
Global Journal of Pure and Applied Mathematics. 
ISSN 0973-1768 Volume 10, Number 6 (2014), pp. 775-782 
© Research India Publications 
http://www.ripublication.com 

 

 
 

Quantum Algorithm for Number Place Problem 
 
 

Toru Fujimura 
 

Department of Chemistry, Industrial Property Cooperation Center, 
1-2-15, Kiba, Koto-ku, Tokyo 135-0042, Japan 

E-mail: tfujimura8@gmail.com 
 

Abstract 
 

A quantum algorithm for the number place problem and its example are 
reported. The rule of the number place problem is as follows. (i) A problem is 
given as an n2×n2 grid, which is divided into n×n squares with thick border 
lines. The value n is called order. (ii) Some cells are filled with an integer 
from 1 to n2. (iii) The goal is to fill in all the blank cells so that each row, 
column and n×n square has each of integers from 1 through n2 exactly once. 
A computational complexity of a classical computation is about n2!3n×n. The 
computational complexity becomes about 8n6 by the quantum algorithm that 
uses quantum phase inversion gates and quantum inversion about mean gates. 
Therefore, a polynomial time process becomes possible. 
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Introduction 
The 3-SAT and the number place problems are known as the NP-complete problems 
which have been proposed by Cook [1-3]. When a computational complexity of a 
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problem is large, a quantum computational method is applied for it [3-5]. The 
algorithms of the quantum computer by Deutsch-Jozsa [4-6], Shor [3-5, 7], Grover 
[4, 8, 9] and so on are known. A quantum algorithm for the 3-SAT problem by a 
numbering method has recently been reported by Fujimura [10]. Its computational 
complexity becomes a polynomial time. The number place problem is examined by 
the quantum computational method this time. Therefore, its result is reported. 
 
Number Place Problem 
The rule of the number place problem is as follows. (i) A problem is given as an 
n2×n2 grid, which is divided into n×n squares with thick border lines. The value n is 
called order. (ii) Some cells are filled with an integer from 1 to n2. (iii) The goal is to 
fill in all the blank cells so that each row, column and n×n square has each of 
integers from 1 through n2 exactly once [2]. 
 
Quantum Algorithm 
Each element f (i, j) [1 ≤ i ≤ 3n2, 1 ≤ j ≤ n2. 1 ≤ f (i, j) ≤ n2. i, j, n and f (i, j) are 
integers.] of an n2 × n2 grid that is consisted by each row, column and n × n square is 
as follows. (I) Rows: They may be No. n2 from No.1 from the top to the bottom [1 ≤ 
i ≤ n2]. Elements in a row: They may be No. n2 from No.1 from the left to the right 
[1 ≤ j ≤ n2]. (II) Columns: They may be No.2n2 from No.(n2 + 1) from the left to the 
right [n2 + 1 ≤ i ≤ 2n2]. Elements in a column: They may be No. n2 from No.1 from 
the top to the bottom [1 ≤ j ≤ n2]. 
     (III) n × n squares: They may be No.3n2 from No.(2n2 + 1) from the upper left 
→ the upper right → the lower left to the lower right [2n2 + 1 ≤ i ≤ 3n2]. Elements in 
an n × n square: They may be No.n2 from No.1 from the upper left → the upper right 
→ the lower left to the lower right [1 ≤ j ≤ n2]. 
     (IV) The number of the already filled cells is M [1 ≤ M ≤ n4 − n2. M is an 
integer.]. Each value of them is fm(im, jm) = fm((number of the row), (number of the 
order in the same row)) [1 ≤ m ≤ M. 1 ≤ im ≤ n2 – 1. 1 ≤ jm ≤ n2 – 1. 1 ≤ fm(im, jm) ≤ n2. 
im, jm, m and fm(im, jm) are integers.]. For example, when there are f (9, 5) = 1 [m = 
18], f (9, 7) = 2 [m = 19] and f (9, 8) = 4 [m = 20], they correspond to f18(9, 1) = 1, 
f19(9, 2) = 2 and f20(9, 3) = 4, respectively. 
     First of all, quantum registers |a (i, j)> [= | f (i, j) – 1>] and |b> are prepared. 
When P is the minimum integer that is log2 n2 or more, each of |a(i, j)> is consisted 
of P quantum bits [=qubits]. States of |a(i, j)> and |b> are a(i, j) and b, respectively. 
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     Step 1: Each qubit of |a(i, j)> and |b> is set |0>. 
     Step 2: The Hadamard gate H [4, 5] acts on each qubit of |a(i, j)>. It changes 
them for entangled states. The total states are ((2P)n × n)3n × n. 
     Step 3: It is assumed that a quantum gate (A) changes |b> for |1> in a(i, j) < n2, 
or it changes |b> for |0> in the others of a(i, j). As a target state for |b> is 1, quantum 
phase inversion gates (PI) and quantum inversion about mean gates (IM) [4, 8, 9] act 
on |b>. When Q is the minimum even integer that is (2P/n2)1/2 or more, the total 
number that (PI) and (IM) act on |b> is Q because they are a couple. Next, an 
observation gate (OB) observes |b>. There actions are repeated sequentially from 
|a(1, 1)> to |a(3n2, n2)>. Therefore, each state of |a(i, j)> is 0, 1, ∙∙∙, n2 – 2 or n2 – 1, 
and the total states become ((n2)n × n)3n × n. 
     Step 4: It is assumed that a quantum gate (B(1, j),(1, g)) [1 ≤ j < g ≤ n2. g is an 
integer.] changes |b> for |1> in a(1, j) ≠ a(1, g), or it changes |b> for |0> at a(1, j) = 
a(1, g). As the target state for |b> is 1, (PI) and (IM) act on |b>. When R is the 
minimum even integer that is ((n2 + 1 – j)/(n2 – j))1/2 or more, the total number that 
(PI) and (IM) act on |b> is R. Next, (OB) observes |b>. These actions are repeated 
sequentially from |a(1, 1)> to |a(1, n2)>. Therefore, the states from |a(1, 1)> to |a(1, 
n2)> are each of integers from 0 through n2 – 1 exactly once, and the total states 
become n2!((n2)n×n)3n×n − 1. Moreover, these actions are repeated sequentially from 
|a(2, 1)> to |a(3n2, n2)>, where (B(i, j), (i, g)) [2 ≤ i ≤ 3n2. i is the integer.] is used. 
Similarly, the total states become n2!3n×n [= W(0)]. 
     Step 5: It is assumed that a quantum gate (C(i, j), (q1 + n2, h1)) [1 ≤ i ≤ n2. 1 ≤ j 
≤ n2. 1 ≤ q1 ≤ n2. 1 ≤ h1 ≤ n2 – 1. i, j, q1 and h1 are integers. a(q1 + n2, h1) in the 
column corresponds to a(i, j) in the row.] changes |b> for |1> at a(i, j) = a(q1 + n2, h1), 
or it changes |b> for |0 > in a(i, j) ≠ a(q1 + n2, h1). As the target state for |b> is 1, (PI) 
and (IM) act on |b>. When T(v) [1 ≤ v ≤ 2n2(n2 – 1). v is an integer.] is the minimum 
even integer that is (W(v − 1)/W(v))1/2 = (W(v – 1)/(W(v − 1)/(n2 + 1 – h1)))1/2 = (n2 + 
1 – h1)1/2 or more, the total number that (PI) and (IM) act on |b> is T(v). Next, (OB) 
observes |b>, and the total states become W(v) = W(v – 1)/(n2 + 1 – h1). 
     (C(i, j), (q2 + 2n2, h2)) [1 ≤ q2 ≤ n2. 1 ≤ h2 ≤ n2 – 1. q2 and h2 are integers. a(q2 
+ 2n2, h2) in the n × n square corresponds to a(i, j) in the row.] changes |b> for |1> at 
a(i, j) = a(q2 + 2n2, h2), or it changes |b> for |0 > in a(i, j) ≠ a(q2 + 2n2, h2). As the 
target state for |b> is 1, (PI) and (IM) act on |b>. When T(v + 1) is the minimum even 
integer that is (W(v)/W(v + 1))1/2 = (W(v)/(W(v)/(n2 + 1 – h2)))1/2 = (n2 + 1 – h2)1/2 or 
more, the total number that (PI) and (IM) act on |b> is T(v + 1). Next, (OB) observes 
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|b>, and the total states become W(v + 1) = W(v)/(n2 + 1 – h2). 
     These actions are repeated sequentially from |a(1, 1)> to |a(n2, n2)>. And then, 
the total states become n2!n × n [= W(2n2(n2 – 1))]. 
     Step 6: It is assumed that a quantum gate (Dm) changes |b> for |1> at fm(im, jm) 
= f (i, j) = a(i, j) + 1, or it changes |b> for |0> in the others of a(i, j). As the target 
state for |b> is 1, (PI) and (IM) act on |b>. When U(m) is the minimum even integer 
that is (W(2n2(n2 − 1) + m − 1)/W(2n2(n2 – 1) + m))1/2 = (W(2n2(n2 – 1) + m – 
1)/(W(2n2(n2 – 1) + m – 1)/(n2 + 1 – jm)))1/2 = (n2 + 1 – jm)1/2 or more, the total 
number that (PI) and (IM) act on |b> is U(m). Next, (OB) observes |b>, and the total 
states become W(2n2(n2 − 1) + m) = W(2n2(n2 − 1) + m − 1)/(n2 + 1 − jm). These 
actions are repeated sequentially from f1(i1, j1) to fM(iM, jM). And then, the total states 
become W(2n2(n2 − 1) + M). When m is M, (OB) observes |a(i, j)> [1 ≤ i ≤ 3n2. 1 ≤ j 
≤ n2.] and |b>, and one of the data of W(2n2(n2 − 1) + M) remains. After all, one of 
answers is f (i, j) = a(i, j) + 1 [1 ≤ i ≤ n2. 1 ≤ j ≤ n2.]. 
 
Numerical Computation 
It is assumed that there are n = 3 and M = 20 [ f1(1, 1) = f (1, 2) = f (11, 1) = f (19, 2) 
= 6, f2(1, 2) = f (1, 5) = f (14, 1) = f (20, 2) = 7, f3(2, 1) = f (2, 4) = f (13, 2) = f (20, 4) 
= 1, f4(2, 2) = f (2, 6) = f (15, 2) = f (20, 6) = 4, f5(3, 1) = f (3, 3) = f (12, 3) = f (19, 9) 
= 2, f6(3, 2) = f (3, 8) = f (17, 3) = f (21, 8) =1, f7(4, 1) = f (4, 9) = f (18, 4) = f (24, 3) 
= 6, f8(5, 1) = f (5, 1) = f (10, 5) = f (22, 4) = 9, f9(5, 2) = f (5, 8) = f (17, 5) = f (24, 5) 
= 3, f10(5, 3) = f (5, 9) = f (18, 5) = f (24, 6) = 7, f11(6, 1) = f (6, 5) = f (14, 6) = f (23, 
8) = 9, f12(7, 1) = f (7, 2) = f (11, 7) = f (25, 2) =8, f13(7, 2) = f (7, 7) = f (16, 7) = f (27, 
1) = 3, f14(7, 3) = f (7, 9) = f (18, 7) = f (27, 3) = 1, f15(8, 1) = f (8, 4) = f (13, 8) = f 
(26, 4) = 8, f16(8, 2) = f (8, 6) = f (15, 8) = f (26, 6) = 3, f17(8, 3) = f (8, 9) = f (18, 8) = 
f (27, 6) = 9, f18(9, 1) = f (9, 5) = f (14, 9) = f (26, 8) = 1, f19(9, 2) = f (9, 7) = f (16, 9) 
= f (27, 7) = 2, f20(9, 3) = f (9, 8) = f (17, 9) = f (27, 8) = 4]. 
     First of all, |a(1, 1)>, | a(1, 2) >, ∙∙∙, |a(27, 9)> and |b> are prepared. When P is 
the minimum integer that is log2 n2 = 2log2 3 ≈ 3.2 ≤ 4 = P, each of |a(i, j)> is 
consisted of P = 4 qubits. States of |a(i, j)> and |b> are a(i, j) and b, respectively. 
     Step 1: Each qubit of |a(i, j)> and |b> is set |0>. 
     Step 2: H acts on each qubit of |a(i, j)>. It changes them for entangled states. 
The total states are ((2P)n × n)3n × n = ((24)9)27 = 169×27. 
     Step 3: (A) changes |b> for |1> in a(i, j) < n2 = 9, or it change |b> for |0> in the 
others of a(i, j). As a target state for |b> is 1, (PI) and (IM) act on |b>. When Q is the 
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minimum even integer that is (2P/n2)1/2 = (16/9)1/2 ≈ 1.3 ≤ 2 = Q, the total number 
that (PI) and (IM) act on |b> is Q = 2. Next, (OB) observes |b>. There actions are 
repeated sequentially from |a(1, 1)> to |a(27, 9)>. Therefore, each state of |a(i, j)> is 
0, 1, ∙∙∙, 7 or 8, and the total states become ((n2)n × n)3n × n = 99×27. 
     Step 4: (B(1, j),(1, g)) [1 ≤ j < g ≤ 9. g is the integer.] changes |b> for |1> in 
a(1, j) ≠ a(1, g), or it changes |b> for |0> at a(1, j) = a(1, g). As the target state for 
|b> is 1, (PI) and (IM) act on |b>. When R is the minimum even integer that is ((n2 + 
1 – j)/(n2 – j))1/2 = ((10 – j)/(9 – j))1/2 ≤ 2 = R, the total number that (PI) and (IM) act 
on |b> is R = 2. Next, (OB) observes |b>. These actions are repeated sequentially 
from |a(1, 1)> to |a(1, 9)>. Therefore, the states from |a(1, 1)> to |a(1, 9)> are each 
of integers from 0 through 8 exactly once, and the total states become n2!((n2)n×n)3n×n 

– 1 = 9!(99)26. Moreover, these actions are repeated sequentially from |a(2, 1)> to 
|a(27, 9)>, where (B(i, j), (i, g)) [2 ≤ i ≤ 27. i is the integer.] is used. Similarly, the 
total states become (9!)27 [= W(0)]. 
     Step 5: (C(i, j), (q1 + 9, h1)) [1 ≤ i ≤ 9. 1 ≤ j ≤ 9. 1 ≤ q1 ≤ 9. 1 ≤ h1 ≤ 8. i, j, q1 
and h1 are integers. a(q1 + 9, h1) in the column corresponds to a(i, j) in the row.] 
changes |b> for |1> at a(i, j) = a(q1 + 9, h1), or it changes |b> for |0 > in a(i, j) ≠ a(q1 
+ 9, h1). As the target state for |b> is 1, (PI) and (IM) act on |b>. When T(v) [1 ≤ v ≤ 
144. v is the integer.] is the minimum even integer that is (W(v − 1)/W(v))1/2 = (W(v – 
1)/(W(v − 1)/(10 – h1)))1/2 = (10 – h1)1/2 ≤ T(v), the total number that (PI) and (IM) 
act on |b> is T(v). Next, (OB) observes |b>, and the total states become W(v) = W(v – 
1)/(10 – h1). 
     (C(i, j), (q2 + 18, h2)) [1 ≤ q2 ≤ 9. 1 ≤ h2 ≤ 8. q2 and h2 are integers. a(q2 + 18, 
h2) in the 3 × 3 square corresponds to a(i, j) in the row.] changes |b> for |1> at a(i, j) 
= a(q2 + 18, h2), or it changes |b> for |0 > in a(i, j) ≠ a(q2 + 18, h2). As the target state 
for |b> is 1, (PI) and (IM) act on |b>. When T(v + 1) is the minimum even integer 
that is (W(v)/W(v + 1))1/2 = (W(v)/(W(v)/(10 – h2)))1/2 = (10 – h2)1/2 ≤ T(v + 1), the 
total number that (PI) and (IM) act on |b> is T(v + 1). Next, (OB) observes |b>, and 
the total states become W(v + 1) = W(v)/(10 – h2). 
     These actions are repeated sequentially from |a(1, 1)> to |a(9, 9)>. And then, 
the total states become 9!9 [= W(144)]. 
     Step 6: (Dm) changes |b> for |1> at fm(im, jm) = f (i, j) = a(i, j) + 1, or it changes 
|b> for |0> in the others of a(i, j). As the target state for |b> is 1, (PI) and (IM) act on 
|b>. When U(m) is the minimum even integer that is (W(144 + m − 1)/W(144 + m))1/2 
= (W(144 + m – 1)/(W(144 + m – 1)/(10 – jm)))1/2 = (10 – jm)1/2 ≤ U(m), the total 
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number that (PI) and (IM) act on |b> is U(m). Next, (OB) observes |b>, and the total 
states become W(144 + m) = W(144 + m − 1)/(10 − jm). These actions are repeated 
sequentially from f1(1, 1) to f20(9, 3). And then, the total states become W(164) = 
8!27!36!4. When m is M = 20, (OB) observes |a(i, j)> [1 ≤ i ≤ 27. 1 ≤ j ≤ 9.] and |b>, 
and one of the data of W(164) remains. For example, there are a(1, 1) = a(10, 1) = 
a(19, 1) = 0, a(1, 2) = a(11, 1) = a(19, 2) = 5, a(1, 3) = a(12, 1) = a(19, 3) = 3, a(1, 
4) = a(13, 1) = a(20, 1) = 4, a(1, 5) = a(14, 1) = a(20, 2) = 6, a(1, 6) = a(15, 1) = 
a(20, 3) = 1, a(1, 7) = a(16, 1) = a(21, 1) = 7, a(1, 8) = a(17, 1) = a(21, 2) = 8, a(1, 
9) = a(18, 1) = a(21, 3) = 2, a(2, 1) = a(10, 2) = a(19, 4) = 7, a(2, 2) = a(11, 2) = 
a(19, 5) = 8, a(2, 3) = a(12, 2) = a(19, 6) = 6, a(2, 4) = a(13, 2) = a(20, 4) = 0, a(2, 
5) = a(14, 2) = a(20, 5) = 2, a(2, 6) = a(15, 2) = a(20, 6) = 3, a(2, 7) = a(16, 2) = 
a(21, 4) = 5, a(2, 8) = a(17, 2) = a(21, 5) = 1, a(2, 9) = a(18, 2) = a(21, 6) = 4, a(3, 
1) = a(10, 3) = a(19, 7) = 2, a(3, 2) = a(11, 2) = a(19, 8) = 4, a(3, 3) = a(12, 3) = 
a(19, 9) = 1, a(3, 4) = a(13, 3) = a(20, 7) = 5, a(3, 5) = a(14, 3) = a(20, 8) = 7, a(3, 
6) = a(15, 3) = a(20, 9) = 8, a(3, 7) = a(16, 3) = a(21, 7) = 6, a(3, 8) = a(17, 3) = 
a(21, 8) = 0, a(3, 9) = a(18, 3) = a(21, 9) = 3, a(4, 1) = a(10, 4) = a(22, 1) = 6, a(4, 
2) = a(11, 4) = a(22, 2) = 1, a(4, 3) = a(12, 4) = a(22, 3) = 7, a(4, 4) = a(13, 4) = 
a(23, 1) = 2, a(4, 5) = a(14, 4) = a(23, 2) = 3, a(4, 6) = a(15, 4) = a(23, 3) = 0, a(4, 
7) = a(16, 4) = a(24, 1) = 8, a(4, 8) = a(17, 4) = a(24, 2) = 4, a(4, 9) = a(18, 4) = 
a(24, 3) = 5, a(5, 1) = a(10, 5) = a(22, 4) = 8, a(5, 2) = a(11, 5) = a(22, 5) = 3, a(5, 
3) = a(12, 5) = a(22, 6) = 4, a(5, 4) = a(13, 5) = a(23, 4) = 1, a(5, 5) = a(14, 5) = 
a(23, 5) = 5, a(5, 6) = a(15, 5) = a(23, 6) = 7, a(5, 7) = a(16, 5) = a(24, 4) = 0, a(5, 
8) = a(17, 5) = a(24, 5) = 2, a(5, 9) = a(18, 5) = a(24, 6) = 6, a(6, 1) = a(10, 6) = 
a(22, 7) = 5, a(6, 2) = a(11, 6) = a(22, 8) = 2, a(6, 3) = a(12, 6) = a(22, 9) = 0, a(6, 
4) = a(13, 6) = a(23, 7) = 6, a(6, 5) = a(14, 6) = a(23, 8) = 8, a(6, 6) = a(15, 6) = 
a(23, 9) = 4, a(6, 7) = a(16, 6) = a(24, 7) = 3, a(6, 8) = a(17, 6) = a(24, 8) = 7, a(6, 
9) = a(18, 6) = a(24, 9) = 1, a(7, 1) = a(10, 7) = a(25, 1) = 1, a(7, 2) = a(11, 7) = 
a(25, 2) = 7, a(7, 3) = a(12, 7) = a(25, 3) = 8, a(7, 4) = a(13, 7) = a(26, 1) = 3, a(7, 
5) = a(14, 7) = a(26, 2) = 4, a(7, 6) = a(15, 7) = a(26, 3) = 6, a(7, 7) = a(16, 7) = 
a(27, 1) = 2, a(7, 8) = a(17, 7) = a(27, 2) = 5, a(7, 9) = a(18, 7) = a(27, 3) = 0, a(8, 
1) = a(10, 8) = a(25, 4) = 3, a(8, 2) = a(11, 8) = a(25, 5) = 0, a(8, 3) = a(12, 8) = 
a(25, 6) = 5, a(8, 4) = a(13, 8) = a(26, 4) = 7, a(8, 5) = a(14, 8) = a(26, 5) = 1, a(8, 
6) = a(15, 8) = a(26, 6) = 2, a(8, 7) = a(16, 8) = a(27, 4) = 4, a(8, 8) = a(17, 8) = 
a(27, 5) = 6, a(8, 9) = a(18, 8) = a(27, 6) = 8, a(9, 1) = a(10, 9) = a(25, 7) = 4, a(9, 
2) = a(11, 9) = a(25, 8) = 6, a(9, 3) = a(12, 9) = a(25, 9) = 2, a(9, 4) = a(13, 9) = 
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a(26, 7) = 8, a(9, 5) = a(14, 9) = a(26, 8) = 0, a(9, 6) = a(15, 9) = a(26, 9) = 5, a(9, 
7) = a(16, 9) = a(27, 7) = 1, a(9, 8) = a(17, 9) = a(27, 8) = 3, a(9, 9) = a(18, 9) = 
a(27, 9) = 7 and b = 1. 
     Therefore, it is obtained that one of answers is f (i, j) = a(i, j) + 1 [1 ≤ i ≤ 9. 1 ≤ 
j ≤ 9.]. 
 
 
Discussion and Summary 
The computational complexity of this quantum algorithm [= S] becomes the 
following. In the order of the actions by the gates, the number of them is 3Pn4 at H, 
3n4 at (A), 6n4 (PI) and (IM), 3n4 at (OB), 3n4(n2 – 1) at (B(i, j), (i, g)) [1 ≤ i ≤ 3n2. 1 
≤ j < g ≤ n2. i, j and g are integers.], 3n4(n2 – 1) at (PI) and (IM), (3/2)n4(n2 – 1) at 
(OB), 4n2(n2 – 1) at (C(i, j), (q1 + n2, h1)) [1 ≤ i ≤ n2. 1 ≤ j ≤ n2. 1 ≤ q1 ≤ n2. 1 ≤ h1 ≤ 
n2 – 1. i, j, q1 and h1 are integers.] and (C(i, j), (q2 + 2n2, h2)) [1 ≤ q2 ≤ n2. 1 ≤ h2 ≤ n2 
– 1. q2 and h2 are integers.], Σv = 1 → 2n×n(n×n – 1) T(v) at (PI) and (IM), 2n2(n2 – 1) at 
(OB), M at (Dm) [1 ≤ m ≤ M. m is the integer.], Σm = 1 → M U(m) at (PI) and (IM), and 
M at (OB). Therefore, S becomes 7.5n6 + (3P + 10.5)n4 – 6n2 + 2M + Σv = 1 → 2n×n(n×n – 

1) T(v) + Σm = 1 → M U(m). In the example of the section 4, S is 7824. The 
computational complexity of the classical computation [= Z] is W0 = n2!3n×n = 9!27 ≈ 
10150. After all, S/Z becomes about 1/10146. When n is large enough, S becomes about 
8n6, where P is about log2 n2. And then, S/Z is about 8n6/ n2!3n×n. For example, as for 
n = 10, S/Z is about 8×106/100!300 ≈ 1/1017393, where N! is about NNe−N(2πN)1/2 
[Stirling’s formura]. 
     Therefore, the polynomial time process becomes possible. 
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