a horizontal bottom. They applied Galerkin-fmite 
element method to discretize a class of these systems and error estimates are proved 
for the resulting continuous time semi-discretizations.  

Antonopoulos and Dougalis [9] considered the classical Boussinesq system of 
water wave theory, which belongs to the class of Boussinesq systems 
modeling*****two-way propagation of long waves of small amplitude on the surface 
of water in a horizontal channel. The initial-boundary-value problem for these 
systems, corresponding to homogeneous Dirichlet boundary conditions on the 
velocity variable at the endpoints of a finite interval is discretized, using fully discrete 
Galerkin-finite element methods of high accuracy. They used the numerical schemes 
as exploratory tools to study the propagation and interactions of solitary-wave 
solutions of these systems, as well as other properties of their solutions. 

Dutykh and Goubet [10] combined  the  visco-potential  approach  with  
Dirichlet-to-Neumann operator  formulation  of  the water  wave  problem  which  can  
be  successfully  used  for  water  wave  modeling purposes. A long wave model of 
Boussinesq type is derived by using  this  novel  visco-potential  formulation  and  an 
asymptotic  expansion  of  the  Dirichlet-to-Neumann  operator. They also derived the 
dissipative Boussinesq*****equations. 

The Boussinesq numerical models require a small mesh size to suppress 
numerical dispersion errors, [11-12]. This consumes huge amounts of computer 
resources due to the implicit nature of the solution technique to deal with dispersion 
terms. Thus, the Boussinesq model is not preferred for the simulation of the far-field 
tsunamis, and linear shallow-water equations (LSWqs) are generally employed 
instead. Numerical models based on (LSWqs) will suffer from a lack of accuracy. In 
order to improve that model, we will propose a new numerical scheme in this work. 

The effects of frequency dispersion are accumulative and become increasingly 
important as tsunamis travel a long distance, [13]. The dissipation is an important 
mathematical concept in both theoretical and experimental physics. 

Many tsunamis have highly (IWTs) patterns. Some of them have a high initial 
peak, followed by successively smaller wave crests and this is related to the nature of 
the triggering mechanism that formed the wave train, [14].This phenomenon is called 
dispersion. For example, a splash induced by an earthquake in ocean, [15]. 
Consequently, (IWTs) have become interest topical themes research in laboratories 
worldwide. 

The classical linear Boussinesq equations (CLBqs) including the Coriolis force 
describe the propagation of distant tsunami are given by  
 
ப஗
ப୲

+ ப୑
ப୶

+ ப୒
ப୷

= 0,                                                    (1.1)  
 
ப୑
ப୲

+ gh ப஗
ப୶
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ቁ,                                                (1.2) 
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where the variables are given in the nomenclature. The right-hand side terms of Eqs. 
(1.2)- (1.3) represent the frequency dispersion. 

Madsen et al. [11] proposed a new form of the (CLBqs) in order to improve 
their dispersion characteristics. They demonstrated that, the depth-limitation of the 
new equations is much less restrictive than (CLBqs), and it is possible to simulate the 
propagation of (IWTs) travelling from deep water to shallow water by introducing the 
bidimensional****(ILBqs) which given by 
 
ப஗
ப୲

+ ப୑
ப୶

+ ப୒
ப୷

= 0,                                   (1.4) 
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Substitution from (1.5)- (1.6) into (1.4) and eliminate M and N, yields 
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+ பర஗
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ଷ
ቁ ቀ பర஗

ப୲మ ப୶మ
+

பర஗
ப୲మ ப୷మ

ቁ.           (1.7) 
 

Eq.(1.7) is called (ILBq). The frequency dispersion given by the right-hand 
side terms of Eq.(1.7) may cause serious numerical difficulty in practice because of 
higher order derivatives. An alternative way is to solve a set of lower order partial 
differential equations, it is the (LSWqs). The numerical dispersion induced by the 
numerical scheme can be manipulated to represent the physical frequency dispersion 
of the (ILBq). 

In this study, weakly dissipative terms are introduced into (LSWqs) modified 
system. We employ the third-order ADI predictor corrector (PC) scheme for 
spatial*****derivatives with three-time level. As a result, both numerical weakly 
dissipation and linear dispersion are kept with good precision. Subsequently, we shall 
show that even oceanic propagation of dispersive waves can be quite efficiently 
modeled using mathematically well-founded (LSWqs) modified scheme.***The 
convergence, stability and consistency criteria of the scheme are also studied. The 
results are compared with the work of  Madsen et al.[11].  
 
 
2. Mathematical Formulation and Discretization of the Problem 
Using transoceanic propagation of (HTS1) well described and realized for the site 
(35.3635°N, 25.1236°E) in [16]. We require the explicit inclusion of weak dissipative 
effects, to make the dispersion phenomenon more realistic than the traditional 
problems whose neglected all effects of the viscosity. Hence, the theory of visco-
potential flows [10] has been introduced. In tsunami propagation problems, one can 
suppose a condition of full reflectivity, which is equivalent to limiting the domain by 
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means of an infinitely high vertical wall and is useful to handle waves travelling in 
closed basins and in laboratory tanks, see Figure1.**In Figure1, ݈ୠୣୟୡ୦ represents the 
region where the artificial damping terms to the kinematic and dynamic free surface 
boundary condition are added in order to suppress reflections. 
 

The (LSWEs) are given by 
 

ப஗
ப୲

+ ப୑
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+ ப୒
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= 0 ,                                                                 (2.1)   
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Figure1.Phenomenon description 
 
 

Using the finite difference method, where the domain is discretized in a 
regular grid λ୶ × λ୷ with a finite number of nodes spaced Δx and Δy,*****the time 
axis is discretized in regular steps Δt, and the derivatives are replaced by differences 
over small intervals. The accuracy of the method depends on the density of points 
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considered and on the truncation error of the computation. The fluxes M and N are 
calculated over a grid that is shifted with respect to the grid used to compute by a grid 
half-step in all the variables, i.e., along x, y and t, respectively, Figure 2. All the 
quantities can be calculated using the information of the previous time step, identified 
by the index k, while i and j refer to x and y coordinates, respectively. The numerical 
computations are performed in the order indicated by the previous equations. At the 
time step k, firstly, one calculates the discharge fluxes M୧ାଵ/ଶ,୨

୩ାଵ/ଶ  and N୧,୨ାଵ/ଶ
୩ାଵ  and then 

the sea surface elevation η୧,୨୩ାଵby using the values available at the previous time step 
η୧,୨
୩ାଵ/ଶand η୧,୨୩ . 

 

 
 

Figure 2.Sketch of the staggered grid technique. 
 
 

In Figure 2, the left upper panel represents the definition of the discretized 
variables on a space cell while the right upper panel represents the time axis but 
restricted to sea surface elevation and the flux in the x direction M. Elevation is 
computed in the centre of the cell, while fluxes M and N are shifted by a half spatial 
step along their respective directions. The lower panel is a sample of a grid with grey 
cells on the bottom and on the left side of the grid. These are ghost cells that are 
outside the computational domain where only the discharge flux component on the 
side in common with white cells is computed. 
 
2.1Dispersion-dissipation Scheme 
Now we are going to introduce weak dissipative effects directly into 
(LSWqs)***which will be modified to (ILBqs). We put 2ν ቀப²஗

ப୶²
+ ப²஗

ப୷²
ቁ, ଶ஝

୦
ப²୑
ப୶²

 and 
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ଶ஝
୦
ப²୒
ப୷²

 into Eqs.(1.4)-(1.6), respectively. The new set of equations with the above 
additional expressions describe a (PDEs) problem that we shall restrict our study to 
the non-advective term, numerical linear dispersion and weak dissipation terms. The 
new proposed scheme is given by the following procedure. 

The x −sweep equations, in which η୧,୨
୩ାభమ and M

୧ାభమ,୨

୩ାభమ  are the unknown variables: 

 
Predictor stage 
 

η୧,୨
୩ାభమ − η୧,୨୩

∆୲
ଶ

+
M
୧ାభమ,୨

୩ାభమ − M
୧ିభమ,୨

୩ାభమ

∆x +
N
୧,୨ାభమ

୩ − N
୧,୨ିభమ

୩

∆y  

 

= ଶ஝
(∆୶)మ ቆη୧ାଵ,୨

୩ାభమ − 2η୧,୨
୩ାభమ + η୧ିଵ,୨

୩ାభమ + η୧,୨ାଵ୩ − 2η୧,୨୩ + η୧,୨ିଵ୩ ቇ.         (2.4) 

 
 
Corrector stage 
 

M
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୩
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ଶ
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+
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+
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୩ାభమ + η୧ାଵ,୨
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=
2ν

h(∆x)ଶ ቆM
୧ାయమ,୨

୩ାభమ − 2M
୧ାభమ,୨
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    (2.5)       
 

The y −sweep equations, in which η୧,୨୩ାଵ and N
୧,୨ାభమ

୩ାଵ ∗∗∗are the unknown 

variables: 
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Predictor stage 
 

η୧,୨୩ାଵ − η୧,୨
୩ାభమ

∆୲
ଶ

+
M
୧ାభమ,୨

୩ାభమ − M
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N
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୩ାଵ − N
୧,୨ିభమ

୩ାଵ

∆y  

 

= ଶ஝
(∆୶)మ ቆη୧ାଵ,୨

୩ାభమ − 2η୧,୨
୩ାభమ + η୧ିଵ,୨

୩ାభమ + η୧,୨ାଵ୩ାଵ − 2η୧,୨୩ାଵ + η୧,୨ିଵ୩ାଵ ቇ.     (2.6) 

 
 
 
Corrector stage 
 

N
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୩ାଵ − N
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∆୲
ଶ
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+

αଶ
12∆y ghൣ൫η୧ାଵ,୨ାଵ
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୩ାଵ ൯൧ 

 

+
αଷ

4∆y gh ቈቆη୧,୨ାଵ୩ାଵ − 2η୧,୨ାଵ
୩ାభమ + η୧,୨ାଵ୩ ቇ− ቆη୧,୨୩ାଵ − 2η୧,୨

୩ାభమ + η୧,୨୩ ቇ቉ 

 

= ଶ஝
୦(∆୷)మ ൬N

୧,୨ାయమ

୩ାଵ − 2N
୧,୨ାభమ

୩ାଵ + N
୧,୨ିభమ

୩ାଵ൰. 

(2.7) 
 

The values of the dispersion-correction factors α₁,α₂ and α₃****will be 
determined later on.*****To the best of our knowledge, this is the first dissipative 
(LSW) modified scheme which contains a third order derivative of space at three 
times level. We can consider the inviscid case as a particular problem of the system of 
Eqs.(2.4)-(2.7) if ν vanishes, i.e., when we neglect all viscosity effects. 
 
2.1.1 Initial and Boundary Conditions 
In case of a tsunami induced by an earthquake, the initial conditions assigned for 
t = 0 are expressed by η(x, y, 0) = η₀(x, y) = −h and M(x, y, 0) = N(x, y, 0) = 0. In 
terms of discretized variables, it can be written as M୧,୨

଴ = N୧,୨
଴ = N୧,୨

ଵ/ଶ = 0, η୧,୨଴ =
η₀(x୧, y୨) = −h.  At the boundaries of the computational domain,it is required to set 
conditions prescribing specific behaviour for the wave fields. In the actual model, 
boundary conditions are applied to the discharged fluxes in the nodes that are placed 
in the right (east) and the upper (north) sides of the boundary cells. Instead, all the 



802  A.Boussaha et al 

cells of the last column, i.e., cells (λ୶, j; j = 1,2, . . . , λ୷), are an integral part of the 
domain, and their right sides constitute the right side of the grid.  

The boundary conditions for the considered grid can be given through the 
following formulas: 
(i) Mଵାଵ/ଶ,୨

୩ାଵ/ଶ = 0, vertical wall on the left side, 

(ii) M஛౮ାଵ/ଶ,୨
୩ାଵ/ଶ = 0, vertical wall on the right side, 

(iii) Mଵାଵ/ଶ,୨
୩ାଵ/ଶ = ଵ

∆୶
ൣ(∆x− c ∆t)Mଵାଵ/ଶ,୨

୩ + c ∆tMଶାଵ/ଶ,୨
୩ ൧, open on the left side, 

(iv) M஛౮ାଵ/ଶ,୨
୩ାଵ/ଶ = ଵ

∆୶
ൣ(∆x− c ∆t)M஛౮ାଵ/ଶ,୨

୩ + c ∆tM஛౮ିଵ/ଶ,୨
୩ ൧, open on the right side, 

(2.8) 
where, 
 
c = ඥgh.                                                   (2.9) 
 

Analogous conditions can be imposed on the lower and upper boundary of the 
mesh involving the y component of the flux N.****The Eqs. (2.4)-(2.7) can be easily 
generalized to domains of arbitrary shape. If the grid considered before contains a 
basin covered only by a subset of the grid cells, and if the right side of cell 
(i, j) happens to form part of the left boundary of the basin, i.e. the cell (i, j) does not 
belong to the basin, but the cell (i + 1, j)****belongs, hence the boundary conditions 
(2.8) can be re-written as 
 
M୧ାଵ/ଶ,୨
୩ାଵ/ଶ = 0, vertical wall on the left side,                                                         (2.10) 

 
M୧ାଵ/ଶ,୨
୩ାଵ/ଶ = ଵ

∆୶
ൣ(∆x− c ∆t)M୧ାଵ/ଶ,୨

୩ + c ∆tM୧ାଷ/ଶ,୨
୩ ൧,open on the left side.              (2.11) 

 
2.2 Determination of Dispersion-correction Parameters 
Following the approach suggested by Warming and Hyett in [17], the Taylor series 
expansions of the variables η, M and N at the point represented by (k, i, j) are applied 
to Eqs. (2.4)-(2.7) when ν****is equal to zero. To derive a resulting modified 
equation, some higher time derivatives are replaced by the corresponding spatial 
derivatives and the volume flux components, M and N, are eliminated. After a lengthy 
algebra, a modified equation for η is obtained as follow: 
 
∂ଶη
∂tଶ − cଶ ቆ

∂ଶη
∂xଶ +

∂ଶη
∂yଶቇ− cଶ

(∆x)ଶ

12
(1 + αଵ − C୰ଶ)ቆ

∂ସη
∂xସ + 2

∂ସη
∂xଶ ∂yଶ +

∂ସη
∂yସቇ

+ (1 + αଵ − αଶ)cଶ
(∆x)ଶ

6
∂ସη

∂xଶ ∂yଶ 

 
−cଶ (∆୲)మ

ସ
(1 − αଷ) ቀ பర஗

ப୶మ ப୲మ
+ பర஗

ப୷మ ப୲మ
ቁ = O((∆x)ଷ, (∆x)ଶ∆t, (∆t)ଶ∆x, (∆t)ଷ), 

(2.12) 
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in which a uniform grid is used, i.e. Δx = Δy.The Courant number is given by 
C୰ = c Δt/Δx. The leading order terms in Eq.(2.12) are the same as those in the wave 
equation. The terms of O((Δx)²) and of higher order are the results of numerical 
discretization. Comparing Eq.(2.12) with the (ILBq) (1.7), these equations are seen to 
be identical as long as the following relations are satisfied: 
 
αଵ = C୰ଶ −

ଵଶ୆୦మ

(୼୶)మ − 1,                                                                                           (2.13) 
 
αଶ = αଵ + 1,                                                                         (2.14) 
 
And 
 

αଷ = 1 −
ቀ୆ାభయቁ୦

మ

୥୦(୼୲)మ
.                                                                   (2.15) 

 
The value of B is not limited to the values discussed in [11]. To verify the 

stability condition of the current ADI (2.4)-(2.7) scheme, the value of B****can be 
chosen as 
 
൫C୰ଶ − 2൯ (୼୶)మ

ଵଶ୦మ
≤ B ≤ ୥(∆୲)మ

ଵଶ ୦
.                                                          (2.16) 

 
The following relation is obtained if B unique in Eqs. (2.4)-(2.7)  
 
(∆x)ଶ = 4hଶ − 2gh(∆t)ଶ.                                                               (2.17) 
 

In our study, the spatial grid size Δx and time step size Δt*****will be 
determined from Eq.(2.17). 
 
2.3 Existence and uniqueness of the Solution 
A mesh of more delicate is considered, taking into account the effects of both 
numerical linear dispersion and weak dissipation effects. Then, fromEqs.(2.4)-(2.7) 
we get 
 
A୶η

୩ାభమ = U୶η୩ + V୶N୩,                                                                    (2.18) 
 

M୩ାభమ = E୶ ቂZ୶η୩ + W୶η
୩ାభమ + S୶η୩ାଵቃ,                                                              (2.19) 

 
N୩ = [N

ଵ,యమ

୩ , . . . , N
஛౮,యమ

୩ ; N
ଵ,ఱమ

୩ , . . . , N
஛౮,ఱమ

୩ ; . . . ; N
ଵ,஛౯ା

భ
మ

୩ , . . . , N
஛౮ ,஛౯ା

భ
మ

୩ ]୘,                         (2.20) 

 

M୩ାభమ = [Mయ
మ,ଵ

୩ାభమ, . . . , Mయ
మ,஛౯

୩ାభమ; Mఱ
మ,ଵ

୩ାభమ, . . . , Mఱ
మ,஛౯

୩ାభమ; . . . ; M
஛౮ା

భ
మ,ଵ

୩ାభమ , . . . , M
஛౮ା

భ
మ,஛౯

୩ାభమ ]୘,              (2.21) 

 



804  A.Boussaha et al 

where, 
 
η୩ = [ηଵ,ଵ

୩ , . . . , η஛౮ ,ଵ
୩ ;ηଵ,ଶ

୩ , . . . , η஛౮ ,ଶ
୩ ; . . . ;ηଵ,஛౯

୩ , . . . , η஛౮,஛౯
୩ ]୘,                                    (2.22) 

 
is applied to iterate k + 1/2 and k + 1. 

In Eqs. (2.18)-(2.19) we can replace i by j, x by y, M by N and vice versa, then 
we can also replace k by (k + 1/2) and (k + 1/2) by (k + 1). Except we keep the 
last term of Eq. (2.19) as it is. Like this we get the full matrix form of (2.4)-(2.7) 
system. All the matrices are presented and described in the Appendix. We use the 
Gauss-Seidel iterative method because of its high stability with respect to rounding 
errors. When the terms located on the diagonal of triangular matrix A୶ (resp., A୷) are 
all different from zero, the rank of this matrix is equal to matrix order λ୶(resp., λ୷), so 
it exists a solution for (2.4)-(2.7) system.  On the other side, the rank is equal to 
unknown numbers, then the solution of (2.4)-(2.7) system is unique. 
 
2.4 Convergence of the Scheme 
In this section, we shall demonstrate that ADI defined by Eqs (2.4)-(2.7) is stable. By 
obtaining the local discretization error*****and the well-known classical theorem 
[18], we concluded that,****the scheme is convergent. 
2.4.1 Stability Analysis 
The solution of****the Eqs. (2.4)-(2.7) can be written in the following Fourier 
forms,[19]: 
 
η = η଴ρ୲eన̂୫୶eన̂୪୷,                                                                                                    (2.23) 
 
M = M଴ρ୲eన̂୫୶eన̂୪୷,                                                                                                  (2.24) 
 
N = N଴ρ୲eన̂୫୶eన̂୪୷.                                                                                                  (2.25) 
 

In the stability analysis, the amplification factor, |ρ୼୲|, should be less than or 
equal to unity.  

Substitution****from Eqs.****(2.23)-(2.25) into Eqs.(2.4)-(2.7) and using the 
notations 
 
 t = ݇଴Δt,∗∗∗ (݇଴ = 0, 1, 2, … , k, … ), 
 
 x = i଴Δx,∗∗∗ (i଴ = 0, 1, 2, … , i, … ), 
 
y = j଴Δy,∗∗∗ (j₀ = 0, 1, 2, . . . , j, . . . ), 

(2.26) 
 
yields the following matrix form of a linear system 
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⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ ଶ൬஡

౴౪
మ ିଵ൰

൬஡
౴౪
మ ାଵ൰

+ ସ஝୰౮൫ୱ୧୬మ஘౮ାୱ୧୬మ஘౯൯
୦୼୶

. ı̂r୶sinθ୶. ı̂r୷sinθ୷.

న̂
ଷ

r୶ghsinθ୶ ቂρ
౴౪
మ ൫3− αଵsinଶθ୶ − αଶsinଶθ୷൯,

+3αଷ ቀρ୼୲ − 2ρ
౴౪
మ + 1ቁ /4ቃ .

ቀρ
౴౪
మ − 1ቁ + ସ஝୰౮஡

౴౪
మ ୱ୧୬మ஘౮
୦୼୶

. 0

న̂
ଷ

r୷ghsinθ୷ ቂρ
౴౪
మ ൫3 − αଵsinଶθ୷ − αଶsinଶθ୶൯,

+3αଷ ቀρ୼୲ − 2ρ
౴౪
మ + 1ቁ /4ቃ .

0 ቀρ
౴౪
మ − 1ቁ + ସ஝୰౯஡

౴౪
మ ୱ୧୬మ஘౯
୦୼୷

.
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡η଴

M଴

N଴
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

= 0, 

(2.27) 
where, 
 

r୶ =
Δt
Δx,   r୷ =

Δt
Δy ,   θ୶ =

mΔx
2  and  θ୷ =

lΔy
2 . 

 
Since the system of linear equations given in matrix form (2.27) is 

homogeneous, the determinant of the coefficient matrix must vanish to get nontrivial 
solutions. Assume, Δx = Δy for simplicity.  

For the amplification factor 
 

ρ୼୲ = 1,                                                                                                                  (2.28) 
 

The*****Courant number can be found from                     
C୰

= ඨ0.25 +
gh(3 − sinଶθ୶) + ൫3 − sinଶθ୷൯ − αଵ(gh + 1)൫sinଶθ୶ + sinଶθ୷൯

12νଶ൫sinଶθ୶ + sinଶθ୷൯
.                     (2.29) 

 
In the proposed scheme, the dispersion-correction factor α₁ is ranged from 

−1 ∗∗∗∗to ቀ1 + ଷ஝²
(୥୦ାଵ)

ቁ,****to satisfy the stability condition (2.28), while, in the 
transoceanic propagation, as h ≫ ν, the value of α₁****lies between is −1 ≤ α₁ ≤ 1. 
In (2.29), the largest value of the Courant number is 0.5, when sinθ୶ = sinθ୷ =
1****at α₁ = 1. If the water depth is zero, the dispersion-correction factor α₁=−1, 
so, the value of the Courant number will be C୰ ≤ [0.25 + 1/6ν²]଴.ହ. Thus, in the real 
problem, the proposed scheme has the largest allowable Courant number.*****Then, 
the dispersion-correction factor α₁ plays an important role in the stability condition. 
As α₁ increases the largest allowable Courant number decreases. 
 
2.4.2 Consistency of the Numerical Scheme 
The intermediate ADI solution introduces an added complication, thus we can either 
combine separate estimates of the local discretization errors of the predictor and 
corrector steps, [20]. 
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We can eliminate η୧,୨
୩ାభమ  by adding (2.4) and (2.6) in predictor stage. The result 

is 
 

η୧,୨୩ାଵ − η୧,୨୩ = ൬
νr୶
Δx δ୶୶ +

νr୷
Δy δ୷୷൰ ൫η୧,୨

୩ାଵ + η୧,୨୩ ൯ −
r୶
2 δ୶൫M୧,୨

୩ାଵ + M୧,୨
୩ ൯ 

 
− ୰౯

ଶ
δ୷൫N୧,୨

୩ାଵ + N୧,୨
୩ ൯,                (2.30) 

 
where, 
 
δ୶ ⋅=⋅୧ାభమ,୨−⋅୧ିభమ,୨, 

 
δ୷ ⋅=⋅୧,୨ାభమ

−⋅୧,୨ିభమ
, 

 
δ୶୶ ⋅=⋅୧ାଵ,୨− 2 ⋅୧,୨+⋅୧ିଵ,୨, 
 
δ୷୷ ⋅=⋅୧,୨ାଵ− 2 ⋅୧,୨+⋅୧,୨ିଵ. 

          (2.31) 
 

Dividing by Δt, gathering all terms on the right side, replacing the numerical 
approximation by any smooth function, and subtracting the result from the differential 
equation (2.4) or (2.6), yields the local discretization error as 
 

Δt τ୧,୨୩ = Δt η୲ + M୶ + N୷ − ν൫η୶୶ + η୷୷൯ห୧,୨
୩ − ൬1 −

νr୶
Δx δ୶୶ −

νr୷
Δy δ୷୷൰η୧,୨

୩ାଵ 

 

+ ൬1 +
νr୶
Δx δ୶୶ +

νr୷
Δy δ୷୷൰η୧,୨

୩ −
r୶
2 δ୶൫M୧,୨

୩ାଵ + M୧,୨
୩ ൯ −

r୷
2 δ୷൫N୧,୨

୩ାଵ + N୧,୨
୩ ൯. 

(2.32) 
 

Equation (2.32) is the product of Δt and the local discretization error of the 
Crank-Nicolson scheme, that is 
 
(Δt τ୧,୨୩ )େ୒ = Δt τ୧,୨୩ .                                                             (2.33) 
 

Repeat the same steps for corrector stage, from Eq.(2.5), we can formulate the 
local discretization error as follow 

∆t τ୧ାభమ,୨
୩ = ∆t ቀM୲ −

ν
h M୶୶ቁቚ

୧ାభమ,୨

୩
+ ∆t ቀgh η୶ +

αଵ
12  gh η୶୶୶ +

αଶ
12  gh η୶୷୷ +

αଷ
4  gh η୶୲୲ቁቚ

୧,୨

୩
 

 

  −ቀ1 −
νr୶

h Δxδ୶୶ቁM
୧ାభమ,୨

୩ାభమ + ቀ1 +
νr୶

h Δx δ୶୶ቁM
୧ାభమ,୨
୩  
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  −ቀgh
r୶
2 δ୶ +

αଵ
24 gh r୶δ୶୶୶ +

αଶ
24 gh r୶δ୶୷୷ +

αଷ
8 r୶gh δ୶୲୲ቁ ൫η୧,୨୩ାଵ + η୧,୨୩ ൯ 

 

 +
νr୶

2h Δx δ୶୶ ቆM
୧ାభమ,୨

୩ାభమ − M
୧ାభమ,୨
୩ ቇ 

 

−
1
2 ቀgh

r୶
2 +

αଵ
24 gh r୶δ୶୶୶ +

αଶ
24 gh r୶δ୶୷୷ +

αଷ
8 r୶gh δ୶୲୲ቁ ൫η୧,୨୩ାଵ − η୧,୨୩ ൯, 

(2.34) 
 
where, 
 
δ୶୶୶. =.୧ାଶ,୨− 3.୧ାଵ,୨+ 3.୧,୨−.୧ିଵ,୨, 
 

δ୶୲୲. = ቆ.୧ାଵ,୨
୩ାଵ − 2.୧ାଵ,୨

୩ାభమ +.୧ାଵ,୨
୩ ቇ − ቆ.୧,୨୩ାଵ− 2.୧,୨

୩ାభమ+.୧,୨୩ ቇ, 

 
δ୶୷୷. = ൫.୧ାଵ,୨ାଵ− 2.୧ାଵ,୨+.୧ାଵ,୨ିଵ ൯ − ൫.୧,୨ାଵ− 2.୧,୨+.୧,୨ିଵ ൯. 

(2.35) 
 

Repeat the same steps for Eq (2.7), yields the local discretization error as 
follow 

 

∆t τ୧,୨ାభమ
୩ = ∆t ቀN୲ −

ν
h N୷୷ቁቚ

୧,୨ାభమ

୩
+ ∆t ቀgh η୷ +

αଵ
12  gh η୷୷୷ +

αଶ
12  gh η୷୶୶ +

αଷ
4  gh η୷୲୲ቁቚ

୧,୨

୩
 

 

−൬1 −
νr୷

h Δyδ୷୷൰N
୧,୨ାభమ

୩ାଵ + ൬1 +
νr୷

h Δyδ୷୷൰N
୧,୨ାభమ

୩  

 

−ቀgh
r୷
2 δ୷ +

αଵ
24 gh r୷δ୷୷୷ +

αଶ
24 gh r୷δ୷୶୶ +

αଷ
8 r୷gh δ୷୲୲ቁ ൫η୧,୨୩ାଵ + η୧,୨୩ ൯ 

 

+
νr୷

2h Δyδ୷୷ ቆN
୧,୨ାభమ

୩ାభమ − N
୧,୨ାభమ

୩ ቇ 

 

−
1
2 ቀgh

r୷
2 +

αଵ
24 gh r୷δ୷୷୷ +

αଶ
24 gh r୷δ୷୶୶ +

αଷ
8 r୷gh δ୷୲୲ቁ ൫η୧,୨୩ାଵ − η୧,୨୩ ൯, 

(2.36) 
 
where, 
 
δ୷୷୷ ⋅=⋅୍,୨ାଶ− 3 ⋅୍,୨ାଵ+ 3 ⋅୍,୨−⋅୍,୨ିଵ, 
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δ୷୲୲ ⋅= ቆ⋅୧,୨ାଵ୩ାଵ− 2 ⋅୧,୨ାଵ
୩ାభమ +⋅୧,୨ାଵ୩ ቇ− ቆ⋅୧,୨୩ାଵ− 2 ⋅୧,୨

୩ାభమ+⋅୧,୨୩ ቇ, 

 
δ୷୶୶ ⋅= ൫⋅୧ାଵ,୨ାଵ− 2 ⋅୧,୨ାଵ+⋅୧ିଵ,୨ାଵ൯ − ൫⋅୧ାଵ,୨− 2 ⋅୧,୨+⋅୧ିଵ,୨൯. 

(2.37) 
 

The first five terms at the right hand sides of Eqs. (2.34) and (2.36) are equal 
to zero but the last two  terms remain such as they contain the numerical error of both 
linear dispersion and weakly dissipative.  

A Taylor's series expansion would reveal that 
 
τ୩ = ൫τ୧,୨୩ ൯େ୒ + τ

୧ାభమ,୨
୩ + τ

୧,୨ାభమ

୩ .                                                                              (2.38) 

 
Expanding the remaining terms in a Taylor's series, yields  
 

νr୷
2h Δy

δ୷୷ ቆN
୧,୨ାభమ

୩ାభమ − N
୧,୨ାభమ

୩ ቇ −
1
2
ቀgh

r୷
2

+
αଵ
24

gh r୷δ୷୷୷ +
αଶ
24

gh r୷δ୷୶୶ +
αଷ
8

r୷gh δ୷୲୲ቁ൫η୧,୨୩ାଵ − η୧,୨୩ ൯ 

 

=
νr୷

4h Δy
Δtδ୷୷δ୲N୧,୨ାభమ

୩ −
1
2
ቀgh

r୷
2
δ୷ +

αଵ
24

gh r୷δ୷୷୷ +
αଶ
24

gh r୷δ୷୶୶ +
αଷ
8

r୷gh δ୷୲୲ቁΔt δ୲η୧,୨
୩ାభమ.  

(2.39) 
 

Thus, the local discretization error of the ADI method depends****on the 
error of Crank-Nicolson scheme. From Eq. (2.39),****when Δt → 0, we get 
τ
୧ାభమ,୨
୩ (resp., τ

୧,୨ାభమ

୩ ) → 0.****Then, the system of Eqs.(2.4) - (2.7) converges and has a 

truncated error given by 
 
τ୩ = ൫τ୧,୨୩ ൯େ୒ + (Δx)ଷ + (Δx)(Δt)ଶ + (Δx)ଶ(Δt).                                                 (2.40) 
 
 
3. Numerical Results and Discussion 
The goal of this numerical study is recognition of mathematical aspect when nonlocal 
terms give a more realistic profile to dispersive free surface of tsunami. Surpass the 
obstacle that appears in the experimental when we introduce delicate values of ν, i.e., 
values of ν in nature.****There are some time intervals for which the solution is 
Bichromatic Wave (BW). These intervals intersect only at the points x ∈ [0, 15 m], so 
that (BW) for this mode is established only at these values. 
 
3.1Free Surface Profile 
Free surface elevation of (HTS1) propagation into ocean is well discussed in [16]. 
Following this application, our simulation focuses at waves dispersive affected by 
weak dissipation. (IWTs) propagation generated by tsunami source didn’t discuss in 
the literature, for this we will explain the effects of ocean viscosity by virtue of 
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mathematical aspect. The choice of the kinematic viscosity for the practical 
simulations of water waves is not obvious. However, in various experimental and 
theoretical studies,researchers independently concluded that, a value of ν =
10⁻³ m²/s fits very well available data (see, [10]). The most recent experimental 
study of plunging breakers confirms this value again. Consequently, we retain this 
value for our numerical illustrations as well. Then, according to the criteria provided 
in [11] and satisfying Eq.****(2.16), it is advisable to choose B = 1/21. Firstly, we 
study tendency of numerical solution convergence. 

 

 
 

Figure 3. Free surface profile along with ૟ ܕof the beginning dispersion for grid 
sizes:ઢܠ = ૚

૚૙
, ૚
૚૙૙

, ૚
૚૙૙૙

. 
 
 

The relative error (rerr) is defined by following relationship: 
 

rerr = ඨ
∑ ∑ [஗(୧,୨)ି஗౨౛౜(୧,୨)]మ

ಓ౯
ౠసభ

ಓ౮
౟సభ

∑ ∑ [஗౨౛౜(୧,୨)]మ
ಓ౯
ౠసభ

ಓ౮
౟సభ

,                                                                               (3.1) 

 
where,****η୰ୣ୤(i, j) is calculated at Δx = 1/1000 as a reference among the proposed 
solutions.  
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Table 1. Relative error for refining proposed. 
 

Time (min) rerr of η భ
భబ

 rerr of*η భ
భబబ

 

92 2.13457e− 02 1.34467e− 04 
94 2.81415e− 02 1.77726e− 04 
96 5.65162e− 01 3.56673e− 05 
98 6.95978e− 01 4.36707e− 06 

100 2.81622e− 03 1.76797e− 05 
 
 

Figure 3 and Table 1, show that the error****decreases*****gradually as Δx 
approaches zero. Then, the error*****between the approximate solution and the exact 
solution decreases****corresponding *to*the* theoretical*convergence of order 
∗∗∗∗ O((Δx)³, (Δx)(Δt)², (Δx)²(Δt)), (see section:****Convergence of the Scheme). 

 
 

Figure 4.(BW) propagation in deep water with surface elevation ૚૞ ܕ from west 
boundary at**** 
 
 
 
 

Δx = 0.001 m,Δt = 4.16 sec, h = 50 m. 
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Figure 5.Comparison (BW) frees surface profile between fluid of viscosity (0.001 
m2/s) and (HS1) fluid. 
 
 

(BW) propagates at 15 m and it travels down at an interval of time∗∗∗∗
[90 min, 150 min] which almost undisturbed as shown in Figure 4. By using the 
same data for inviscid fluid which solved by (2.4)-(2.7) system with ν = 0 m²/s. 
Figure 4 shows a clear decreased in train amplitudes for the viscous fluid compared to 
the inviscid.****Also, the wave propagation is slightly slow down by viscous effects. 
Mathematically this effect is ascribed to nonlocal terms which are more important in 
magnitude for small wave-numbers,****(see, [10]). 

For comparison, the molecular viscosity of (HTS1)is of the order ν ≈
10⁻⁶ m²/s which is too small to model the energy dissipation phenomena in a 
laboratory wave tank. Hence, the molecular viscosity replaced in the Figures 3 and 4 
by an effective value 10⁻³ m²/s.We quote that (BW) begins to propagate after one 
hour and half of the initial free surface movement, but it appearing in Heraklion ocean 
site after two hour. Therefore, in the real problem, irregular wave has more than half 
an hour retard time comparing to fluid of ν = 10⁻³m²/s, see Figure 5. 
 
3.2 Validation of the Numerical Scheme 
Current method is validated against published numerical data in [11]. So, we compare 
our numerical results to the same it data, which investigated the propagation of 
(IWTs) over a constant water depth. 
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Figure 6. Comparison of (BW) free surface calculated using present finite 
difference method and the numerical scheme of [11] for the case ܐ = ૝.૛ ܕ. 
 
 

Figure 6 shows a correlation between the work of [11] and our work. The use 
of [11] is performed with a uniform grid size of 0.6 m, it conducted into 12 m of 
channel. On the other hand, employing the present model (2.4)-(2.7) with ν = 0 m²/s 
is made with a same grid size; but the time step Δt is determined from the stability 
criteria (2.17). The algorithms to compute various physical processes, such as 
nonlinear advection, nonlinear dispersion and wave dissipation due to bottom friction 
and breaking, are eliminated from the source scheme of the both [11] and (2.4)-(2.7) 
models.****Thus, the computational time for the [11] model to calculate the free 
surface of (BW)can be measured for fair comparison with that of the present model. 
The numerical simulation is conducted for 90 sec after the initial water surface 
displacement imposed along x = 0 is released.****The computational time elapsed 
for the two models are presented in Table 2. The [11] model employing a PC scheme 
consumes a long computational time, while the present fully implicit model takes 
about 1/10 of the computational time required for [11]. The computational efficiency 
of the present model can be realized even more dramatically if the computational time 
is compared with that of [11] of the best grid size of Δx = 0.6 m. The present model is 
approximately 10 times faster than the [11] model. It can be concluded that the 
present model is well efficient for practical problems. 
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Table 2. Comparison of computational time 
 

Model Madsen et al.[11] Present modified scheme 
Δx (m) 0.6 0.6 

Number of grids 20 × 10 20 × 20 
Δt (sec) 0.1 0.9 

Number of time steps 14 7 
CPU time (sec) 770 72 

 
 
4. Conclusion 
We have applied a novel scheme of dispersive propagation model for earthquake 
generated tsunami. It was also shown that simulations including both dispersive long 
distant tsunami propagation as well as weak dissipation are well achieved. As a 
benefit, our work can model the earthquake source flexibly in the propagation model. 
It is a useful numerical solution when existing theories are not available to find exact 
solution; this last is ideal and sometimes is not compatible with the physical 
phenomenon.  Also experimental study is unable to achieve natural profile of solution 
because the inability to employ natural values. 

In this model, we proposed the introducing an additional term to the novel 
modified scheme. This latter is comparatively has some limitations, i.e., the grid size 
has to be equal in both horizontal directions and check stability criteria (2.17). In 
other words, our approach calculates the dispersion-correction factors instead of 
choosing spatial grid size and step size again to mimic the frequency dispersion of the 
(ILBqs), [11]. The obtained numerical solutions are validated by [11] model. 
Remarkable results are more agreeable to our numerical model.  

The relative danger of viscosity when its values decrease at greater 
temperatures which are due by Global Warming effect. Although the inverse 
temperature-viscosity relationship is a universal feature of aquatic systems, little 
mathematical research has been done to study the mathematical consequences of 
simultaneous changes in temperature and viscosity in (CLBqs). The effect of new 
viscous-temperature terms is to be revealed in futures studies. For inviscid case, we 
hope to solve Eq.(2.7) by numerical technique. 
 
 
Appendix 
 

A୶ =

⎣
⎢
⎢
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⎢
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⋮
0

0
1 − aଷ୶
−2aଷ୶

aଷ୶
⋱
⋯
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⋱
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E୶ =

⎣
⎢
⎢
⎢
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⋮
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F୶ = ଵ

ୡ ୰౮൫ଵିୟయ
౮൯

, H୶ = ଵିୡ ୰౮
ୡ ୰౮൫ଵିୟయ

౮൯
,∗∗∗∗ D୶ = aଷ୶(H୶ − c r୶F୶)− F୶, D୶

∗ = aଷ୶(H୶ −

c r୶F୶) + F୶, R୶ = ୥୦ ୰౮(∆୶)మ

(∆୶)మାଶ஝୰౮
. 

 

aଵ୶ =
(Δx)ଶ − 2νr୶
(Δx)ଶ + 2νr୶

, aଶ୶ =
−r୶(Δx)ଶ

24[(Δx)ଶ + 2νr୶] , aଷ୶ =
νr୶

(Δx)ଶ + 2νr୶
, eଵ୶

= (aଷ୶ − 1)[aଷ୶(H୶ − cr୶F୶)− F୶] + F୶, 
 
eଶ୶ = [aଷ୶(H୶ − cr୶F୶)− F୶][(aଷ୶)ଶ(H୶ − cr୶F୶)− aଷ୶ + F୶] + 
 
F୶[H୶ + aଷ୶(H୶ − cr୶F୶)]− H୶. 
 
eଷ୶ = F୶(1− H୶ + cr୶F୶), 
 
eସ୶ = aଷ୶(H୶ − cr୶F୶)[aଷ୶(H୶ − cr୶F୶) + F୶ − 1] + F୶, 
 
eହ୶ = aଷ୶(H୶ − cr୶F୶)[aଷ୶(H୶ − cr୶F୶) + F୶ − 1] + (H୶ − cr୶F୶) 
 
[aଷ୶(H୶ − cr୶F୶) + F୶]− H୶. 
 
e଺୶ = F୶[aଷ୶(H୶ − cr୶F୶) + H୶]. 
 
e଻୶ = aଷ୶(H୶ − cr୶F୶)[aଷ୶(H୶ − cr୶F୶) + F୶ − 1] + F୶ + 2, 
 
e଼୶ = [aଷ୶(H୶ − cr୶F୶) + H୶]{aଷ୶(H୶ − cr୶F୶)[aଷ୶(H୶ − cr୶F୶)− 1] + F୶ + 2} 
 
[F୶ + H୶(1 − aଷ୶)][aଷ୶(H୶ − cr୶F୶) + F୶] − H୶ + F୶, 
 
 
eଽ୶ = H୶ + aଷ୶(H୶ − cr୶F୶) + 2F୶, 
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eଵ଴୶ = aଷ୶(H୶ − cr୶F୶)[aଷ୶(H୶ − cr୶F୶) + F୶] − aଷ୶(H୶ − cr୶F୶) + F୶ 
 
−F୶(−2αଵ + 24αଶ + 3αଷ + 6). 
 
eଵଵ୶ = [H୶ + aଷ୶(H୶ − cr୶F୶)]{aଷ୶[aଷ୶(H୶ − cr୶F୶) + F୶](H୶ − cr୶F୶) + F୶

+ (−2αଵ + 24αଶ + 3αଷ + 6)[F୶ + H୶(1− aଷ୶)][aଷ୶(H୶ − cr୶F୶)
+ F୶] + H୶ + F୶(−2αଵ + 24αଶ + 3αଷ + 6)}, 

 
eଵଶ୶ = −H୶ − aଷ୶(H୶ − cr୶F୶)− F୶(−2αଵ + 24αଶ + 3αଷ + 6). 
 

Similarly, we can get the matrices and their coefficients according to 
y −direction; except the matrix S୶which is defined only for x −direction. 
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