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Abstract

A quantum algorithm for the number place problem and its example are
reported. The rule of the number place problem is as follows. (i) A problem is
given as an n?xn? grid, which is divided into nxn squares with thick border
lines. The value n is called order. (ii) Some cells are filled with an integer
from 1 to n’. (iii) The goal is to fill in all the blank cells so that each row,
column and nxn square has each of integers from 1 through n? exactly once.
A computational complexity of a classical computation is about n?*™". The
computational complexity becomes about 8n° by the quantum algorithm that
uses quantum phase inversion gates and quantum inversion about mean gates.
Therefore, a polynomial time process becomes possible.
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Introduction
The 3-SAT and the number place problems are known as the NP-complete problems
which have been proposed by Cook [1-3]. When a computational complexity of a
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problem is large, a quantum computational method is applied for it [3-5]. The
algorithms of the quantum computer by Deutsch-Jozsa [4-6], Shor [3-5, 7], Grover
[4, 8, 9] and so on are known. A quantum algorithm for the 3-SAT problem by a
numbering method has recently been reported by Fujimura [10]. Its computational
complexity becomes a polynomial time. The number place problem is examined by
the quantum computational method this time. Therefore, its result is reported.

Number Place Problem

The rule of the number place problem is as follows. (i) A problem is given as an
n’xn? grid, which is divided into nxn squares with thick border lines. The value n is
called order. (ii) Some cells are filled with an integer from 1 to n? (iii) The goal is to
fill in all the blank cells so that each row, column and nxn square has each of
integers from 1 through n? exactly once [2].

Quantum Algorithm

Each element f (i, j) [1<i<3n®, 1<j<n% 1<f(i,j)<ni, j nandf(i,j) are
integers.] of an n? x n? grid that is consisted by each row, column and n x n square is
as follows. (1) Rows: They may be No. n? from No.1 from the top to the bottom [1 <
i <n?]. Elements in a row: They may be No. n from No.1 from the left to the right
[1 <j<n?. (11) Columns: They may be No.2n? from No.(n? + 1) from the left to the
right [n* + 1 <i < 2n?]. Elements in a column: They may be No. n’ from No.1 from
the top to the bottom [1 < j < n?].

(111) n x n squares: They may be No.3n? from No.(2n? + 1) from the upper left
— the upper right — the lower left to the lower right [2n? + 1 <i < 3n°]. Elements in
an n x n square: They may be No.n” from No.1 from the upper left — the upper right
— the lower left to the lower right [1 <j <n?].

(IV) The number of the already filled cells is M [L <M < n* — n?>. M is an
integer.]. Each value of them is fn(im, jm) = fm((number of the row), (number of the
order in the same row)) [L<m <M. 1<in<n’—1.1<j,<n*=1.1 <fu(im jm) <%
Im, jm» M and f(im, jm) are integers.]. For example, when there are f (9, 5) = 1 [m =
18],f(9,7) =2 [m=19] and f (9, 8) = 4 [m = 20], they correspond to f1g(9, 1) = 1,
f10(9, 2) = 2 and f,0(9, 3) = 4, respectively.

First of all, quantum registers |a(i, j)> [= | f (i, J) — 1>] and |b> are prepared.
When P is the minimum integer that is log, n? or more, each of |a(i, j)> is consisted
of P quantum bits [=qubits]. States of |a(i, j)> and |b> are a(i, j) and b, respectively.
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Step 1: Each qubit of |a(i, J)> and |b> is set |0>.

Step 2: The Hadamard gate H| [4, 5] acts on each qubit of [a(i, j)>. It changes
them for entangled states. The total states are ((27)"*")*"*".

Step 3: It is assumed that a quantum gate (A) changes |b> for |[1> in a(i, j) < n?,
or it changes |b> for |0> in the others of a(i, j). As a target state for |b> is 1, quantum
phase inversion gates (PI) and quantum inversion about mean gates (IM) [4, 8, 9] act
on |b>. When Q is the minimum even integer that is (2°/n®)*? or more, the total
number that (PI) and (IM) act on |b> is Q because they are a couple. Next, an
observation gate (OB) observes |b>. There actions are repeated sequentially from
la(1, 1)> to |a(3n?, n?)>. Therefore, each state of |a(i, j)> is 0, 1, -, n® =2 or n*— 1,
and the total states become ((n%)"* ") *".

Step 4: It is assumed that a quantum gate (B(1, j),(1, g)) [L<j<g<n* gisan
integer.] changes |b> for |1> in a(l, j) # a(1, g), or it changes |b> for |0> at a(1, j) =
a(l, g). As the target state for |b> is 1, (Pl) and (IM) act on |b>. When R is the
minimum even integer that is (n? + 1 — j)/(n® - j))" or more, the total number that
(PI) and (IM) act on |b> is R. Next, (OB) observes |b>. These actions are repeated
sequentially from |a(1, 1)> to |a(1, n®)>. Therefore, the states from |a(1, 1)> to |a(d,
n%)> are each of integers from 0 through n® — 1 exactly once, and the total states
become n?!((n®)™™*™" 1 Moreover, these actions are repeated sequentially from
la(2, 1)> to [a(3n? n?)>, where (B(i, j), (i, 9)) [2 <i < 3n% i is the integer] is used.
Similarly, the total states become n?I*™" [= W(0)].

Step 5: It is assumed that a quantum gate (C(i, j), (g + n% hy)) [L<i<n? 1<j
<n2.1<q<ni1<h;<n®-1.1i j, g and hy are integers. a(q; + n? hy) in the
column corresponds to a(i, j) in the row.] changes |b> for [1> at a(i, j) = a(q: + n? hy),
or it changes |b> for [0> in a(i, j) # a(q: + n?, hy). As the target state for [o> is 1, (PI)
and (IM) act on |b>. When T(v) [1 <v < 2n’(n? - 1). v is an integer.] is the minimum
even integer that is (W(v — 1)/W(v))¥2 = (W(v = 1)/(W(v — 1)/(n® + 1 — hy)))"? = (n® +
1 — hy)"? or more, the total number that (P1) and (IM) act on |b> is T(v). Next, (OB)
observes |b>, and the total states become W(v) = W(v — 1)/(n* + 1 — hy).

(C@i, ), (@2 +2n% h)) [1< g2 <n% 1<h,<n?-1.q,and h, are integers. a(q,
+2n?, hy) in the n x n square corresponds to a(i, j) in the row.] changes |b> for [1> at
a(i, j) = a(gz + 2n? hy), or it changes |b> for [0> in a(i, j) # a(qz + 2n?, hy). As the
target state for |b>is 1, (PI) and (IM) act on |b>. When T(v + 1) is the minimum even
integer that is (W(v)/W(v + 1))2 = (W(V)/(W(V)/(n* + 1 = hp)))"? = (> + 1 — hy)"2 or
more, the total number that (PI) and (IM) act on |[b> is T(v + 1). Next, (OB) observes
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lb>, and the total states become W(v + 1) = W(v)/(n? + 1 — hy).

These actions are repeated sequentially from |a(1, 1)> to Ja(n? n?)>. And then,
the total states become n?!"*" [= W(2n%(n® - 1))].

Step 6: It is assumed that a quantum gate (Dy,) changes |b> for |1> at fn(im, jm)
=f(,]J) =a(, j) + 1, or it changes |b> for |0> in the others of a(i, j). As the target
state for |b> is 1, (PI) and (IM) act on |b>. When U(m) is the minimum even integer
that is (W(2n°(n®> — 1) + m — 1)/W2n*(n* = 1) + m))*? = (W(2n’(n®> = 1) + m -
DIWEN*(? = 1) + m = 1)/(n° + 1 = ju))Y2 = (n* + 1 = jm)™? or more, the total
number that (P1) and (IM) act on |b> is U(m). Next, (OB) observes |b>, and the total
states become W(2n’(n®> — 1) + m) = W(2n’(n> = 1) + m — 1)/(n®> + 1 — ju). These
actions are repeated sequentially from fi(i, j1) to fu(im, jm). And then, the total states
become W(2n?(n* — 1) + M). When m is M, (OB) observes a(i, j)> [1 <i<3n% 1<]j
< n?] and |b>, and one of the data of W(2n*(n?> — 1) + M) remains. After all, one of
answers isf(i,j)=a(i,j)+1[1<i<n® 1<j<n’].

Numerical Computation

It is assumed that therearen=3and M =20 [ fi(1, 1) =f (1, 2) =f (11, 1) =f (19, 2)
=6,f(1,2)=f(1,5) =f(14,1)=1(20,2)=7,13(2,1) = (2, 4) =1 (13, 2) = (20, 4)
=1,14(2,2)=1(2,6) =f(15,2)=f(20,6)=4,13,1)=f(3,3) =f(12,3) =1 (19, 9)
=2,1(3,2)=1(3,8) =1 (17,3) =1 (21, 8) =1, f,(4,1) =f (4, 9) = (18, 4) = (24, 3)
=6,f(5, 1) =f(51) =f(10,5)=f(22,4) =9, fs(5, 2) = (5, 8) =f (17, 5) = (24, 5)
=3, f10(5,3) =1 (5,9) =1 (18,5) =1 (24,6) =7, f12(6, 1) =f (6, 5) = f (14, 6) = f (23,
8)=9,f2(7,1)=1(7,2) =1 (11, 7) =1 (25, 2) =8, f13(7,2) = (7, 7) = f (16, 7) = f (27,
1)=3,fu(7,3)=1(7,9) =1(18,7) =1 (27,3) =1, f15(8,1) =f(8,4) =1 (13,8) = f
(26,4) =8, f15(8,2) =1 (8,6) =f(15,8) = (26,6) = 3, f17(8,3) =1 (8,9) =1 (18, 8) =
f(27,6) =9, f1g(9,1) =f(9,5) =1 (14,9) =1 (26,8) =1, f19(9, 2) = (9, 7) = (16, 9)
=f(27,7)=2,10(9,3)=1(9,8)=f(17,9) =1 (27, 8) = 4].

First of all, |a(1, 1)>, | a(1, 2) >, -, [a(27, 9)> and |b> are prepared. When P is
the minimum integer that is log, n? = 2log, 3 = 3.2 < 4 = P, each of [a(i, j)> is
consisted of P = 4 qubits. States of |a(i, j)> and |b> are a(i, j) and b, respectively.

Step 1: Each qubit of |a(i, J)> and |b> is set |0>.

Step 2: |H| acts on each qubit of |a(i, J)>. It changes them for entangled states.
The total states are ((27)"*")*"*" = ((2%%)?" = 16%%".

Step 3: (A) changes |b> for [1> in a(i, j) < n? = 9, or it change |b> for [0> in the
others of a(i, j). As a target state for |b> is 1, (PI) and (IM) act on |b>. When Q is the
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minimum even integer that is (2°/n%)¥? = (16/9)"? = 1.3 < 2 = Q, the total number
that (PI) and (IM) act on |b> is Q = 2. Next, (OB) observes |b>. There actions are
repeated sequentially from [a(1, 1)> to |a(27, 9)>. Therefore, each state of |a(i, j)> is
0,1, -, 7 or 8, and the total states become ((n?)"* ") *" = 9%%’,

Step 4: (B(1, j),(1, 9)) [1 <j <g <9. gis the integer.] changes |b> for |1> in
a(l, j) #a(l, g), or it changes |b> for |0> at a(1, j) = a(1, g). As the target state for
Ib> is 1, (PI) and (IM) act on |b>. When R is the minimum even integer that is ((n? +
1-j)(n*=j)¥? = (10 = j)/(9 - |))*?> < 2 =R, the total number that (P1) and (IM) act
on |b> is R = 2. Next, (OB) observes |b>. These actions are repeated sequentially
from |a(1, 1)> to |a(1, 9)>. Therefore, the states from |a(1, 1)> to |a(1, 9)> are each
of integers from O through 8 exactly once, and the total states become n?!((n?)™")*"™"
~1 = 91(9%)%. Moreover, these actions are repeated sequentially from [a(2, 1)> to
[a(27, 9)>, where (B(i, j), (i, 9)) [2 <1< 27. 1 is the integer.] is used. Similarly, the
total states become (9!)?" [= W(0)].

Step 5: (C(1, ), (@1 + 9, ) [1<i<9.1<)<9.1<1<£9. 1<h1 <81, ), 1
and h; are integers. a(q; + 9, hy) in the column corresponds to a(i, j) in the row.]
changes |b> for [1> at a(i, j) = a(g: + 9, hy), or it changes |b> for |0> in a(i, j) # a(q:
+ 9, h;). As the target state for [b>is 1, (PI) and (IM) act on |b>. When T(v) [1 <V <
144. v is the integer.] is the minimum even integer that is (W(v — 1)/W(v))"? = (W(v —
DIW(v — 1/(10 = hy)))¥2 = (10 = hy)¥? < T(v), the total number that (P1) and (IM)
act on |b> is T(v). Next, (OB) observes |b>, and the total states become W(v) = W(v —
1)/(10 - hy).

(C(1,)), (2 + 18, h3)) [1 <02<9. 1 <hy,<8. g, and h; are integers. a(g, + 18,
hy) in the 3 x 3 square corresponds to a(i, j) in the row.] changes |b> for |1> at a(i, J)
=a(g + 18, hy), or it changes |[b> for |0> in a(i, j) # a(qz + 18, hy). As the target state
for |b>is 1, (PI) and (IM) act on |b>. When T(v + 1) is the minimum even integer
that is (W(V)/W(v + 1))¥2 = (W()/(W(V)/(10 = h2)))¥? = (10 — hp)"? < T(v + 1), the
total number that (PI) and (IM) act on |b> is T(v + 1). Next, (OB) observes |b>, and
the total states become W(v + 1) = W(v)/(10 — hy).

These actions are repeated sequentially from |a(1, 1)> to [a(9, 9)>. And then,
the total states become 91° [= W(144)].

Step 6: (Dy) changes |b> for |1> at f(im, Jm) = (i, j) = a(i, j) + 1, or it changes
|b> for |0> in the others of a(i, j). As the target state for |b> is 1, (PI) and (IM) act on
[b>. When U(m) is the minimum even integer that is (W(144 + m — 1)/W(144 + m))*?
= (W(144 + m — 1)/(W(144 + m — 1)/(10 — ju))¥? = (10 = jm)™® < U(m), the total
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number that (P1) and (IM) act on |b> is U(m). Next, (OB) observes |b>, and the total
states become W(144 + m) = W(144 + m — 1)/(10 — ju). These actions are repeated
sequentially from f;(1, 1) to f0(9, 3). And then, the total states become W(164) =
81271361, When m is M = 20, (OB) observes Ja(i, j)> [1 <i<27.1<j<9.]and |b>,
and one of the data of W(164) remains. For example, there are a(1, 1) = a(10, 1) =
a(19,1) =0, a(1, 2) = a(11, 1) = a(19, 2) =5, a(1, 3) = a(12, 1) = a(19, 3) = 3, a(1,
4) = a(13, 1) = a(20, 1) =4, a(1, 5) = a(14, 1) = a(20, 2) = 6, a(1, 6) = a(15, 1) =
a(20,3)=1,a(1,7)=a(l6,1)=a(21,1)=7,a(1,8) =a(17,1) =a(21, 2) = 8, a(1,
9)=a(18,1) =a(21,3) =2,a(2, 1) =a(10, 2) =a(19, 4) = 7, a(2, 2) = a(11, 2) =
a(19,5) =8, a(2, 3) = a(12, 2) = a(19, 6) =6, a(2, 4) = a(13, 2) = a(20, 4) = 0, a(2,
5) = a(14, 2) = a(20, 5) = 2, a(2, 6) = a(15, 2) = a(20, 6) = 3, a(2, 7) = a(16, 2) =
a(21,4) =5,a(2,8) = a(l7,2) =a(21,5) =1, a(2, 9) = a(18, 2) = a(21, 6) = 4, a(3,
1) =a(10, 3) = a(19, 7) = 2, a(3, 2) = a(11, 2) = a(19, 8) =4, a(3, 3) = a(12, 3) =
a(19,9) =1, a3, 4) =a(13, 3) = a(20, 7) =5, a(3, 5) = a(14, 3) = a(20, 8) = 7, a(3,
6) = a(15, 3) = a(20, 9) =8, a(3, 7) = a(16, 3) = a(21, 7) = 6, a(3, 8) = a(17, 3) =
a(21,8)=0,a(3,9) =a(18, 3) = a(21,9) =3, a(4,1) = a(10, 4) = a(22, 1) = 6, a(4,
2)=a(ll,4) =a(22,2)=1,a(4,3)=a(12,4) =a(22,3) =7, a(4, 4) = a(13, 4) =
a(23,1) =2,a(4,5) = a(l4, 4) = a(23, 2) = 3, a(4, 6) = a(15, 4) = a(23, 3) = 0, a(4,
7) = a(l6, 4) = a(24, 1) =8, a(4, 8) = a(17, 4) = a(24, 2) = 4, a(4, 9) = a(18, 4) =
a(24, 3) =5, a5, 1) = a(10, 5) = a(22, 4) =8, a(5, 2) = a(11, 5) = a(22, 5) = 3, a(5,
3) =a(12,5) =a(22,6) =4, a(b, 4) =a(13,5) =a(23,4) =1, a(5,5) = a(14,5) =
a(23,5) =5, a(5, 6) = a(15, 5) = a(23, 6) =7, a(5, 7) = a(16, 5) = a(24, 4) = 0, a(5,
8) = a(17,5) = a(24, 5) = 2, a(5, 9) = a(18, 5) = a(24, 6) = 6, a(6, 1) = a(10, 6) =
a(22,7) =5, a(6, 2) = a(11, 6) = a(22, 8) = 2, a(6, 3) = a(12, 6) = a(22, 9) = 0, a(6,
4) = a(13, 6) = a(23, 7) = 6, a(6, 5) = a(14, 6) = a(23, 8) = 8, a(6, 6) = a(15, 6) =
a(23,9) =4, a(6,7) =a(le, 6) =a(24, 7) = 3, a(6, 8) = a(17, 6) = a(24, 8) = 7, a(6,
9)=a(18,6)=a(24,9) =1,a(7,1) =a(10,7) =a(25, 1) =1, a(7,2) = a(11, 7) =
a25,2)=17,a(7,3) =a(12, 7) = a(25, 3) =8, a(7,4) = a(13, 7) = a(26, 1) = 3, a(7,
5) =a(l4,7) = a(26, 2) = 4, a(7, 6) = a(15, 7) = a(26, 3) =6, a(7, 7) = a(16, 7) =
a(27,1) =2,a(7,8) = a(l7,7) = a(27, 2) =5, a(7, 9) = a(18, 7) = a(27, 3) = 0, a(8,
1) = a(10, 8) = a(25, 4) = 3, a(8, 2) = a(11, 8) = a(25, 5) =0, a(8, 3) = a(12, 8) =
a(25, 6) =5, a(8, 4) = a(13, 8) = a(26, 4) =7, a(8, 5) = a(14, 8) = a(26, 5) = 1, a(8,
6) = a(15, 8) = a(26, 6) = 2, a(8, 7) = a(16, 8) = a(27, 4) = 4, a(8, 8) = a(17, 8) =
a(27,5) =6, a(8, 9) = a(18, 8) = a(27, 6) =8, a(9, 1) = a(10, 9) = a(25, 7) = 4, a(9,
2) = a(l1, 9) = a(25, 8) =6, a(9, 3) = a(12, 9) = a(25,9) = 2, a(9, 4) = a(13,9) =
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a(26, 7) =8, a(9, 5) = a(14, 9) = a(26, 8) =0, a(9, 6) = a(15, 9) = a(26, 9) = 5, a(9,
7) =a(l16,9) = a(27,7) =1, a(9, 8) = a(17, 9) = a(27, 8) = 3, a(9, 9) = a(18, 9) =
a(27,9)=7andb=1.

Therefore, it is obtained that one of answers is f (i, j) =a(i, j)) + 1 [1<i1<9.1<
J<9.]

Discussion and Summary

The computational complexity of this quantum algorithm [= S] becomes the
following. In the order of the actions by the gates, the number of them is 3Pn* at ,
3n* at (A), 6n* (P1) and (IM), 3n* at (OB), 3n*(n* - 1) at (B(i, j), (i, 9)) [L<i<3n% 1
<j<g<n?i,jand g are integers.], 3n*(n? - 1) at (PI) and (IM), (3/2)n*(n® - 1) at
(OB), 4n*(n* - 1) at (C(i, j), (e +n*, hy)) [L<i<nl<j<n’il<q<n’l<h<
n®- 1.1, j, g and hy are integers.] and (C(i, j), (92 + 2n% h2)) [L<g2<n% 1 <h,<n?
— 1. o and h; are integers.], Zy=1_ anxnmxn—1) T(V) at (PI) and (IM), 2n*(n® — 1) at
(OB), M at (Dy) [1 <m <M. m is the integer.], Zm=1-m U(m) at (PI) and (IM), and
M at (OB). Therefore, S becomes 7.5n°+ (3P + 10.5)n" — 6n° + 2M + 2, =1 _, anxnguxn—
1) T(V) + Zm =1 - wm U(m). In the example of the section 4, S is 7824. The
computational complexity of the classical computation [= Z] is W = n?P*™" = 91?7 ~
10™°. After all, S/Z becomes about 1/10'*®. When n is large enough, S becomes about
8n®, where P is about log, n%. And then, S/Z is about 8n® n?*™". For example, as for
n = 10, S/Z is about 8x10%/100P% ~ 1/10'*%, where N! is about NVe ™N(2zN)Y2
[Stirling’s formura].

Therefore, the polynomial time process becomes possible.
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