Primitive Idempotents of Some Minimal Abelian Codes of Length $\mathbf{2 p} \boldsymbol{p}^{\boldsymbol{n}}$

${ }^{1}$ Seema Rani and ${ }^{2}$ Inderjit Singh
${ }^{1}$ Deptt. of Mathematics, FGM Govt College, Adampur
E-mail: bhaeseema@gmail.com
${ }^{2}$ Deptt. of Mathematics, D.N. Collge, Hisar
E-mail: vs.inderjit@gmail.com

Abstract

Let p and l are distinct odd primes, $o(l)_{p}=f$ and $\operatorname{gcd}\left(\frac{l^{f}-1}{p}, p\right)=1$.Then explicit expressions for all the primitive idempotents in $F_{l}\left(H_{1} \times H_{2}\right), H_{1}$ and H_{2} are abelian groups of order 2 and exponent p^{n} respectively, are obtained.

Keywords: Group characters, Primitive roots, Abelian codes.
MSC (2010): 11A03; 15A07; 11R09; 11T06; 11T22; 11T71; 94B05; 94B15

1. Introduction

Let F_{l} be a field of odd prime order l and $k \geq 1$ be an integer such that $\operatorname{gcd}(l, \mathrm{k})=1$. It is well known that a cyclic code of a given length k over F_{l} is an ideal of the semisimple ring $R_{k}=\frac{F_{l}[x]}{\left\langle x^{k}-1\right\rangle}$. Since, every ideal in R_{k} is the direct sum of its minimal ideals, therefore, to describe the complete set of ideals (codes over F_{l}) in R_{k}, it is sufficient to find its complete set of primitive idempotents. Many authors obtained primitive idempotents in $R_{k} \cong F_{l} G$, where G is cyclic group of order k. Therefore, a natural case of more general on the group G arises i.e. G is an abelian group. A minimal abelian code over a finite field is a minimal ideal of the group algebra $F_{l} G$, where G is an abelian group (Berman and Camion). In view of above discussion abelian codes are the generalization of cyclic codes. Bhandari and Grover [3] determined explicit expressions of all the primitive idempotents of the group algebra $F_{l}\left(C_{p^{r}} \times C_{p^{n}}\right), r \leq n$, where $o(l)_{p}=f$ and $\operatorname{gcd}\left(\frac{l^{f}-1}{p}, p\right)=1$..

In this paper, we consider p and l are distinct odd primes, $o(l)_{p}=$ f and $\operatorname{gcd}\left(\frac{l^{f}-1}{p}, p\right)=1$. In Section 2, some results on finite fields are discussed. In Section 3, (Theorem 3.1), the explicit expressions for all primitive idempotents in $F_{l}\left(H_{1} \times H_{2}\right), H_{1}$ and H_{2} are abelian groups of order 2 and exponent p^{n} respectively, are obtained.

2 Some Results on Finite Fields

Lemma 2.1.

(i) Let p and l be two distinct odd primes $o(l)_{p}=f$ and p does not divide $\frac{l^{f}-1}{p}$. Then, $o(l)_{p^{n}}=f p^{n-1}$. Further, $o(l)_{2 p^{n}}=f p^{n-1}$.
(ii) Let p and l be distinct odd primes, ef $=\varphi(p)$ and p does not divide $\frac{l^{f}-1}{p}$. If $o(l)_{2 p^{n}}=f p^{n-1}, n \geq 1$ be an integer, then $o(l)_{2 p^{n-j}}=\frac{\varphi\left(2 p^{n-j}\right)}{e}=f p^{n-j}$ for all $j ; 0 \leq j \leq n-1$.
(iii) The set $\left\{g^{k}, g^{k} l, \ldots, g^{k} l^{f p^{n-j}-1}\right\}$ forms a reduced residue system modulo p^{n-j}, where g is primitive root modulo $\mathrm{p}^{\mathrm{n}-\mathrm{j}}, 0 \leq \mathrm{k} \leq \mathrm{e}-1$ and $0 \leq \mathrm{j} \leq \mathrm{n}-$ 1.

Lemma 2.2. Let F_{l} be the field containing l elements and α be the primitive $2 p^{n}$ th root of unity. Let $K=F_{l}(\alpha)$ and $\sigma: K \rightarrow K$ is an F_{l} - automorphism defined by $\sigma(\alpha)=$ α^{l}, then
(i) $K=F_{l f p^{n-1}}$.
(ii) The Galois group $G\left(K / F_{l}\right)=\langle\sigma\rangle$.

Proof. To prove (i) part, we need to show that $\alpha \in F_{l f p^{n-1}}$. For this it is sufficient to prove $\alpha^{l^{f p^{n-1}}}=\alpha$.By Lemma 2.1,o $(l)_{2 p^{n}}=f p^{n-1}$ gives that $l^{f p^{n-1}} \equiv 1\left(\bmod 2 p^{n}\right)$. Thus, $l^{f p^{n-1}}=1+\lambda 2 p^{n}$, for some integer λ.So,

$$
\alpha^{l f^{n-1}}=\alpha^{1+\lambda 2 p^{n}}=\alpha \cdot \alpha^{\lambda 2 p^{n}} .
$$

As, α is primitive $2 p^{n}$ th root of unity so, $\alpha^{2 p^{n}}=1$.Thus, $\alpha^{l^{f p^{n-1}}}=\alpha$.
(ii) By the given condition $\sigma: K \rightarrow K$ defined by $\sigma(\alpha)=\alpha^{l}$ for some $\alpha \in G\left(K / F_{l}\right)$. We claim that $o(\sigma)=f p^{n-1}$. Let $o(\sigma)=t$, for some integer $t \geq 1$.
If $t=1$, then $\sigma=I$, which is not possible. Hence, $t>1$.Now, it is easy to see, $\sigma^{2}(\alpha)=$ $\sigma \sigma(\alpha)=\sigma\left(\alpha^{l}\right)=\alpha^{l^{2}}$, consequently $\sigma^{k}(\alpha)=\alpha^{l^{k}}$ implies $\sigma^{f p^{n-1}}(\alpha)=\alpha^{l^{f p^{n-1}}}$. As, $o(l)_{2 p^{n}}=f p^{n-1}$, so $l^{f p^{n-1}} \equiv 1 \bmod \left(2 p^{n}\right)$ so $\sigma^{f p^{n-1}}(\alpha)=\alpha^{l^{f p^{n-1}}}=\alpha$. But, $o(\sigma)=t$, gives that t divide $f p^{n-1}$.
On the other hand, $\sigma^{t}=I$, implies $\sigma^{t}(\alpha)=I(\alpha)=\alpha$. This gives $\alpha^{t^{t}}=\alpha$, implies $\alpha^{t^{t}-1}=1$. Thus, $l^{t} \equiv 1\left(\bmod 2 p^{n}\right)$ which gives $f p^{n-1}$, divides t as $o(l)_{2 p^{n}}=f p^{n-1}$.

Hence, $t=f p^{n-1}$.Also, $o\left(G\left(K / F_{l}\right)\right)=\left[K: F_{l}\right]$. But by part (i) $K=F_{l f p^{n-1}}$.
Therefore, $o\left(G\left(K / F_{l}\right)\right)=\left[F_{l f p^{n-1}}: F_{l}\right]=f p^{n-1}$. Hence, $G\left(K / F_{l}\right)=\langle\sigma\rangle$.
Corollary 2.3. Let F_{l} be the field containing l elements and α be the primitive p^{n} th root of unity. Let $K=F_{l}(\alpha)$ and $\sigma: K \rightarrow K$ is an F_{l} - automorphism defined by $\sigma(\alpha)=\alpha^{l}$, then
(i) $K=F_{l f p^{n-1}}$.
(ii) The Galois group $G\left(K / F_{l}\right)=\langle\sigma\rangle$.

Notations 2.4.

Let $A_{t}=\sum_{i=0}^{f-1} \alpha^{p^{n-1} g^{t} l^{i}}$ and $L=\left\{1, l, l^{2}, \ldots, l^{f-1}\right\}$.
Definition 2.5. Let $F=\mathbb{F}_{q^{m}}$ be a finite extension of the field $K=\mathbb{F}_{q}$ then the trace function $\operatorname{Tr}_{F / K}(\alpha)$ of α over K is defined by $\operatorname{Tr}_{F / K}(\alpha)=\alpha+\alpha^{q}+\ldots+\alpha^{q^{m-1}}$.

Definition 2.6. Let G be a group and V a finite-dimensional vector space over a field K. Let $T: G \rightarrow G L(V)$ be a representation of G over K. Then, the character χ of G afforded by the representation T is the mapping $\chi: G \rightarrow K$ given by $\chi(g)=\operatorname{tr}\left(T_{g}\right)$ for all $g \in G$.

Theorem 2.7. Let $F=\mathbb{F}_{q^{m}}$ be a finite extension of the field $K=\mathbb{F}_{q}$. Then the trace function $T r_{F / K}$ satisfies the following properties:
(i) $\operatorname{Tr}_{F / K}(\alpha+\beta)=\operatorname{Tr}_{F / K}(\alpha)+\operatorname{Tr}_{F / K}(\beta)$ for all $\alpha, \beta \in F$;
(ii) $\operatorname{Tr}_{F / K}(c \alpha)=c \operatorname{Tr}_{F / K}(\alpha)$ for all $c \in K, \alpha \in F$;
(iii) $\operatorname{Tr}_{F / K}$ is a linear transformation from F onto K, where both F and K are viewed as vector spaces over K;
(iv) $\operatorname{Tr}_{F / K}(a)=m a$ for all $a \in K$;
(v) $\operatorname{Tr}_{F / K}\left(\alpha^{q}\right)=\operatorname{Tr}_{F / K}(\alpha)$ for all $\alpha \in F$.

Observe that

$$
A_{t}=\sum_{i=0}^{f-1} \alpha^{p^{n-1} g^{t} l^{i}}=\operatorname{Tr}_{\frac{F_{l f}}{F_{l}}}\left(\beta^{g^{t}}\right), \alpha^{p^{n-1}}=\beta
$$

Then, A_{t} are elements of F_{l} and can be evaluated by using properties of Gaussian periods, $0 \leq \mathrm{t} \leq \mathrm{e}-1$.

Definition 2.8. Let G be a finite abelian group of exponent n and F a finite field of order l, where l is a prime such that $\operatorname{gcd}(n, l)=1$. Let $K=F\left(\xi_{n}\right)$ where ξ_{n} is primitive nth root of unity, C be set of all characters of G and $G\left(K, F_{l}\right)$ be the Galios group. Then $\{\sigma o \chi\}$ is orbit of χ, where $\sigma \in G\left(K, F_{l}\right)$ and $\chi \in C$.

3 Primitive Idempotents in $\boldsymbol{F}_{l} \boldsymbol{G}$

The following Theorem 3.1 and Proposition 3.2 are given in Grover
Theorem 3.1. Let G be a finite abelian group of exponent n and F a finite field of order l, where l is a prime such that $\operatorname{gcd}(n, l)=1$. Let $K=F\left(\xi_{n}\right)$ where ξ_{n} is primitive nth root of unity and $C_{1}=\left\{\chi_{1,1}, \chi_{1,2}, \ldots, \chi_{1, l_{1}}\right\}, \ldots, C_{r}=\left\{\chi_{r, 1}, \chi_{r, 2}, \ldots, \chi_{r, l_{r}}\right\}$ be the orbits of the set C, which is the set of all characters of G under $G\left(K, F_{l}\right)$, then complete set of primitive idempotents of group algebra $F G$ is given by

$$
e_{i}=\frac{1}{|G|} \sum_{g \in G} \operatorname{Tr}_{F_{\xi_{d_{i}}} / F}\left(\left(\chi_{i 1}\left(g^{-1}\right)\right) g\right.
$$

for

$$
1 \leq i \leq r, d_{i}=\left[G: \operatorname{Ker} \chi_{i, 1}\right] .
$$

Theorem 3.2. Let H_{1} and H_{2} be two abelian groups of exponents p^{n}, ($n \geq 1$) and $q^{m},(m \geq 1)$, where p and q are distinct odd primes. Let l be an odd prime with $\operatorname{gcd}(l, p q)=1$ and F_{l} a finite field with l elements. Let $(l)_{p}=f$ and $(l)_{q}=g$ such that $\operatorname{gcd}\left(\frac{l^{f}-1}{p}, p\right)=1$ if $n>1$ and $\operatorname{gcd}\left(\frac{l^{g}-1}{q}, q\right)=1$ if $m>1$. Let $\operatorname{gcd}(f, g)=$ s and $G=H_{1} \times H_{2}$, then all the primitive idempotents of the group algebra $F_{l} G$ are of the form $\operatorname{Tr}_{F_{l} s / F_{l}}\left(e H_{1} e H_{2}\right)$, where $e H_{1}$ and $e H_{2}$ are primitive idempotents in $F_{l^{s}} H_{1}$ and $F_{l^{s}} H_{2}$, respectively.
 orbits of C under the action of Galios group $G\left(K / F_{l}\right)$, where C is set of all the characters of G.Then, the number of primitive idempotents in $F_{l} G$ is equals to the number of orbits of C. Therefore, to obtain the primitive idempotents $F_{l} G$, we need to find all the orbits of set of characters of G.

3.3. Characters of H_{1}

Let H_{1} be abelian group of exponent 2 and K_{1} is smallest field extension of F_{l} containing $2^{\text {nd }}$ root of unity, then $K_{1}=F_{l}$ and Galois group $G F\left(K_{1} / F_{l}\right)=\{I\}$.
The characters of H_{1} are defined as $\phi_{1}(x)=1$ and $\phi_{2}(x)=-1$.
Then the orbits of set of characters of H_{1} are $\left\{I o \phi_{1}\right\}$ and $\left\{I o \phi_{2}\right\}$.
Let us denote $\operatorname{Io} \phi_{1}=\phi_{1,1}$ and $\operatorname{Io} \phi_{1}=\phi_{1,2}$.

3.4. Characters of H_{2}

Let H_{2} be abelian group of exponent p^{n} and K_{2} is smallest field extension of F_{l} containing p^{n} th root of unity, then by Corollary 2.3
(i) $K=F_{l f p^{n-1}}$.
(ii) The Galois group $G\left(K / F_{l}\right)=\langle\sigma\rangle$.

The characters of H_{2} are defined as $\psi_{1}(y)=1$ and $\psi_{2, j, k, s}(y)=\alpha^{p^{n-j} g^{k} l^{s}}, 0 \leq k \leq$ $e-1,0 \leq s \leq f p^{j-1}-1,1 \leq j \leq n$.

Then the orbits of set of characters of H_{2} are $\left\{\sigma o \psi_{1}\right\}$ and $\left\{\sigma o \psi_{2, j, k, s}\right\}$, where $\sigma \epsilon G\left(K / F_{l}\right)$. Let us denote $\sigma o \psi_{1}=\tau_{1,1}$ and $\sigma o \psi_{2, j, k, s}=\tau_{2, j, k}$. Then, the orbits of set of characters of H_{2} are $\tau_{1,1}(y)=1$ and $\tau_{2, j, k}(x)=\alpha^{p^{n-j} g^{k} l^{s}}, 0 \leq k \leq e-1,1 \leq j \leq$ $n-1$. The total number of orbits of set of characters of H_{2} are $e n+1$.

Proposition 3.5. Let $G=H_{1} \times H_{2}$, where H_{1} and H_{2} be any two abelian groups of exponents 2 and p^{n} respectively. Let α be the primitive $2 p^{n}$ th root of unity and $K=$ $F(\alpha)$. Then any character χ of G can be expressed uniquely as a direct product of characters of H_{1} and H_{2} and each orbit of set of all characters of G can be obtained uniquely, as products of orbits of sets of characters of H_{1} and H_{2}.
3.6 The $2 e n+2$ orbits of set of characters of G with values in K are given below:

Let $g \in G, g=x y$, where $x \in H_{1, y} \in H_{2}$, then

1. $\chi_{1,1}(x)=\chi_{1,1}(y)=1$,
2. $\chi_{1,2}(x)=-1, \chi_{1,2}(y)=1$.

For $0 \leq k \leq e-1,1 \leq j \leq n-1$,
3. $\chi_{3, j, k}(x)=1, \chi_{3, j, k}(y)=\alpha^{p^{n-j} g^{k} l^{s}}$.
4. $\quad \chi_{4, j, k}(x)=-1, \chi_{4, j, k}(x)=\alpha^{p^{n-j} g^{k} l^{s}}$.

Theorem 3.7. Let H_{1} and H_{2} be two abelian groups of order 2 and exponents $p^{n}, n \geq 1$, respectively. Let l be an odd prime and F_{l} a finite field with l elements. Let $G=H_{1} \times$ H_{2}, then all the $2 e n+2$ primitive idempotents of the group algebra $F_{l} G$ are given by

1. $\quad \theta_{1}(x, y)=\frac{1}{|G|}(1+x) \sum_{i=0}^{p^{n}-1} y^{i}$.
2. $\quad \theta_{2}(x, y)=\frac{1}{|G|}(1-x) \sum_{i=0}^{p^{n}-1} y^{i}$.

For $0 \leq k \leq e-1,1 \leq j \leq n$,
3. $\quad \theta_{3, k, j,}(x, y)=\frac{p^{j-1}}{|G|}(1+x)\left(f \sum_{i \equiv 0\left(\bmod p^{j}\right)} y^{i}+A_{0} \sum_{p-\frac{g^{k} i}{p^{j-1}}(\bmod p) \in L} y^{i}+\ldots+\right.$

$$
\left.A_{e-1} \sum_{p-\frac{g^{k} i}{p^{j-1}}(\bmod p) \in g^{e-1} L} y^{i}\right)
$$

4. $\quad \theta_{4, k, j,}(x, y)=\frac{p^{j-1}}{|G|}(1-x)\left(f \sum_{i \equiv 0\left(\bmod p^{j}\right)} y^{i}+A_{0} \sum_{p-\frac{g^{k}}{p^{j-1}}(\bmod p) \in L} y^{i}+\ldots+\right.$ $\left.A_{e-1} \sum_{p-\frac{g^{k} i}{p^{j-1}}(\bmod p) \in g^{e-1} L} y^{i}\right)$.

Proof. Evaluation of $\boldsymbol{\theta}_{1}(\boldsymbol{x}, \boldsymbol{y})$:
By Theorem 2.7, $\theta_{1}(x, y)=\frac{1}{|G|} \sum_{g \in G} \operatorname{Tr}_{\frac{F_{l}}{F_{l}}}\left(\left(\chi_{1,1}\left(g^{-1}\right)\right) g\right.$ and by (1) of 2.6
$\chi_{1,1}(x)=\chi_{1,1}(y)=1$, implies $\theta_{1}(x, y)=\frac{1}{|G|} \sum_{g \in G} \operatorname{Tr}_{F_{l} / F_{l}}(1) g$.

By Definition 2.4, $\operatorname{Tr} r_{F_{l} / F_{l}}(1)=1$, which gives

$$
\theta_{1}(x, y)=\frac{1}{|G|}(1+x) \sum_{i=0}^{p^{n}-1} y^{i}
$$

Evaluation of $\boldsymbol{\theta}_{\mathbf{2}}(\boldsymbol{x}, \boldsymbol{y})$:
By Theorem 2.7, $\theta_{2}(x, y)=\frac{1}{|G|} \sum_{g \in G} \operatorname{Tr}_{F_{l} / F_{l}}\left(\chi_{1,2}\left(g^{-1}\right)\right) g$ and by (2) of 2.6

$$
\chi_{1,2}(x)=-1, \chi_{1,2}(y)=1,
$$

implies

$$
\theta_{2}(x, y)=\frac{1}{|G|} \sum_{g \in G} \operatorname{Tr}_{F_{l} / F_{l}}(-1) g .
$$

By Definition 2.4, $\operatorname{Tr}_{F_{l} / F_{l}}(-1)=-1$, which gives

$$
\theta_{2}(x, y)=\frac{1}{|G|}(1-x) \sum_{i=0}^{p^{n}-1} y^{i} .
$$

Evaluation of $\boldsymbol{\theta}_{3, k, j}(\boldsymbol{x}, \boldsymbol{y})$, for $\mathbf{0} \leq \boldsymbol{k} \leq \boldsymbol{e}-1,1 \leq \boldsymbol{j} \leq \boldsymbol{n}$:
By Theorem 2.7 and Theorem 3.2,

$$
\theta_{3, k, j}(x, y)=\frac{1}{|G|}(1+x) \sum_{i=0}^{p^{n}-1} T r_{K / F}\left(\chi_{3, k, j}\left(y^{-i}\right)\right) y^{i}
$$

where $\chi_{3, j, k}(y)=\alpha^{p^{n-j} g^{k} l^{s}}$ and K is smallest field extension of F_{l} containing primitive p^{j} th root of unity.Using Lemma 2.2, we have $K=F_{l^{f} p^{j-1}}$.
Also by (3) of 3.6, $\chi_{3, k, j}(x)=1, \chi_{3, k, j}\left(y^{-i}\right)=\alpha^{-p^{n-j} g^{k} l^{s} i}$ which gives that $\operatorname{Tr}_{K / F}\left(\chi_{3, k, j}\left(y^{-i}\right)\right)=\operatorname{Tr}_{K / F}\left(\alpha^{-p^{n-j} g^{k} l^{s} i}\right)$. As discussed above, $K=F_{l^{p} p^{j-1}}$, so

$$
\operatorname{Tr}_{K / F}\left(\alpha^{-p^{n-j} g^{k} l^{s} i}\right)=\operatorname{Tr}_{F_{l} f^{j-1} / F_{l}}\left(\alpha^{-p^{n-j} g^{k_{l} s_{i}}}\right)
$$

By Definition 2.4,

$$
\operatorname{Tr}_{F_{l^{f} p^{j-1} / F_{l}}}\left(\alpha^{-p^{n-j} g^{k} l^{s_{i}}}\right)=\sum_{s=0}^{f p^{j-1}-1} \beta^{g^{k_{l} s_{i}}},
$$

where

$$
\beta=\alpha^{-p^{n-j}}
$$

Since α is primitive p^{n} th root of unity, then β is primitive p^{j} th root of unity.
Case (i) If $i \equiv 0\left(\bmod p^{j}\right)$, then $\beta^{g^{k} l_{i}}=1$.
This gives that

$$
\sum_{s=0}^{f p^{j-1}-1} \beta^{g^{k} l_{i}}=f p^{j-1} \text { implies } \operatorname{Tr}_{F_{l f} p^{j-1} / F_{l}}\left(\alpha^{-p^{n-j} g^{k} l^{s} i}\right)=f p^{j-1}
$$

Case (ii) Let $i \not \equiv 0\left(\bmod p^{j}\right)$.
Sub-case (a) If $i \equiv 0\left(\bmod p^{j-1}\right)$ and $\frac{g^{k} i}{p^{j-1}}(\bmod p) \in g^{t} L$, for some $t, 1 \leq t \leq e-1$. Then, $\sum_{s=0}^{f p^{j-1}-1} \beta^{g^{k} l^{s} i}=\sum_{s=0}^{f p^{j-1}-1} \gamma^{g^{t} l^{s}}$, where γ is primitive $p^{\text {th }}$ root of unity.
Now $o(l)_{p}=f$, so $l^{r}=l^{h}$ iff $r \equiv h(\bmod f)$, thus $\sum_{s=0}^{f p^{j-1}-1} \gamma^{g^{t} l^{s}}=p^{j-1} \sum_{s=0}^{f-1} \gamma^{g^{t} l^{s}}$. By Notation 2.3, $A_{t}=\sum_{i=0}^{f-1} \alpha^{p^{n-1} g^{t} l^{i}}$, hence $\sum_{s=0}^{f p^{j-1}-1} \gamma^{g^{t} l^{s}}=p^{j-1} \sum_{s=0}^{f-1} \gamma^{g^{t} l^{s}}=$ $p^{j-1} A_{t}$.

Sub-case (b): If $i \not \equiv 0\left(\bmod p^{j-1}\right)$, then $i=g^{a} p^{h} l^{t}$, for some, $0 \leq a \leq e-1,0 \leq$ $h \leq j-2$ and $0 \leq t \leq f p^{j-1}-1$.
Then $\alpha^{-p^{n-j} g^{k} l^{s} i}=\alpha^{-p^{n-h} g^{b} l^{s+t}}=\beta$ (say).
Thus β is primitive p^{h} th root of unity and $0 \leq h \leq j-2$ and hence

$$
\operatorname{Tr}_{F_{l f} p^{j-1} / F_{l}}\left(\alpha^{-p^{n-j} g^{k} l^{s} i}\right)=\operatorname{Tr}_{F_{{ }^{\prime} p^{j-1} / F_{l}}}(\beta) .
$$

Then, as discussed in Section 2, Grover and Bhandari [48], we get

$$
\operatorname{Tr}_{F_{l f p^{j-1} / F_{l}}}\left(\alpha^{-p^{n-j} g^{k} l^{s_{i}}}\right)=0 .
$$

Combining case (i) and case (ii), we get

$$
\theta_{3, k, j,}(x, y)=\frac{p^{j-1}}{|G|}(1+x)\left(f \sum_{i \equiv 0\left(\bmod p^{i}\right)} y^{i}+A_{0} \sum_{p-\frac{g^{k} i}{p^{i-1}}(\bmod p) \in L} y^{i}+\ldots+A_{e-1} \sum_{p-\frac{g^{k} i}{p^{j-1}}(\bmod p) \in g^{e-1} L} y^{i}\right) .
$$

Evaluation of $\boldsymbol{\theta}_{4, k, j}(\boldsymbol{x}, \boldsymbol{y})$ for $\mathbf{0} \leq \boldsymbol{k} \leq \boldsymbol{e}-\mathbf{1}, \mathbf{1} \leq \boldsymbol{j} \leq \boldsymbol{n}$:
By Theorem 2.7 and Theorem 2.2,

$$
\theta_{4, k, j}(x, y)=\frac{1}{|G|}(1-x) \sum_{i=0}^{p^{n}-1} \operatorname{Tr}_{K / F}\left(\chi_{4, k, j}\left(y^{-i}\right)\right) y^{i}
$$

where $\chi_{4, j, k}(y)=\alpha^{p^{n-j} g^{k} l^{s}}$ and K is smallest field extension of F_{l} containing primitive p^{j} th root of unity. Using Lemma 2.2, we have $K=F_{l^{f p^{j-1}}}$.
Also by (4) of 3.6, $\chi_{4, k, j}(x)=-1, \chi_{4, k, j}\left(y^{-i}\right)=\alpha^{-p^{n-j} g^{k} l^{s} i}$
which gives that $\operatorname{Tr}_{K / F}\left(\chi_{4, k, j}\left(y^{-i}\right)\right)=\operatorname{Tr}_{K / F}\left(\alpha^{-p^{n-j} g^{k} l^{s} i}\right)$.
As discussed above, $K=F_{l^{f p^{j-1}}}$, so

$$
\operatorname{Tr}_{K / F}\left(\alpha^{-p^{n-j} g^{k} l^{s} i}\right)=\operatorname{Tr}_{F_{l} p^{j-1} / F_{l}}\left(\alpha^{-p^{n-j} g^{k} l^{s_{i}}}\right)
$$

By Definition 2.4,

$$
\operatorname{Tr}_{F_{l^{f} p^{j-1} / F_{l}}}\left(\alpha^{-p^{n-j} g^{k} l^{s_{i}}}\right)=\sum_{s=0}^{f p^{j-1}-1} \beta^{g^{k_{l} s_{i}}},
$$

where

$$
\beta=\alpha^{-p^{n-j}}
$$

Since α is primitive p^{n} th root of unity, then β is primitive p^{j} th root of unity.
Case (i) If $i \equiv 0\left(\bmod p^{j}\right)$, then $\beta^{g^{k} l^{s} i}=1$.
This gives that

$$
\sum_{s=0}^{f p^{j-1}-1} \beta^{g^{k} l^{s} i}=f p^{j-1}
$$

which implies

$$
\operatorname{Tr}_{F_{l f p^{j-1} / F_{l}}}\left(\alpha^{-p^{n-j} g^{k} l^{s_{i}}}\right)=f p^{j-1}
$$

Case (ii) Let $i \not \equiv 0\left(\bmod p^{j}\right)$.
Sub-case (a) If $i \equiv 0\left(\bmod p^{j-1}\right)$ and $\frac{g^{k} i}{p^{j-1}}(\bmod p) \in g^{t} L$,for some $t, 0 \leq t \leq e-1$, then $\sum_{s=0}^{f p^{j-1}-1} \beta^{g^{k} l^{s} i}=\sum_{s=0}^{f f^{j-1}-1} \gamma^{g^{t} l^{s}}$, where γ is primitive $p^{\text {th }}$ root of unity.
Now $o(l)_{p}=f$, so $l^{r}=l^{h}$ iff $r \equiv h(\bmod f)$, thus

$$
\sum_{s=0}^{f p^{j-1}-1} \gamma^{g^{t_{l}}}=p^{j-1} \sum_{s=0}^{f-1} \gamma^{g^{t} l^{s}}
$$

By Notation 2.3,

$$
A_{t}=\sum_{i=0}^{f-1} \alpha^{p^{n-1} g^{t} l^{i}}
$$

hence,

$$
\sum_{s=0}^{f f^{j-1}-1} \gamma^{g^{t_{l}}}=p^{j-1} \sum_{s=0}^{f-1} \gamma^{g^{t_{l} s}}=p^{j-1} A_{t} .
$$

In view of above discussion,

$$
\operatorname{Tr}_{F_{l} p^{j-1} / F_{l}}\left(\alpha^{-p^{n-j} g^{k} l^{s} i}\right)=p^{j-1} A_{t} .
$$

Sub-case (b): If $i \not \equiv 0\left(\bmod p^{j-1}\right)$, then $i=g^{a} p^{h} l^{t}$, where $0 \leq a \leq e-1,0 \leq h \leq$ $j-2$ and $0 \leq t \leq f p^{j-1}-1$.
Then $\alpha^{-p^{n-j} g^{k} l^{s} i}=\alpha^{-p^{n-h} g^{b} l^{s+t}}=\beta$ (say).
Then β is primitive p^{h} th root of unity, $0 \leq h \leq j-2$ and $\operatorname{Tr}_{F_{l^{j} p^{j-1} / F_{l}}}\left(\alpha^{-p^{n-j} g^{k} l^{s}}\right)=$ $\operatorname{Tr}_{F_{l} f^{p}{ }^{j-1} / F_{l}}(\beta)$.

Then, as discussed in Section 2, Grover and Bhandari, we get

$$
\operatorname{Tr}_{F_{f p^{j-1}} / F_{l}}\left(\alpha^{-p^{n-j} g_{l} l^{s} i}\right)=0 .
$$

Combining case (i) and case (ii), we get

$$
\theta_{4, k, j,}(x, y)=\frac{p^{j-1}}{|G|}(1-x)\left(f \sum_{i \equiv 0\left(\bmod p^{j}\right)} y^{i}+A_{0} \sum_{p-\frac{g^{k} i}{p^{j-1}}(\bmod p) \in L} y^{i}+\ldots+A_{e-1} \sum_{p-\frac{g^{k} i}{p^{j-1}}(\bmod p) \in g^{e-1} L} y^{i}\right) .
$$

References :

[1] S.K. Arora and Manju Pruthi, "Minimal Cyclic Codes Length $2 \mathrm{p}^{\mathrm{n}}$," Finite Field and their Applications, 5, 177-187 (1999).
[2] Gurmeet K. Bakshi and Madhu Raka, "Minimal Cyclic Codes of length p"q," Finite Fields Appl. 9 (4) (2003) 432-448.
[3] Grover P., Bhandari A. K., Explicit determination of certain minimal abelian codes and their minimum distances, Asian-European Journal of Mathematics 5 (1) (2012) 1-24.
[4] Sudhir Batra and S.K. Arora, "Minimal quadratic residue cyclic codes of length p^{n} (p odd prime)," Korean J. Comput \& Appl. Math. Vol. 8 (3) (2001), 531-547.
[5] Sudhir Batra and S.K. Arora, "Some Cyclic codes of length $2 p^{n}$ (p odd prime)," Design Codes Cryptography, Vol. 57 (3) (2010).
[6] F.J. Mac Williams \& N.J.A. Sloane ; The Theory of Error Correcting Codes Bell Laboratories Murray Hill NJ 07974 U.S.A.
[7] Manju Pruthi and S.K. Arora, "Minimal Cyclic Codes of Prime Power Length," Finite Field and their Application, 3, 99-113 (1997).
[8] Raka, M., Bakshi,G.K.; Sharma,A.,Dumir,V.C. "Cyclotomic numbers and primitive idempotents in the $\operatorname{ring} \frac{G F(q)[x]}{\left(x^{p^{n}}-1\right)}$," Finite Field \& Their Appl. 3 no. 2 (2004) pp.653-673
[9] Ferraz,R.A.,Millies,C.P., "Idempotents in Group Algebras and Minimal Abelian Codes," Finite Fields and their Appl,vol.13,no.2 (2007), pp.982-993
[10] A.Sahni and P.T.Sehgal,"Minimal Cyclic Codes of length pnq," Finite Fields Appl. 18 (2012) 1017-1036.
[11] Ranjeet Singh and Manju Pruthi, Primitive idempotents of quadratic residue codes of length $\mathrm{p}^{\mathrm{n}} \mathrm{q}^{\mathrm{m}}$, Int.J.Algebra 5 (2011) 285-294
[12] S. Batra and S.K. Arora,"Minimal quadratic residue cyclic codes of length p ${ }^{\mathrm{n}}$ (p odd prime),"Korean J. Comput and Appl. Math. 8 (3) (2001); $531 \square 547$.
[13] S.Rani,I.J.Singh and S.K. Arora, "Minimal cyclic codes of length $2 \mathrm{p}^{\mathrm{n} q}$ (p odd prime),"Bull.Calcutta.Math Society,106 (4) (2014)281-296.
[14] S. Rani, P,Kumar and I.J.Singh, "Minimal cyclic codes of length 2 p","Int. J. Algebra 7, no. 1-4 (2013) 79-90.
[15] S. Rani, P,Kumar and I.J.Singh, "Quadratic residues codes of prime power length over Z4,"J.Indian Math.Soc.New Series 78, no.1-4 (2011) 155-161.
[16] Seema Rani, I.J.Singh and S.K.Arora,"Primitive idempotents of irreducible cyclic codes of length $p^{n} q^{m}$ ",Far East Journal of Math. Sciences 77, no. 1 (2013) 17-32.
[17] Inderjit Singh, Pankaj Kumar and Monika Sangwan," Primitive idempotents in a semi-simple ring", Asian E.Journal of mathematics 16, no. 4 (2023)

