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Abstract 

 

Let 𝑝 and 𝑙 are distinct odd primes, 𝑜 (𝑙)𝑝 = 𝑓 and gcd (
𝑙𝑓−1

𝑝
, 𝑝) = 1.Then 

explicit expressions for all the primitive idempotents in 𝐹𝑙(𝐻1 ×𝐻2), 𝐻1 and 

𝐻2 are abelian groups of order 2 and exponent 𝑝𝑛 respectively, are obtained. 
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1. Introduction 

Let 𝐹𝑙 be a field of odd prime order 𝑙 and 𝑘 ≥  1 be an integer such that gcd (𝑙, k) = 1. 

It is well known that a cyclic code of a given length k over 𝐹𝑙 is an ideal of the 

semisimple ring 𝑅𝑘 =
𝐹𝑙 [𝑥]

<𝑥𝑘−1>
. Since, every ideal in 𝑅𝑘 is the direct sum of its minimal 

ideals, therefore, to describe the complete set of ideals (codes over 𝐹𝑙) in 𝑅𝑘, it is 

sufficient to find its complete set of primitive idempotents. Many authors obtained 

primitive idempotents in 𝑅𝑘 ≅ 𝐹𝑙𝐺, where 𝐺 is cyclic group of order 𝑘. Therefore, a 

natural case of more general on the group 𝐺 arises i.e. 𝐺 is an abelian group. A minimal 

abelian code over a finite field is a minimal ideal of the group algebra 𝐹𝑙𝐺, where 𝐺 is 

an abelian group (Berman and Camion). In view of above discussion abelian codes are 

the generalization of cyclic codes. Bhandari and Grover [3] determined explicit 

expressions of all the primitive idempotents of the group algebra 𝐹𝑙(𝐶𝑝𝑟 × 𝐶𝑝𝑛), 𝑟 ≤ 𝑛, 

where 𝑜(𝑙)𝑝 = 𝑓 and gcd (
𝑙𝑓−1

𝑝
, 𝑝) = 1.. 
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In this paper, we consider 𝑝 and 𝑙 are distinct odd primes, 𝑜 (𝑙)𝑝 =

𝑓 and gcd (
𝑙𝑓−1

𝑝
, 𝑝) = 1. In Section 2, some results on finite fields are discussed. In 

Section 3, (Theorem 3.1), the explicit expressions for all primitive idempotents 

in 𝐹𝑙(𝐻1 × 𝐻2),𝐻1 and 𝐻2 are abelian groups of order 2 and exponent 𝑝𝑛 respectively, 

are obtained. 

 

 

2 Some Results on Finite Fields 

Lemma 2.1.  

(i)  Let 𝑝 and 𝑙 be two distinct odd primes 𝑜 (𝑙)𝑝 = 𝑓 and 𝑝 does not divide 
𝑙𝑓−1

𝑝
. 

Then, 𝑜 (𝑙)𝑝𝑛 = 𝑓𝑝
𝑛−1. Further, 𝑜 (𝑙)2𝑝𝑛 = 𝑓𝑝

𝑛−1. 

(ii)  Let p and 𝑙 be distinct odd primes, 𝑒𝑓 = 𝜑 (𝑝) and 𝑝 does not divide 
𝑙𝑓−1

𝑝
. If 

𝑜 (𝑙)2𝑝𝑛 = 𝑓𝑝
𝑛−1, 𝑛  1 be an integer, then 𝑜 (𝑙)2𝑝𝑛−𝑗 =

𝜑(2𝑝𝑛−𝑗)

𝑒
= 𝑓𝑝𝑛−𝑗 for 

all 𝑗;  0  𝑗  𝑛  1. 

(iii)  The set {𝑔𝑘, 𝑔𝑘𝑙, … , 𝑔𝑘𝑙𝑓𝑝
𝑛−𝑗−1} forms a reduced residue system modulo 

𝑝𝑛−𝑗 , where 𝑔 is primitive root modulo pn−j, 0 ≤ k ≤ e − 1 and 0 ≤ j ≤ n −
1. 

 

Lemma 2.2. Let 𝐹𝑙 be the field containing 𝑙 elements and 𝛼 be the primitive 2𝑝𝑛th root 

of unity. Let 𝐾 = 𝐹𝑙(𝛼) and 𝜎 ∶ 𝐾 → 𝐾 is an 𝐹𝑙 − automorphism defined by 𝜎(𝛼) =
𝛼𝑙, then 

(i) 𝐾 = 𝐹
𝑙𝑓𝑝

𝑛−1 . 

(ii) The Galois group 𝐺(𝐾/𝐹𝑙) =< 𝜎 >. 

 

Proof. To prove (i) part, we need to show that 𝛼 ∈ 𝐹
𝑙𝑓𝑝

𝑛−1 . For this it is sufficient to 

prove 𝛼𝑙
𝑓𝑝𝑛−1

= 𝛼.By Lemma 2.1,𝑜 (𝑙)2𝑝𝑛 = 𝑓𝑝
𝑛−1 gives that 𝑙𝑓𝑝

𝑛−1
≡ 1 (mod 2𝑝𝑛). 

Thus, 𝑙𝑓𝑝
𝑛−1

= 1 + 𝜆2𝑝𝑛, for some integer 𝜆.So, 

𝛼𝑙
𝑓𝑝𝑛−1

= 𝛼1+𝜆2𝑝
𝑛
= 𝛼. 𝛼𝜆2𝑝

𝑛
. 

 

As, 𝛼 is primitive 2𝑝𝑛th root of unity so, 𝛼2𝑝
𝑛
= 1.Thus, 𝛼𝑙

𝑓𝑝𝑛−1

= 𝛼. 
(ii) By the given condition 𝜎 ∶ 𝐾 → 𝐾 defined by 𝜎(𝛼) = 𝛼𝑙 for some 𝛼 ∈ 𝐺(𝐾/𝐹𝑙). 
We claim that 𝑜(𝜎) = 𝑓𝑝𝑛−1. Let 𝑜(𝜎) = 𝑡, for some integer 𝑡 ≥ 1. 

If 𝑡 = 1, then 𝜎 = 𝐼, which is not possible. Hence, 𝑡 > 1.Now, it is easy to see, 𝜎2(𝛼) =

𝜎𝜎(𝛼) = 𝜎(𝛼𝑙) = 𝛼𝑙
2
, consequently 𝜎𝑘(𝛼) = 𝛼𝑙

𝑘
implies 𝜎𝑓𝑝

𝑛−1
(𝛼) =  𝛼𝑙

𝑓𝑝𝑛−1

. 

As, 𝑜(𝑙)2𝑝𝑛 = 𝑓𝑝
𝑛−1, so 𝑙𝑓𝑝

𝑛−1
≡ 1 mod (2𝑝𝑛) so 𝜎𝑓𝑝

𝑛−1
(𝛼) =  𝛼𝑙

𝑓𝑝𝑛−1

= 𝛼. But, 

𝑜(𝜎) = 𝑡, gives that 𝑡 divide 𝑓𝑝𝑛−1. 

On the other hand, 𝜎𝑡 = 𝐼, implies 𝜎𝑡(𝛼) = 𝐼(𝛼) = 𝛼. This gives 𝛼𝑙
𝑡
= 𝛼, implies 

𝛼𝑙
𝑡−1 = 1. Thus, 𝑙𝑡 ≡ 1(mod 2𝑝𝑛) which gives 𝑓𝑝𝑛−1, divides 𝑡 as 𝑜(𝑙)2𝑝𝑛 = 𝑓𝑝

𝑛−1. 
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Hence, 𝑡 = 𝑓𝑝𝑛−1.Also, 𝑜 (𝐺(𝐾/𝐹𝑙)) =  [𝐾: 𝐹𝑙]. But by part (i) 𝐾 = 𝐹
𝑙𝑓𝑝

𝑛−1 . 

Therefore, 𝑜(𝐺(𝐾/𝐹𝑙)) = [𝐹𝑙𝑓𝑝𝑛−1 ∶ 𝐹𝑙] = 𝑓𝑝
𝑛−1. Hence, 𝐺(𝐾/𝐹𝑙) =< 𝜎 >. 

 

Corollary 2.3. Let 𝐹𝑙 be the field containing 𝑙 elements and 𝛼 be the primitive 𝑝𝑛th 

root of unity. Let 𝐾 = 𝐹𝑙(𝛼) and 𝜎 ∶ 𝐾 → 𝐾 is an 𝐹𝑙 − automorphism defined by 

𝜎(𝛼) = 𝛼𝑙, then 

(i) 𝐾 = 𝐹
𝑙𝑓𝑝

𝑛−1 . 

(ii) The Galois group 𝐺(𝐾/𝐹𝑙) =< 𝜎 >. 

 

Notations 2.4. 

Let 𝐴𝑡 = ∑ 𝛼𝑝
𝑛−1𝑔𝑡𝑙𝑖𝑓−1

𝑖=0  and 𝐿 = {1, 𝑙, 𝑙2, … , 𝑙𝑓−1}. 
 

Definition 2.5. Let 𝐹 = 𝔽𝑞𝑚  be a finite extension of the field 𝐾 = 𝔽𝑞 then the trace 

function 𝑇𝑟𝐹/𝐾  (𝛼) of 𝛼 over 𝐾 is defined by 𝑇𝑟𝐹/𝐾 (𝛼) = 𝛼 + 𝛼
𝑞 + …+ 𝛼𝑞

𝑚−1
. 

 

Definition 2.6. Let 𝐺 be a group and 𝑉 a finite-dimensional vector space over a field 

𝐾. Let 𝑇 ∶ 𝐺 → 𝐺𝐿 (𝑉) be a representation of 𝐺 over 𝐾. Then, the character χ of 𝐺 

afforded by the representation 𝑇 is the mapping χ ∶ 𝐺 → 𝐾 given by χ(𝑔) = 𝑡𝑟 (𝑇𝑔)for 

all 𝑔 ∈ 𝐺. 

 

Theorem 2.7. Let 𝐹 = 𝔽𝑞𝑚  be a finite extension of the field 𝐾 = 𝔽𝑞 . Then the trace 

function 𝑇𝑟𝐹/𝐾 satisfies the following properties: 

(i) 𝑇𝑟𝐹/𝐾(𝛼 + 𝛽) = 𝑇𝑟𝐹/𝐾(𝛼) + 𝑇𝑟𝐹/𝐾 (𝛽) for all 𝛼, 𝛽 ∈ 𝐹; 

(ii) 𝑇𝑟𝐹/𝐾(𝑐𝛼) = 𝑐𝑇𝑟𝐹/𝐾 (𝛼) for all 𝑐 ∈ 𝐾, 𝛼 ∈ 𝐹; 

(iii) 𝑇𝑟𝐹/𝐾 is a linear transformation from 𝐹 onto 𝐾, where both 𝐹 and 𝐾 are viewed 

as vector spaces over 𝐾; 
(iv) 𝑇𝑟𝐹/𝐾(𝑎) = 𝑚𝑎 for all 𝑎 ∈ 𝐾; 

(v) 𝑇𝑟𝐹/𝐾(𝛼
𝑞) = 𝑇𝑟𝐹/𝐾 (𝛼) for all 𝛼 ∈ 𝐹. 

 

Observe that 

𝐴𝑡 =∑𝛼𝑝
𝑛−1𝑔𝑡𝑙𝑖

𝑓−1

𝑖=0

= 𝑇𝑟𝐹
𝑙𝑓

𝐹𝑙

(𝛽𝑔
𝑡
), 𝛼𝑝

𝑛−1
= 𝛽 

 

Then, 𝐴𝑡 are elements of 𝐹𝑙 and can be evaluated by using properties of Gaussian 

periods, 0 ≤ t ≤ e − 1. 
 

Definition 2.8. Let 𝐺 be a finite abelian group of exponent 𝑛 and 𝐹 a finite field of 

order 𝑙, where 𝑙 is a prime such that gcd(𝑛, 𝑙) = 1. Let 𝐾 = 𝐹 (𝜉𝑛) where 𝜉𝑛 is primitive 

𝑛th root of unity, 𝐶 be set of all characters of 𝐺 and 𝐺(𝐾, 𝐹𝑙) be the Galios group. Then 

{𝜎𝑜𝜒} is orbit of 𝜒, where 𝜎 𝜖 𝐺(𝐾, 𝐹𝑙) and 𝜒 𝜖 𝐶. 
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3 Primitive Idempotents in 𝑭𝒍𝑮 
The following Theorem 3.1 and Proposition 3.2 are given in Grover 

 

Theorem 3.1. Let 𝐺 be a finite abelian group of exponent 𝑛 and 𝐹 a finite field of order 

𝑙, where 𝑙 is a prime such that gcd(𝑛, 𝑙) = 1. Let 𝐾 = 𝐹 (𝜉𝑛) where 𝜉𝑛 is primitive 𝑛th 

root of unity and 𝐶1 = {χ1,1, χ1,2, … , χ1,𝑙1},… , 𝐶𝑟 = {χ𝑟,1, χ𝑟,2, … , χ𝑟,𝑙𝑟} be the orbits of 

the set 𝐶, which is the set of all characters of 𝐺 under 𝐺(𝐾, 𝐹𝑙), then complete set of 

primitive idempotents of group algebra 𝐹𝐺 is given by 

𝑒𝑖 =
1

|𝐺|
∑𝑇𝑟𝐹𝜉𝑑𝑖

/𝐹

𝑔∈𝐺

 ( (𝜒𝑖1 (𝑔
−1))𝑔 

for  

1 ≤ 𝑖 ≤ 𝑟, 𝑑𝑖 = [𝐺 ∶ Ker χ𝑖,1]. 
 

Theorem 3.2. Let 𝐻1and 𝐻2 be two abelian groups of exponents 𝑝𝑛, (𝑛 ≥ 1)and 

𝑞𝑚, (𝑚 ≥ 1), where 𝑝 and 𝑞 are distinct odd primes. Let 𝑙 be an odd prime with 

gcd(𝑙, 𝑝𝑞) = 1 and 𝐹𝑙 a finite field with 𝑙 elements. Let  (𝑙)𝑝 = 𝑓 and  (𝑙)𝑞 = 𝑔 such 

that gcd (
𝑙𝑓−1

𝑝
, 𝑝) = 1 if 𝑛 > 1 and gcd (

𝑙𝑔−1

𝑞
, 𝑞) = 1 if 𝑚 > 1. Let gcd(𝑓, 𝑔) =

𝑠 and 𝐺 = 𝐻1 × 𝐻2, then all the primitive idempotents of the group algebra 𝐹𝑙𝐺 are of 

the form 𝑇𝑟𝐹𝑙𝑠 𝐹𝑙⁄  (𝑒𝐻1𝑒𝐻2), where 𝑒𝐻1 and 𝑒𝐻2 are primitive idempotents in 𝐹𝑙𝑠𝐻1 

and 𝐹𝑙𝑠𝐻2, respectively. 

In Theorem 3.1, it is observed that if 𝐶1 = {𝜒11,…,𝜒1𝑙1},..., 𝐶𝑟 = {𝜒𝑟1,…,𝜒1𝑙𝑟} be all the 

orbits of 𝐶 under the action of Galios group 𝐺 (𝐾/𝐹𝑙), where 𝐶 is set of all the 

characters of 𝐺.Then, the number of primitive idempotents in 𝐹𝑙𝐺 is equals to the 

number of orbits of 𝐶. Therefore, to obtain the primitive idempotents 𝐹𝑙𝐺, we need to 

find all the orbits of set of characters of 𝐺. 

 

3.3. Characters of 𝐻1 

Let 𝐻1 be abelian group of exponent 2 and 𝐾1 is smallest field extension of 𝐹𝑙 containing 

2nd root of unity, then 𝐾1 = 𝐹𝑙 and Galois group 𝐺𝐹 (𝐾1/𝐹𝑙) = {𝐼}. 
The characters of 𝐻1 are defined as 𝜙1(𝑥) = 1 and 𝜙2(𝑥) = −1. 

Then the orbits of set of characters of 𝐻1 are {𝐼𝜊𝜙1} and {𝐼𝜊𝜙2}. 
Let us denote 𝐼𝜊𝜙1 = 𝜙1,1 and 𝐼𝜊𝜙1 = 𝜙1,2. 

 

3.4. Characters of 𝐻2 

Let 𝐻2 be abelian group of exponent 𝑝𝑛 and 𝐾2 is smallest field extension of 𝐹𝑙 
containing 𝑝𝑛th root of unity, then by Corollary 2.3 

(i) 𝐾 = 𝐹
𝑙𝑓𝑝

𝑛−1 . 

(ii) The Galois group 𝐺(𝐾/𝐹𝑙) =< 𝜎 >. 

 

The characters of 𝐻2 are defined as 𝜓1(𝑦) = 1 and 𝜓2,𝑗,𝑘,𝑠(𝑦) = 𝛼
𝑝𝑛−𝑗𝑔𝑘𝑙𝑠 , 0 ≤ 𝑘 ≤

𝑒 − 1, 0 ≤ 𝑠 ≤ 𝑓𝑝𝑗−1 − 1, 1 ≤ 𝑗 ≤ 𝑛. 
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Then the orbits of set of characters of 𝐻2 are {𝜎𝜊𝜓1} and {𝜎𝜊𝜓2,𝑗,𝑘,𝑠}, where 

𝜎 𝜖𝐺(𝐾/𝐹𝑙). Let us denote 𝜎𝜊𝜓1 = 𝜏1,1 and 𝜎𝜊𝜓2,𝑗,𝑘,𝑠 = 𝜏2,𝑗,𝑘. Then, the orbits of set 

of characters of 𝐻2 are 𝜏1,1(𝑦) = 1 and 𝜏2,𝑗,𝑘(𝑥) = 𝛼
𝑝𝑛−𝑗𝑔𝑘𝑙𝑠 , 0 ≤ 𝑘 ≤ 𝑒 − 1, 1 ≤ 𝑗 ≤

𝑛 − 1. The total number of orbits of set of characters of 𝐻2 are 𝑒𝑛 + 1. 
 

Proposition 3.5. Let 𝐺 = 𝐻1 × 𝐻2, where 𝐻1 and 𝐻2 be any two abelian groups of 

exponents 2 and 𝑝𝑛 respectively. Let 𝛼 be the primitive 2𝑝𝑛th root of unity and 𝐾 =
𝐹(𝛼). Then any character χ of 𝐺 can be expressed uniquely as a direct product of 

characters of 𝐻1 and 𝐻2 and each orbit of set of all characters of G can be obtained 

uniquely, as products of orbits of sets of characters of 𝐻1 and 𝐻2. 

 

3.6 The 𝟐𝒆𝒏 + 𝟐 orbits of set of characters of 𝑮 with values in 𝑲 are given below: 

Let g ϵ G, g = xy,where x ϵ H1,y ϵ H2, then 

1.  χ1,1(𝑥) = χ1,1(𝑦) = 1, 
2.  χ1,2(𝑥) = −1, χ1,2(𝑦) = 1. 

For 0 ≤ 𝑘 ≤ 𝑒 − 1, 1 ≤ 𝑗 ≤ 𝑛 − 1, 

3.  χ3,𝑗,𝑘(𝑥) = 1, χ3,𝑗,𝑘(𝑦) = 𝛼
𝑝𝑛−𝑗𝑔𝑘𝑙𝑠 . 

4.  χ4,𝑗,𝑘(𝑥) = −1, χ4,𝑗,𝑘(𝑥) = 𝛼
𝑝𝑛−𝑗𝑔𝑘𝑙𝑠 . 

 

Theorem 3.7. Let 𝐻1and 𝐻2 be two abelian groups of order 2 and exponents 𝑝𝑛, 𝑛 ≥ 1, 

respectively. Let 𝑙 be an odd prime and 𝐹𝑙 a finite field with 𝑙 elements. Let 𝐺 = 𝐻1 ×
𝐻2, then all the 2𝑒𝑛 + 2 primitive idempotents of the group algebra 𝐹𝑙𝐺 are given by 

1. 𝜃1(𝑥, 𝑦) =
1

|𝐺|
(1 + 𝑥)∑ 𝑦𝑖𝑝𝑛−1

𝑖=0 . 

2. 𝜃2 (𝑥, 𝑦) =
1

|𝐺|
 (1 − 𝑥)∑ 𝑦𝑖𝑝𝑛−1

𝑖=0 . 

For 0 ≤ 𝑘 ≤ 𝑒 − 1, 1 ≤ 𝑗 ≤ 𝑛, 

3.  𝜃3,𝑘,𝑗,(𝑥, 𝑦) =
𝑝𝑗−1

|𝐺|
(1 + 𝑥) (𝑓 ∑ 𝑦𝑖𝑖≡0(mod 𝑝𝑗) + 𝐴0∑  𝑦𝑖

𝑝−
𝑔𝑘 𝑖

𝑝𝑗−1
 (mod 𝑝)∈𝐿

+ …+

𝐴𝑒−1∑  𝑦𝑖
𝑝−

𝑔𝑘 𝑖

𝑝𝑗−1
 (mod 𝑝)∈𝑔𝑒−1𝐿

). 

4.  𝜃4,𝑘,𝑗,(𝑥, 𝑦) =
𝑝𝑗−1

|𝐺|
(1 − 𝑥)(𝑓 ∑ 𝑦𝑖𝑖≡0(mod 𝑝𝑗) + 𝐴0 ∑  𝑦𝑖

𝑝−
𝑔𝑘 𝑖

𝑝𝑗−1
 (mod 𝑝)∈𝐿

+ …+

𝐴𝑒−1∑  𝑦𝑖
𝑝−

𝑔𝑘 𝑖

𝑝𝑗−1
 (mod 𝑝)∈𝑔𝑒−1𝐿

). 

 

Proof. Evaluation of 𝜽𝟏(𝒙, 𝒚): 

By Theorem 2.7,𝜃1(𝑥, 𝑦) =
1

|𝐺|
∑ 𝑇𝑟𝐹𝑙

𝐹𝑙

𝑔∈𝐺  ((𝜒1,1(𝑔
−1)) 𝑔 and by (1) of 2.6 

χ1,1(𝑥) = χ1,1(𝑦) = 1, implies 𝜃1(𝑥, 𝑦) =
1

|𝐺|
∑ 𝑇𝑟𝐹𝑙 𝐹𝑙⁄𝑔∈𝐺 (1)𝑔. 

 



224 Seema Rani and Inderjit Singh 

 

By Definition 2.4, 𝑇𝑟𝐹𝑙 𝐹𝑙⁄ (1) = 1, which gives 

𝜃1(𝑥, 𝑦) =
1

|𝐺|
(1 + 𝑥) ∑ 𝑦𝑖

𝑝𝑛−1

𝑖=0

. 

 

Evaluation of 𝜽𝟐(𝒙, 𝒚): 

By Theorem 2.7, 𝜃2(𝑥, 𝑦) =
1

|𝐺|
∑ 𝑇𝑟𝐹𝑙 𝐹𝑙⁄𝑔∈𝐺 (𝜒1,2(𝑔

−1)) 𝑔 and by (2) of 2.6 

χ1,2(𝑥) = −1, χ1,2(𝑦) = 1, 
implies  

𝜃2(𝑥, 𝑦) =
1

|𝐺|
∑ 𝑇𝑟𝐹𝑙 𝐹𝑙⁄𝑔∈𝐺 (−1)𝑔. 

 

By Definition 2.4, 𝑇𝑟𝐹𝑙 𝐹𝑙⁄ (−1) = −1, which gives 

𝜃2(𝑥, 𝑦) =
1

|𝐺|
(1 − 𝑥) ∑ 𝑦𝑖

𝑝𝑛−1

𝑖=0

. 

 

Evaluation of 𝜽𝟑,𝒌,𝒋(𝒙, 𝒚), 𝐟𝐨𝐫 𝟎 ≤ 𝒌 ≤ 𝒆 − 𝟏, 𝟏 ≤ 𝒋 ≤ 𝒏: 

By Theorem 2.7 and Theorem 3.2, 

𝜃3,𝑘,𝑗(𝑥, 𝑦) =
1

|𝐺|
(1 + 𝑥) ∑ 𝑇𝑟𝐾/𝐹 (𝜒3,𝑘,𝑗(𝑦

−𝑖)) 𝑦𝑖
𝑝𝑛−1

𝑖=0

, 

where χ3,𝑗,𝑘(𝑦) = 𝛼
𝑝𝑛−𝑗𝑔𝑘𝑙𝑠  and 𝐾 is smallest field extension of 𝐹𝑙 containing primitive 

𝑝𝑗th root of unity.Using Lemma 2.2, we have 𝐾 = 𝐹
𝑙𝑓𝑝

𝑗−1 . 

Also by (3) of 3.6, χ3,𝑘,𝑗(𝑥) = 1, χ3,𝑘,𝑗(𝑦
−𝑖) = 𝛼−𝑝

𝑛−𝑗𝑔𝑘𝑙𝑠𝑖 which gives that 

𝑇𝑟𝐾/𝐹 (𝜒3,𝑘,𝑗(𝑦
−𝑖)) =  𝑇𝑟𝐾/𝐹 (𝛼

−𝑝𝑛−𝑗𝑔𝑘𝑙𝑠𝑖). As discussed above, 𝐾 = 𝐹
𝑙𝑓𝑝

𝑗−1 , so 

𝑇𝑟𝐾/𝐹 (𝛼
−𝑝𝑛−𝑗𝑔𝑘𝑙𝑠𝑖) =  𝑇𝑟𝐹

𝑙𝑓𝑝
𝑗−1 𝐹𝑙⁄  (𝛼−𝑝

𝑛−𝑗𝑔𝑘𝑙𝑠𝑖). 

 

By Definition 2.4,  

𝑇𝑟𝐹
𝑙𝑓𝑝

𝑗−1 𝐹𝑙⁄ (𝛼−𝑝
𝑛−𝑗𝑔𝑘𝑙𝑠𝑖) = ∑ 𝛽𝑔

𝑘𝑙𝑠𝑖𝑓𝑝𝑗−1−1
𝑠=0 , 

where  

𝛽 = 𝛼−𝑝
𝑛−𝑗
. 

 

Since 𝛼 is primitive 𝑝𝑛th root of unity, then 𝛽 is primitive 𝑝𝑗th root of unity. 

 

Case (i) If 𝑖 ≡ 0(mod 𝑝𝑗), then 𝛽𝑔
𝑘𝑙𝑠𝑖 = 1. 

This gives that  

∑ 𝛽𝑔
𝑘𝑙𝑠𝑖𝑓𝑝𝑗−1−1

𝑠=0 = 𝑓𝑝𝑗−1 implies 𝑇𝑟𝐹
𝑙𝑓𝑝

𝑗−1 𝐹𝑙⁄ (𝛼−𝑝
𝑛−𝑗𝑔𝑘𝑙𝑠𝑖) = 𝑓𝑝𝑗−1. 
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Case (ii) Let 𝑖 ≢ 0(mod 𝑝𝑗). 
 

Sub-case (a) If 𝑖 ≡ 0(mod 𝑝𝑗−1) and 
𝑔𝑘 𝑖

𝑝𝑗−1
 (mod 𝑝) ∈ 𝑔𝑡𝐿, for some 𝑡, 1 ≤ 𝑡 ≤ 𝑒 − 1. 

Then, ∑ 𝛽𝑔
𝑘𝑙𝑠𝑖𝑓𝑝𝑗−1−1

𝑠=0 = ∑ 𝛾𝑔
𝑡𝑙𝑠𝑓𝑝𝑗−1−1

𝑠=0 , where 𝛾 is primitive 𝑝𝑡ℎ root of unity. 

Now 𝑜 (𝑙)𝑝 = 𝑓, so 𝑙𝑟 = 𝑙ℎ iff 𝑟 ≡ ℎ (mod 𝑓), thus ∑ 𝛾𝑔
𝑡𝑙𝑠𝑓𝑝𝑗−1−1

𝑠=0 = 𝑝𝑗−1∑ 𝛾𝑔
𝑡𝑙𝑠𝑓−1

𝑠=0 . 

By Notation 2.3, 𝐴𝑡 = ∑ 𝛼𝑝
𝑛−1𝑔𝑡𝑙𝑖𝑓−1

𝑖=0 , hence ∑ 𝛾𝑔
𝑡𝑙𝑠𝑓𝑝𝑗−1−1

𝑠=0 = 𝑝𝑗−1∑ 𝛾𝑔
𝑡𝑙𝑠𝑓−1

𝑠=0 =

𝑝𝑗−1𝐴𝑡. 
 

Sub-case (b): If 𝑖 ≢ 0(mod 𝑝𝑗−1), then 𝑖 = 𝑔𝑎𝑝ℎ𝑙𝑡, for some, 0 ≤ 𝑎 ≤ 𝑒 − 1, 0 ≤

ℎ ≤ 𝑗 − 2 and 0 ≤ 𝑡 ≤ 𝑓𝑝𝑗−1 − 1. 

Then 𝛼−𝑝
𝑛−𝑗𝑔𝑘𝑙𝑠𝑖 = 𝛼−𝑝

𝑛−ℎ𝑔𝑏𝑙𝑠+𝑡 = 𝛽 (say). 

 

Thus 𝛽 is primitive 𝑝ℎth root of unity and 0 ≤ ℎ ≤ 𝑗 − 2 and hence 

𝑇𝑟𝐹
𝑙𝑓𝑝

𝑗−1 𝐹𝑙⁄ (𝛼−𝑝
𝑛−𝑗𝑔𝑘𝑙𝑠𝑖) = 𝑇𝑟𝐹

𝑙𝑓𝑝
𝑗−1 𝐹𝑙⁄  (𝛽). 

 

Then, as discussed in Section 2, Grover and Bhandari [48], we get 

𝑇𝑟𝐹
𝑙𝑓𝑝

𝑗−1/𝐹𝑙 (𝛼
−𝑝𝑛−𝑗𝑔𝑘𝑙𝑠𝑖) = 0. 

 

Combining case (i) and case (ii), we get 

𝜃3,𝑘,𝑗,(𝑥, 𝑦) =
𝑝𝑗−1

|𝐺|
(1 + 𝑥)

(

 
 
𝑓 ∑ 𝑦𝑖

𝑖≡0(mod 𝑝𝑗)

+ 𝐴0 ∑  𝑦𝑖

𝑝−
𝑔𝑘 𝑖

𝑝𝑗−1
 (mod 𝑝)∈𝐿

+ …+ 𝐴𝑒−1 ∑  𝑦𝑖

𝑝−
𝑔𝑘 𝑖

𝑝𝑗−1
 (mod 𝑝)∈𝑔𝑒−1𝐿

)

 
 
. 

 

Evaluation of 𝜽𝟒,𝒌,𝒋(𝒙, 𝒚) 𝐟𝐨𝐫 𝟎 ≤ 𝒌 ≤ 𝒆 − 𝟏, 𝟏 ≤ 𝒋 ≤ 𝒏: 

By Theorem 2.7 and Theorem 2.2, 

𝜃4,𝑘,𝑗(𝑥, 𝑦) =
1

|𝐺|
(1 − 𝑥) ∑ 𝑇𝑟𝐾/𝐹 (𝜒4,𝑘,𝑗(𝑦

−𝑖)) 𝑦𝑖
𝑝𝑛−1

𝑖=0

, 

 

where χ4,𝑗,𝑘(𝑦) = 𝛼
𝑝𝑛−𝑗𝑔𝑘𝑙𝑠  and 𝐾 is smallest field extension of 𝐹𝑙 containing primitive 

𝑝𝑗th root of unity. Using Lemma 2.2, we have 𝐾 = 𝐹
𝑙𝑓𝑝

𝑗−1 . 

Also by (4) of 3.6, χ4,𝑘,𝑗(𝑥) = −1, χ4,𝑘,𝑗(𝑦
−𝑖) = 𝛼−𝑝

𝑛−𝑗𝑔𝑘𝑙𝑠𝑖 

which gives that 𝑇𝑟𝐾/𝐹 (𝜒4,𝑘,𝑗(𝑦
−𝑖)) =  𝑇𝑟𝐾/𝐹 (𝛼

−𝑝𝑛−𝑗𝑔𝑘𝑙𝑠𝑖). 

As discussed above, 𝐾 = 𝐹
𝑙𝑓𝑝

𝑗−1 , so 

𝑇𝑟𝐾/𝐹 (𝛼
−𝑝𝑛−𝑗𝑔𝑘𝑙𝑠𝑖) =  𝑇𝑟𝐹

𝑙𝑓𝑝
𝑗−1 𝐹𝑙⁄  (𝛼−𝑝

𝑛−𝑗𝑔𝑘𝑙𝑠𝑖). 
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By Definition 2.4,  

𝑇𝑟𝐹
𝑙𝑓𝑝

𝑗−1 𝐹𝑙⁄ (𝛼−𝑝
𝑛−𝑗𝑔𝑘𝑙𝑠𝑖) = ∑ 𝛽𝑔

𝑘𝑙𝑠𝑖𝑓𝑝𝑗−1−1
𝑠=0 , 

 

where  

𝛽 = 𝛼−𝑝
𝑛−𝑗
. 

 

Since 𝛼 is primitive 𝑝𝑛th root of unity, then 𝛽 is primitive 𝑝𝑗th root of unity. 

 

Case (i) If 𝑖 ≡ 0(mod 𝑝𝑗), then 𝛽𝑔
𝑘𝑙𝑠𝑖 = 1. 

This gives that  

∑ 𝛽𝑔
𝑘𝑙𝑠𝑖

𝑓𝑝𝑗−1−1

𝑠=0

= 𝑓𝑝𝑗−1 

 

which implies  

𝑇𝑟𝐹
𝑙𝑓𝑝

𝑗−1 𝐹𝑙⁄ (𝛼−𝑝
𝑛−𝑗𝑔𝑘𝑙𝑠𝑖) = 𝑓𝑝𝑗−1. 

 

Case (ii) Let 𝑖 ≢ 0(mod 𝑝𝑗). 
 

Sub-case (a) If 𝑖 ≡ 0(mod 𝑝𝑗−1) and 
𝑔𝑘 𝑖

𝑝𝑗−1
 (mod 𝑝) ∈ 𝑔𝑡𝐿,for some 𝑡, 0 ≤ 𝑡 ≤ 𝑒 − 1, 

then ∑ 𝛽𝑔
𝑘𝑙𝑠𝑖𝑓𝑝𝑗−1−1

𝑠=0 = ∑ 𝛾𝑔
𝑡𝑙𝑠𝑓𝑝𝑗−1−1

𝑠=0 , where 𝛾 is primitive 𝑝th root of unity. 

Now 𝑜 (𝑙)𝑝 = 𝑓, so 𝑙𝑟 = 𝑙ℎ iff 𝑟 ≡ ℎ (mod 𝑓), thus 

∑ 𝛾𝑔
𝑡𝑙𝑠𝑓𝑝𝑗−1−1

𝑠=0 = 𝑝𝑗−1∑ 𝛾𝑔
𝑡𝑙𝑠𝑓−1

𝑠=0 . 

By Notation 2.3,  

𝐴𝑡 =∑𝛼𝑝
𝑛−1𝑔𝑡𝑙𝑖

𝑓−1

𝑖=0

 

hence,  

∑ 𝛾𝑔
𝑡𝑙𝑠𝑓𝑝𝑗−1−1

𝑠=0 = 𝑝𝑗−1∑ 𝛾𝑔
𝑡𝑙𝑠𝑓−1

𝑠=0 = 𝑝𝑗−1𝐴𝑡. 
 

In view of above discussion,  

𝑇𝑟𝐹
𝑙𝑓𝑝

𝑗−1 𝐹𝑙⁄ (𝛼−𝑝
𝑛−𝑗𝑔𝑘𝑙𝑠𝑖) = 𝑝𝑗−1 𝐴𝑡. 

 

Sub-case (b): If 𝑖 ≢ 0(mod 𝑝𝑗−1), then 𝑖 = 𝑔𝑎𝑝ℎ𝑙𝑡,where 0 ≤ 𝑎 ≤ 𝑒 − 1, 0 ≤ ℎ ≤

𝑗 − 2 and 0 ≤ 𝑡 ≤ 𝑓𝑝𝑗−1 − 1. 

Then 𝛼−𝑝
𝑛−𝑗𝑔𝑘𝑙𝑠𝑖 = 𝛼−𝑝

𝑛−ℎ𝑔𝑏𝑙𝑠+𝑡 = 𝛽 (say). 

Then 𝛽 is primitive 𝑝ℎth root of unity, 0 ≤ ℎ ≤ 𝑗 − 2 and 𝑇𝑟𝐹
𝑙𝑓𝑝

𝑗−1 𝐹𝑙⁄ (𝛼−𝑝
𝑛−𝑗𝑔𝑘𝑙𝑠𝑖) =

𝑇𝑟𝐹
𝑙𝑓𝑝

𝑗−1 𝐹𝑙⁄  (𝛽). 
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Then, as discussed in Section 2, Grover and Bhandari, we get  

𝑇𝑟𝐹
𝑙𝑓𝑝

𝑗−1/𝐹𝑙 (𝛼
−𝑝𝑛−𝑗𝑔𝑘𝑙𝑠𝑖) = 0. 

 

Combining case (i) and case (ii), we get 

𝜃4,𝑘,𝑗,(𝑥, 𝑦) =
𝑝𝑗−1

|𝐺|
(1 − 𝑥)

(

 
 
𝑓 ∑ 𝑦𝑖

𝑖≡0(mod 𝑝𝑗)

+ 𝐴0 ∑  𝑦𝑖

𝑝−
𝑔𝑘 𝑖

𝑝𝑗−1
 (mod 𝑝)∈𝐿

+ …+ 𝐴𝑒−1 ∑  𝑦𝑖

𝑝−
𝑔𝑘 𝑖

𝑝𝑗−1
 (mod 𝑝)∈𝑔𝑒−1𝐿

)

 
 
. 
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