Primitive Idempotents of Some Minimal Abelian Codes of Length $2p^n$

¹Seema Rani and ²Inderjit Singh

¹Deptt. of Mathematics, FGM Govt College, Adampur E-mail: bhaeseema@gmail.com ²Deptt. of Mathematics, D.N. Collge, Hisar E-mail: vs.inderjit@gmail.com

Abstract

Let p and l are distinct odd primes, $o(l)_p = f$ and $\gcd\left(\frac{l^f-1}{p},p\right) = 1$. Then explicit expressions for all the primitive idempotents in $F_l(H_1 \times H_2)$, H_1 and H_2 are abelian groups of order 2 and exponent p^n respectively, are obtained.

Keywords: Group characters, Primitive roots, Abelian codes.

MSC (2010): 11A03; 15A07; 11R09; 11T06; 11T22; 11T71; 94B05; 94B15

1. Introduction

Let F_l be a field of odd prime order l and $k \geq 1$ be an integer such that $\gcd(l,k) = 1$. It is well known that a cyclic code of a given length k over F_l is an ideal of the semisimple ring $R_k = \frac{F_l[x]}{\langle x^k - 1 \rangle}$. Since, every ideal in R_k is the direct sum of its minimal ideals, therefore, to describe the complete set of ideals (codes over F_l) in R_k , it is sufficient to find its complete set of primitive idempotents. Many authors obtained primitive idempotents in $R_k \cong F_lG$, where G is cyclic group of order K. Therefore, a natural case of more general on the group G arises i.e. G is an abelian group. A minimal abelian code over a finite field is a minimal ideal of the group algebra F_lG , where G is an abelian group (Berman and Camion). In view of above discussion abelian codes are the generalization of cyclic codes. Bhandari and Grover [3] determined explicit expressions of all the primitive idempotents of the group algebra $F_l(C_{p^r} \times C_{p^n}), r \leq n$, where $O(l)_p = f$ and $\gcd(\frac{l^f-1}{n}, p) = 1$.

In this paper, we consider p and l are distinct odd primes, $o(l)_p = f$ and $\gcd\left(\frac{l^{f-1}}{p},p\right) = 1$. In Section 2, some results on finite fields are discussed. In Section 3, (Theorem 3.1), the explicit expressions for all primitive idempotents in $F_l(H_1 \times H_2)$, H_1 and H_2 are abelian groups of order 2 and exponent p^n respectively, are obtained.

2 Some Results on Finite Fields Lemma 2.1.

- (i) Let p and l be two distinct odd primes $o(l)_p = f$ and p does not divide $\frac{l^{f-1}}{p}$. Then, $o(l)_{p^n} = fp^{n-1}$. Further, $o(l)_{2p^n} = fp^{n-1}$.
- (ii) Let p and l be distinct odd primes, $ef = \varphi(p)$ and p does not divide $\frac{l^{t-1}}{p}$. If $o(l)_{2p^n} = fp^{n-1}$, $n \ge 1$ be an integer, then $o(l)_{2p^{n-j}} = \frac{\varphi(2p^{n-j})}{e} = fp^{n-j}$ for all j; $0 \le j \le n-1$.
- (iii) The set $\{g^k, g^k l, \dots, g^k l^{fp^{n-j}-1}\}$ forms a reduced residue system modulo p^{n-j} , where g is primitive root modulo p^{n-j} , $0 \le k \le e-1$ and $0 \le j \le n-1$.

Lemma 2.2. Let F_l be the field containing l elements and α be the primitive $2p^n$ th root of unity. Let $K = F_l(\alpha)$ and $\sigma : K \to K$ is an F_l – automorphism defined by $\sigma(\alpha) = \alpha^l$, then

- (i) $K = F_{1fp^{n-1}}$.
- (ii) The Galois group $G(K/F_l) = <\sigma>$.

Proof. To prove (i) part, we need to show that $\alpha \in F_{l^{fp^{n-1}}}$. For this it is sufficient to prove $\alpha^{l^{fp^{n-1}}} = \alpha$. By Lemma 2.1,0 $(l)_{2p^n} = fp^{n-1}$ gives that $l^{fp^{n-1}} \equiv 1 \pmod{2p^n}$. Thus, $l^{fp^{n-1}} = 1 + \lambda 2p^n$, for some integer λ . So,

$$\alpha^{l^{fp^{n-1}}} = \alpha^{1+\lambda 2p^n} = \alpha. \, \alpha^{\lambda 2p^n}.$$

As, α is primitive $2p^n$ th root of unity so, $\alpha^{2p^n} = 1$. Thus, $\alpha^{l^{fp^{n-1}}} = \alpha$.

(ii) By the given condition $\sigma: K \to K$ defined by $\sigma(\alpha) = \alpha^l$ for some $\alpha \in G(K/F_l)$. We claim that $\sigma(\sigma) = fp^{n-1}$. Let $\sigma(\sigma) = t$, for some integer $t \ge 1$.

If t = 1, then $\sigma = I$, which is not possible. Hence, t > 1. Now, it is easy to see, $\sigma^2(\alpha) = \sigma(\alpha) = \sigma(\alpha) = \alpha^{l^2}$, consequently $\sigma^k(\alpha) = \alpha^{l^k}$ implies $\sigma^{fp^{n-1}}(\alpha) = \alpha^{l^{fp^{n-1}}}$.

As, $o(l)_{2p^n} = fp^{n-1}$, so $l^{fp^{n-1}} \equiv 1 \mod (2p^n)$ so $\sigma^{fp^{n-1}}(\alpha) = \alpha^{l^{fp^{n-1}}} = \alpha$. But, $o(\sigma) = t$, gives that t divide fp^{n-1} .

On the other hand, $\sigma^t = I$, implies $\sigma^t(\alpha) = I(\alpha) = \alpha$. This gives $\alpha^{l^t} = \alpha$, implies $\alpha^{l^t-1} = 1$. Thus, $l^t \equiv 1 \pmod{2p^n}$ which gives fp^{n-1} , divides t as $o(l)_{2p^n} = fp^{n-1}$.

Hence, $t=fp^{n-1}$. Also, $o\left(G(K/F_l)\right)=[K:F_l]$. But by part (i) $K=F_{l^fp^{n-1}}$. Therefore, $o\left(G(K/F_l)\right)=\left[F_{l^fp^{n-1}}:F_l\right]=fp^{n-1}$. Hence, $G(K/F_l)=<\sigma>$.

Corollary 2.3. Let F_l be the field containing l elements and α be the primitive p^n th root of unity. Let $K = F_l(\alpha)$ and $\sigma : K \to K$ is an F_l – automorphism defined by $\sigma(\alpha) = \alpha^l$, then

- (i) $K = F_{1fp^{n-1}}$.
- (ii) The Galois group $G(K/F_l) = <\sigma>$.

Notations 2.4.

Let
$$A_t = \sum_{i=0}^{f-1} \alpha^{p^{n-1}g^t l^i}$$
 and $L = \{1, l, l^2, \dots, l^{f-1}\}.$

Definition 2.5. Let $F = \mathbb{F}_{q^m}$ be a finite extension of the field $K = \mathbb{F}_q$ then the **trace** function $Tr_{F/K}(\alpha)$ of α over K is defined by $Tr_{F/K}(\alpha) = \alpha + \alpha^q + ... + \alpha^{q^{m-1}}$.

Definition 2.6. Let G be a group and V a finite-dimensional vector space over a field K. Let $T: G \to GL(V)$ be a representation of G over K. Then, the **character** χ of G afforded by the representation T is the mapping $\chi: G \to K$ given by $\chi(g) = tr(T_g)$ for all $g \in G$.

Theorem 2.7. Let $F = \mathbb{F}_{q^m}$ be a finite extension of the field $K = \mathbb{F}_q$. Then the **trace** function $Tr_{F/K}$ satisfies the following properties:

- (i) $Tr_{F/K}(\alpha + \beta) = Tr_{F/K}(\alpha) + Tr_{F/K}(\beta)$ for all $\alpha, \beta \in F$;
- (ii) $Tr_{F/K}(c\alpha) = cTr_{F/K}(\alpha)$ for all $c \in K$, $\alpha \in F$;
- (iii) $Tr_{F/K}$ is a linear transformation from F onto K, where both F and K are viewed as vector spaces over K;
- (iv) $Tr_{F/K}(a) = ma$ for all $a \in K$;
- (v) $Tr_{F/K}(\alpha^q) = Tr_{F/K}(\alpha)$ for all $\alpha \in F$.

Observe that

$$A_{t} = \sum_{i=0}^{f-1} \alpha^{p^{n-1}g^{t}l^{i}} = Tr_{\frac{F_{l}f}{F_{l}}}(\beta^{g^{t}}), \alpha^{p^{n-1}} = \beta$$

Then, A_t are elements of F_l and can be evaluated by using properties of Gaussian periods, $0 \le t \le e - 1$.

Definition 2.8. Let G be a finite abelian group of exponent n and F a finite field of order l, where l is a prime such that gcd(n, l) = 1. Let $K = F(\xi_n)$ where ξ_n is primitive nth root of unity, C be set of all characters of G and $G(K, F_l)$ be the Galios group. Then $\{\sigma o \chi\}$ is orbit of χ , where $\sigma \in G(K, F_l)$ and $\chi \in C$.

3 Primitive Idempotents in F_1G

The following Theorem 3.1 and Proposition 3.2 are given in Grover

Theorem 3.1. Let G be a finite abelian group of exponent n and F a finite field of order l, where l is a prime such that gcd(n, l) = 1. Let $K = F(\xi_n)$ where ξ_n is primitive nth root of unity and $C_1 = \{\chi_{1,1}, \chi_{1,2}, ..., \chi_{1,l_1}\}, ..., C_r = \{\chi_{r,1}, \chi_{r,2}, ..., \chi_{r,l_r}\}$ be the orbits of the set G, which is the set of all characters of G under $G(K, F_l)$, then complete set of primitive idempotents of group algebra FG is given by

$$e_{i} = \frac{1}{|G|} \sum_{g \in G} Tr_{F_{\xi_{d_{i}}}/F} ((\chi_{i1} (g^{-1}))g)$$

for

$$1 \le i \le r, d_i = [G : \operatorname{Ker} \chi_{i,1}].$$

Theorem 3.2. Let H_1 and H_2 be two abelian groups of exponents p^n , $(n \ge 1)$ and q^m , $(m \ge 1)$, where p and q are distinct odd primes. Let l be an odd prime with $\gcd(l,pq)=1$ and F_l a finite field with l elements. Let $(l)_p=f$ and $(l)_q=g$ such that $\gcd\left(\frac{l^{f-1}}{p},p\right)=1$ if n>1 and $\gcd\left(\frac{l^{g-1}}{q},q\right)=1$ if m>1. Let $\gcd(f,g)=s$ and $G=H_1\times H_2$, then all the primitive idempotents of the group algebra F_lG are of the form Tr_{F_ls/F_l} (eH_1eH_2), where eH_1 and eH_2 are primitive idempotents in F_lsH_1 and F_lsH_2 , respectively.

In Theorem 3.1, it is observed that if $C_1 = \{\chi_{11,\dots,\chi_{1l_1}}\},\dots,C_r = \{\chi_{r1,\dots,\chi_{1l_r}}\}$ be all the orbits of C under the action of Galios group $G(K/F_l)$, where C is set of all the characters of G. Then, the number of primitive idempotents in F_lG is equals to the number of orbits of C. Therefore, to obtain the primitive idempotents F_lG , we need to find all the orbits of set of characters of G.

3.3. Characters of H_1

Let H_1 be abelian group of exponent 2 and K_1 is smallest field extension of F_l containing 2^{nd} root of unity, then $K_1 = F_l$ and Galois group $GF(K_1/F_l) = \{I\}$.

The characters of H_1 are defined as $\phi_1(x) = 1$ and $\phi_2(x) = -1$.

Then the orbits of set of characters of H_1 are $\{Io\phi_1\}$ and $\{Io\phi_2\}$.

Let us denote $Io\phi_1 = \phi_{1,1}$ and $Io\phi_1 = \phi_{1,2}$.

3.4. Characters of H_2

Let H_2 be abelian group of exponent p^n and K_2 is smallest field extension of F_l containing p^n th root of unity, then by Corollary 2.3

- (i) $K = F_{1}fp^{n-1}$.
- (ii) The Galois group $G(K/F_l) = <\sigma>$.

The characters of H_2 are defined as $\psi_1(y) = 1$ and $\psi_{2,j,k,s}(y) = \alpha^{p^{n-j}g^k l^s}$, $0 \le k \le e-1$, $0 \le s \le fp^{j-1}-1$, $1 \le j \le n$.

Then the orbits of set of characters of H_2 are $\{\sigma o \psi_1\}$ and $\{\sigma o \psi_{2,j,k,s}\}$, where $\sigma \in G(K/F_l)$. Let us denote $\sigma o \psi_1 = \tau_{1,1}$ and $\sigma o \psi_{2,j,k,s} = \tau_{2,j,k}$. Then, the orbits of set of characters of H_2 are $\tau_{1,1}(y) = 1$ and $\tau_{2,j,k}(x) = \alpha^{p^{n-j}g^k l^s}$, $0 \le k \le e-1$, $1 \le j \le n-1$. The total number of orbits of set of characters of H_2 are en+1.

Proposition 3.5. Let $G = H_1 \times H_2$, where H_1 and H_2 be any two abelian groups of exponents 2 and p^n respectively. Let α be the primitive $2p^n$ th root of unity and $K = F(\alpha)$. Then any character χ of G can be expressed uniquely as a direct product of characters of H_1 and H_2 and each orbit of set of all characters of G can be obtained uniquely, as products of orbits of sets of characters of H_1 and H_2 .

3.6 The 2en + 2 orbits of set of characters of G with values in K are given below: Let $g \in G$, g = xy, where $x \in H_1$, $y \in H_2$, then

- 1. $\chi_{1,1}(x) = \chi_{1,1}(y) = 1$,
- 2. $\chi_{1,2}(x) = -1, \chi_{1,2}(y) = 1.$ For $0 \le k \le e - 1, 1 \le j \le n - 1,$
- 3. $\chi_{3,j,k}(x) = 1, \chi_{3,j,k}(y) = \alpha^{p^{n-j}g^k l^s}$
- 4. $\chi_{4,j,k}(x) = -1, \chi_{4,j,k}(x) = \alpha^{p^{n-j}g^k l^s}$

Theorem 3.7. Let H_1 and H_2 be two abelian groups of order 2 and exponents p^n , $n \ge 1$, respectively. Let l be an odd prime and F_l a finite field with l elements. Let $G = H_1 \times H_2$, then all the 2en + 2 primitive idempotents of the group algebra F_lG are given by

1.
$$\theta_1(x,y) = \frac{1}{|G|} (1+x) \sum_{i=0}^{p^n-1} y^i$$
.

2.
$$\theta_2(x,y) = \frac{1}{|G|} (1-x) \sum_{i=0}^{p^n-1} y^i$$
.
For $0 \le k \le e-1, 1 \le j \le n$,

3.
$$\theta_{3,k,j,}(x,y) = \frac{p^{j-1}}{|G|} (1+x) \left(f \sum_{i \equiv 0 \pmod{p^j}} y^i + A_0 \sum_{p - \frac{g^k i}{p^{j-1}} \pmod{p} \in L} y^i + \dots + A_{e-1} \sum_{p - \frac{g^k i}{p^{j-1}} \pmod{p} \in g^{e-1} L} y^i \right).$$

4.
$$\theta_{4,k,j,}(x,y) = \frac{p^{j-1}}{|G|} (1-x) \left(f \sum_{i \equiv 0 \pmod{p^j}} y^i + A_0 \sum_{p - \frac{g^k i}{p^{j-1}} \pmod{p} \in L} y^i + \dots + A_{e-1} \sum_{p - \frac{g^k i}{p^{j-1}} \pmod{p} \in g^{e-1} L} y^i \right).$$

Proof. Evaluation of $\theta_1(x, y)$:

By Theorem 2.7,
$$\theta_1(x, y) = \frac{1}{|G|} \sum_{g \in G} Tr_{\frac{F_l}{F_l}} \left(\left(\chi_{1,1}(g^{-1}) \right) g \text{ and by (1) of 2.6} \right)$$

 $\chi_{1,1}(x) = \chi_{1,1}(y) = 1$, implies $\theta_1(x, y) = \frac{1}{|G|} \sum_{g \in G} Tr_{F_l/F_l} (1)g$.

By Definition 2.4, $Tr_{F_1/F_1}(1) = 1$, which gives

$$\theta_1(x,y) = \frac{1}{|G|}(1+x)\sum_{i=0}^{p^{n-1}} y^i.$$

Evaluation of $\theta_2(x, y)$:

By Theorem 2.7,
$$\theta_2(x, y) = \frac{1}{|G|} \sum_{g \in G} Tr_{F_l/F_l} \left(\chi_{1,2}(g^{-1}) \right) g$$
 and by (2) of 2.6 $\chi_{1,2}(x) = -1, \chi_{1,2}(y) = 1,$

implies

$$\theta_2(x,y) = \frac{1}{|G|} \sum_{g \in G} Tr_{F_l/F_l} (-1)g.$$

By Definition 2.4, $Tr_{F_I/F_I}(-1) = -1$, which gives

$$\theta_2(x,y) = \frac{1}{|G|} (1-x) \sum_{i=0}^{p^n-1} y^i.$$

Evaluation of $\theta_{3,k,j}(x,y)$, for $0 \le k \le e-1$, $1 \le j \le n$:

By Theorem 2.7 and Theorem 3.2,

$$\theta_{3,k,j}(x,y) = \frac{1}{|G|} (1+x) \sum_{i=0}^{p^{n-1}} Tr_{K/F} \left(\chi_{3,k,j} (y^{-i}) \right) y^{i},$$

where $\chi_{3,j,k}(y) = \alpha^{p^{n-j}g^k l^s}$ and K is smallest field extension of F_l containing primitive p^j th root of unity. Using Lemma 2.2, we have $K = F_{1fp^{j-1}}$.

Also by (3) of 3.6,
$$\chi_{3,k,j}(x) = 1, \chi_{3,k,j}(y^{-i}) = \alpha^{-p^{n-j}g^k l^s i}$$
 which gives that $Tr_{K/F}\left(\chi_{3,k,j}(y^{-i})\right) = Tr_{K/F}\left(\alpha^{-p^{n-j}g^k l^s i}\right)$. As discussed above, $K = F_{l^f p^{j-1}}$, so $Tr_{K/F}\left(\alpha^{-p^{n-j}g^k l^s i}\right) = Tr_{f_{l^f p^{j-1}}/F_l}\left(\alpha^{-p^{n-j}g^k l^s i}\right)$.

By Definition 2.4,

$$Tr_{F_{lfp^{j-1}}/F_l}\left(\alpha^{-p^{n-j}g^kl^si}\right) = \sum_{s=0}^{fp^{j-1}-1} \beta^{g^kl^si},$$

where

$$\beta = \alpha^{-p^{n-j}}.$$

Since α is primitive p^n th root of unity, then β is primitive p^j th root of unity.

Case (i) If $i \equiv 0 \pmod{p^j}$, then $\beta^{g^k l^s i} = 1$.

This gives that

$$\textstyle \sum_{s=0}^{fp^{j-1}-1} \beta^{g^k l^s i} = fp^{j-1} \text{ implies } Tr_{F_{l^f p^{j-1}}/F_l} \Big(\alpha^{-p^{n-j} g^k l^s i} \Big) = fp^{j-1}.$$

Case (ii) Let $i \not\equiv 0 \pmod{p^j}$.

Sub-case (a) If $i \equiv 0 \pmod{p^{j-1}}$ and $\frac{g^k i}{p^{j-1}} \pmod{p} \in g^t L$, for some $t, 1 \leq t \leq e-1$. Then, $\sum_{s=0}^{fp^{j-1}-1} \beta^{g^k l^s i} = \sum_{s=0}^{fp^{j-1}-1} \gamma^{g^t l^s}$, where γ is primitive p^{th} root of unity. Now $o(l)_p = f$, so $l^r = l^h$ iff $r \equiv h \pmod{f}$, thus $\sum_{s=0}^{fp^{j-1}-1} \gamma^{g^t l^s} = p^{j-1} \sum_{s=0}^{f-1} \gamma^{g^t l^s}$. By Notation 2.3, $A_t = \sum_{i=0}^{f-1} \alpha^{p^{n-1}g^t l^i}$, hence $\sum_{s=0}^{fp^{j-1}-1} \gamma^{g^t l^s} = p^{j-1} \sum_{s=0}^{f-1} \gamma^{g^t l^s} = p^{j$

Sub-case (b): If $i \not\equiv 0 \pmod{p^{j-1}}$, then $i = g^a p^h l^t$, for some, $0 \le a \le e - 1$, $0 \le h \le j - 2$ and $0 \le t \le f p^{j-1} - 1$. Then $\alpha^{-p^{n-j}g^k l^s i} = \alpha^{-p^{n-h}g^b l^{s+t}} = \beta$ (say).

Thus β is primitive p^h th root of unity and $0 \le h \le j-2$ and hence

$$Tr_{F_{l}fp^{j-1}/F_{l}}\left(\alpha^{-p^{n-j}g^{k}l^{s}i}\right)=Tr_{F_{l}fp^{j-1}/F_{l}}\left(\beta\right).$$

Then, as discussed in Section 2, Grover and Bhandari [48], we get

$$Tr_{F_{ifp}j-1}/F_l\left(\alpha^{-p^{n-j}g^kl^si}\right) = 0.$$

Combining case (i) and case (ii), we get

$$\theta_{3,k,j,}(x,y) = \frac{p^{j-1}}{|G|}(1+x) \left(f \sum_{i \equiv 0 \pmod{p^j}} y^i + A_0 \sum_{p - \frac{g^k i}{p^{j-1}} \pmod{p} \in L} y^i + \dots + A_{e-1} \sum_{p - \frac{g^k i}{p^{j-1}} \pmod{p} \in g^{e-1}L} y^i \right).$$

Evaluation of $\theta_{4,k,j}(x,y)$ for $0 \le k \le e-1, 1 \le j \le n$:

By Theorem 2.7 and Theorem 2.2,

$$\theta_{4,k,j}(x,y) = \frac{1}{|G|} (1-x) \sum_{i=0}^{p^{n-1}} Tr_{K/F} \left(\chi_{4,k,j}(y^{-i}) \right) y^{i},$$

where $\chi_{4,j,k}(y) = \alpha^{p^{n-j}g^k l^s}$ and K is smallest field extension of F_l containing primitive p^j th root of unity. Using Lemma 2.2, we have $K = F_{lf}p^{j-1}$.

Also by (4) of 3.6, $\chi_{4,k,j}(x) = -1$, $\chi_{4,k,j}(y^{-i}) = \alpha^{-p^{n-j}g^k l^s i}$

which gives that $Tr_{K/F}\left(\chi_{4,k,j}(y^{-i})\right) = Tr_{K/F}\left(\alpha^{-p^{n-j}g^kl^si}\right)$.

As discussed above, $K = F_{jfp^{j-1}}$, so

$$Tr_{K/F}(\alpha^{-p^{n-j}g^kl^si}) = Tr_{F_{i,fn^{j-1}}/F_l}(\alpha^{-p^{n-j}g^kl^si}).$$

By Definition 2.4,

$$Tr_{F_{lfp^{j-1}}/F_l}\left(\alpha^{-p^{n-j}g^kl^si}\right) = \sum_{s=0}^{fp^{j-1}-1} \beta^{g^kl^si},$$

where

$$\beta = \alpha^{-p^{n-j}}.$$

Since α is primitive p^n th root of unity, then β is primitive p^j th root of unity.

Case (i) If $i \equiv 0 \pmod{p^j}$, then $\beta^{g^k l^s i} = 1$.

This gives that

$$\sum_{s=0}^{fp^{j-1}-1} \beta^{g^k l^s i} = fp^{j-1}$$

which implies

$$Tr_{F_{ifp^{j-1}}/F_l}\left(\alpha^{-p^{n-j}g^kl^si}\right) = fp^{j-1}.$$

Case (ii) Let $i \not\equiv 0 \pmod{p^j}$.

Sub-case (a) If $i \equiv 0 \pmod{p^{j-1}}$ and $\frac{g^k i}{p^{j-1}} \pmod{p} \in g^t L$, for some $t, 0 \le t \le e-1$, then $\sum_{s=0}^{fp^{j-1}-1} \beta^{g^k l^s i} = \sum_{s=0}^{fp^{j-1}-1} \gamma^{g^t l^s}$, where γ is primitive p^{th} root of unity. Now $o(l)_p = f$, so $l^r = l^h$ iff $r \equiv h \pmod{f}$, thus

$$\sum_{s=0}^{fp^{j-1}-1} \gamma^{g^t l^s} = p^{j-1} \sum_{s=0}^{f-1} \gamma^{g^t l^s}.$$

By Notation 2.3,

$$A_t = \sum_{i=0}^{f-1} \alpha^{p^{n-1}g^t l^i}$$

hence,

$$\sum_{s=0}^{fp^{j-1}-1} \gamma^{g^t l^s} = p^{j-1} \sum_{s=0}^{f-1} \gamma^{g^t l^s} = p^{j-1} A_t.$$

In view of above discussion,

$$Tr_{F_{lfp^{j-1}}/F_l}\left(\alpha^{-p^{n-j}g^kl^si}\right)=p^{j-1}\,A_t.$$

Sub-case (b): If $i \not\equiv 0 \pmod{p^{j-1}}$, then $i = g^a p^h l^t$, where $0 \le a \le e-1$, $0 \le h \le e-1$ j-2 and $0 \le t \le fp^{j-1}-1$. Then $\alpha^{-p^{n-j}g^kl^si} = \alpha^{-p^{n-h}g^bl^{s+t}} = \beta$ (say).

Then
$$\alpha^{-p^{n-j}g^k l^s i} = \alpha^{-p^{n-h}g^b l^{s+t}} = \beta$$
 (say)

Then β is primitive p^h th root of unity, $0 \le h \le j-2$ and $Tr_{F_{j,fp^{j-1}}/F_l}\left(\alpha^{-p^{n-j}g^kl^si}\right) =$ $Tr_{F_{lfp^{j-1}}/F_l}(\beta).$

Then, as discussed in Section 2, Grover and Bhandari, we get

$$Tr_{F_{if}p^{j-1}/F_l}\left(\alpha^{-p^{n-j}g^kl^si}\right) = 0.$$

Combining case (i) and case (ii), we get

$$\theta_{4,k,j,}(x,y) = \frac{p^{j-1}}{|G|}(1-x)\left(f\sum_{i\equiv 0 \pmod{p^j}} y^i + A_0\sum_{p-\frac{g^ki}{p^{j-1}} \pmod{p}\in L} y^i + \ldots + A_{e-1}\sum_{p-\frac{g^ki}{p^{j-1}} \pmod{p}\in g^{e-1}L} y^i\right).$$

References:

- [1] S.K. Arora and Manju Pruthi, "Minimal Cyclic Codes Length 2pⁿ," Finite Field and their Applications, 5, 177-187 (1999).
- [2] Gurmeet K. Bakshi and Madhu Raka, "Minimal Cyclic Codes of length pⁿq," Finite Fields Appl. 9 (4) (2003) 432-448.
- [3] Grover P., Bhandari A. K., Explicit determination of certain minimal abelian codes and their minimum distances, *Asian-European Journal of Mathematics* 5 (1) (2012) 1-24.
- [4] Sudhir Batra and S.K. Arora, "Minimal quadratic residue cyclic codes of length pⁿ (p odd prime)," Korean J. Comput & Appl. Math. Vol. 8 (3) (2001), 531-547.
- [5] Sudhir Batra and S.K. Arora, "Some Cyclic codes of length 2pⁿ (p odd prime)," Design Codes Cryptography, Vol. 57 (3) (2010).
- [6] F.J. Mac Williams & N.J.A. Sloane; The Theory of Error Correcting Codes Bell Laboratories Murray Hill NJ 07974 U.S.A.
- [7] Manju Pruthi and S.K. Arora, "Minimal Cyclic Codes of Prime Power Length," Finite Field and their Application, 3, 99-113 (1997).
- [8] Raka, M., Bakshi,G.K.; Sharma,A.,Dumir,V.C. "Cyclotomic numbers and primitive idempotents in the ring $\frac{GF(q)[x]}{(x^{p^n}-1)}$," Finite Field & Their Appl.3 no.2 (2004) pp.653-673.
- [9] Ferraz,R.A.,Millies,C.P., "Idempotents in Group Algebras and Minimal Abelian Codes," Finite Fields and their Appl,vol.13,no.2 (2007), pp.982-993
- [10] A.Sahni and P.T.Sehgal, "Minimal Cyclic Codes of length pⁿq," Finite Fields Appl. 18 (2012) 1017-1036.
- [11] Ranjeet Singh and Manju Pruthi, Primitive idempotents of quadratic residue codes of length pⁿ q^m, Int.J.Algebra 5 (2011) 285-294
- [12] S. Batra and S.K. Arora,"Minimal quadratic residue cyclic codes of length pⁿ (p odd prime),"Korean J. Comput and Appl. Math.8 (3) (2001); 531 □ 547.

- [13] S.Rani,I.J.Singh and S.K. Arora, "Minimal cyclic codes of length 2 pⁿq (p odd prime),"Bull.Calcutta.Math Society,106 (4) (2014)281-296.
- [14] S. Rani, P,Kumar and I.J.Singh, "Minimal cyclic codes of length 2 pⁿ,"Int. J. Algebra 7, no. 1-4 (2013) 79-90.
- [15] S. Rani, P,Kumar and I.J.Singh, "Quadratic residues codes of prime power length over Z4," J.Indian Math.Soc.New Series 78, no.1-4 (2011) 155-161.
- [16] Seema Rani, I.J.Singh and S.K.Arora, "Primitive idempotents of irreducible cyclic codes of length pⁿq^m", Far East Journal of Math. Sciences 77, no. 1 (2013) 17-32.
- [17] Inderjit Singh, Pankaj Kumar and Monika Sangwan," Primitive idempotents in a semi-simple ring", Asian E.Journal of mathematics 16, no.4 (2023)