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Abstract

In this paper, we shall extend a fundamental variational inequality which is
developed by Simader-Sohr to a variable exponent Sobolev space. The inequality
is very useful for the existence theory to the Poisson equation with the Neumann
boundary conditions in Lp(·)-framework, where Lp(·) denotes a variable exponent
Lebesgue space. Furthermore, we can also derive the Helmholtz decomposition
theorem in a variable exponent Lebesgue space.
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1. INTRODUCTION

In Simader and Sohr [18], the authors derived a variational inequality of a quadratic
form. More precisely, let Ω is a bounded domain of Rd (d ≥ 2) with a C1-boundary
∂Ω and 1 < p <∞. They proved that there exists a positive constant C = C(p,Ω) > 0

such that

∥∇u∥Lp(Ω) ≤ C sup
v∈W 1,p′ (Ω)

∇v ̸=0

|⟨∇u,∇v⟩|
∥∇v∥Lp′ (Ω)

for all u ∈ W 1,p(Ω), (1.1)
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where ⟨∇u,∇v⟩ =
∫
Ω
∇u · ∇vdx and ∇ denotes the gradient operator. They also

considered the case where Ω is an exterior domain and got a variational inequality like
as in (1.1).

This inequality has many applications. For example, let v ∈ Lp(Ω), then it follows
from (1.1) that the Neumann problem for the Poisson equation{

∆u = div v in Ω,
∂u
∂n

= v · n on ∂Ω,
(1.2)

where n denotes the outer unit normal vector to ∂Ω, has a unique (up to an additive
constant) solution in a generalized sense. The equation (1.2) plays an essential role for
the Helmholtz-Weyl decomposition for vector fields in Lp(Ω) (cf. [18] and Kozono
and Yanagisawa [13]). As an application of (1.1), we can show the Helmholtz
decomposition for Lp(Ω). It is basic for the treatment of Navier-Stokes equation, for
example, see Fujiwara and Morimoto [9], Miyakawa [16].

In this paper, we attempt to derive an improvement of the above variational inequality
(1.1) to a variable exponent Sobolev space (Theorem 3.3). We restrict ourselves to
the case where variational inequality in a bounded domain. Though we follow the
arguments of [18], we have to proceed the analysis very carefully. The result brings
about the existence theory of weak solutions to the Neumann problem for the Laplacian
in the variable exponent Sobolev space, that is, for given functions f ∈ (W 1,p(·)(Ω))′

and g ∈ (Tr(W 1,p′(·)Ω)))′, where W 1,p(·)(Ω) is a variable exponent Sobolev space,
(W 1,p(·)(Ω))′ is the dual space ofW 1,p(·)(Ω) and Tr(W 1,p(·)(Ω)) denotes the trace space,
satisfying a compatibility condition, the following problem{

−∆u = f in Ω,
∂u
∂n

= g on ∂Ω

has a unique (up to an additive constant) weak solution. According to our best
knowledge, the result for the Neumann problem in a variable exponent Sobolev space
is the most general and new. Furthermore, we show that the Helmholtz decomposition
in a variable exponent Lp(·)-space which also seems to be new.

The study of differential equations with p(x)-growth conditions is a very interesting
topic recently. Studying such problem stimulated its application in mathematical
physics, in particular, in elastic mechanics (Zhikov [23]), in electrorheological fluids
(Diening [4], Halsey [11], Mihăilescu and Rădulescu [14], Růžička [17]).

For the Dirichlet case of the variational inequality, we will give a result in the future
work (cf. Simader [19] for the case p(·) = p = const.).
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The paper is organized as follows. In section 2, we give some preliminaries on
variable exponent Lebesgue-Sobolev spaces. In section 3, we give main theorems
(Theorem 3.3) which is an extension of variational inequality of type (1.1) to a variable
exponent Sobolev space. Section 4 is devoted to a proof of main theorem. In section
5, we consider the existence theory of weak solutions for the Poisson equation with
the Neumann boundary conditions. Finally, section 6 is devoted to a proof for the
Helmholtz decomposition in a variable exponent Lp(·)-space.

2. PRELIMINARIES

Throughout this paper, we only consider vector spaces of real valued functions over
R. For any space B, we denote Bd by the boldface character B. Hereafter, we
use this character to denote vectors and vector-valued functions, and we denote the
standard inner product of vectors a = (a1, . . . , ad) and b = (b1, . . . , bd) in Rd by
a · b =

∑d
i=1 aibi and |a| = (a · a)1/2. Occasionally, we also use the same character

for matrix values functions. Moreover, for the dual space B′ of B (resp. B′ of B),
we denote the duality bracket between B′ and B (resp. B′ and B) by ⟨·, ·⟩B′,B (resp.
⟨·, ·⟩B′,B).

In this section, we recall some well-known results on variable exponent
Lebesgue-Sobolev spaces. See Diening et al. [5], Fan and Zhao [8], Fan and Zhang
[6], Kovác̆ik and Rácosnı́k [12] and references therein for more detail. Let G be a
(Lebesgue) measurable subset of Rd with the measure |G| > 0. Then we define a
set of variable exponents by P(G) = {p;G → [1,∞); p is measurable in G} and for
p ∈ P(G), define

p− = ess inf
x∈G

p(x) and p+ = ess sup
x∈G

p(x)

and
P+(G) = {p ∈ P(G); 1 < p− ≤ p+ <∞}.

For any measurable function u on G and p ∈ P(G), a modular ρp(·),G is defined by

ρp(·),G(u) =

∫
G

|u(x)|p(x)dx.

The variable exponent Lebesgue space is defined by

Lp(·)(G) =
{
u;u is a measurable function on G satisfying ρp(·),G(u) <∞

}
equipped with the Luxemburg norm

∥u∥Lp(·)(G) = inf
{
λ > 0; ρp(·),G

(u
λ

)
≤ 1

}
.
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Then Lp(·)(G) is a Banach space.

The following proposition is well known (see Fan et al. [7], Wei and Chen [20], [8],
Zhao et al. [22], Yücedağ [21]).

Proposition 2.1. Let p ∈ P+(G) and let u, un ∈ Lp(·)(G) (n = 1, 2, . . .). Then we have

(i) ∥u∥Lp(·)(G) < 1(= 1, > 1) ⇐⇒ ρp(·),G(u) < 1(= 1, > 1).

(ii) ∥u∥Lp(·)(G) > 1 =⇒ ∥u∥p
−

Lp(·)(G)
≤ ρp(·),G(u) ≤ ∥u∥p

+

Lp(·)(G)
.

(iii) ∥u∥Lp(·)(G) < 1 =⇒ ∥u∥p
+

Lp(·)(G)
≤ ρp(·),G(u) ≤ ∥u∥p

−

Lp(·)(G)
.

(iv) limn→∞ ∥un − u∥Lp(·)(G) = 0 ⇐⇒ limn→∞ ρp(·),G(un − u) = 0.

(v) ∥un∥Lp(·)(G) → ∞ as n→ ∞ ⇐⇒ ρp(·),G(un) → ∞ as n→ ∞.

The following proposition is a generalized Hölder inequality.

Proposition 2.2. Let p ∈ P+(G). For any u ∈ Lp(·)(G) and v ∈ Lp
′(·)(G), we have∫

G

|uv|dx ≤
(

1

p−
+

1

(p′)−

)
∥u∥Lp(·)(G)∥v∥Lp′(·)(G) ≤ 2∥u∥Lp(·)(G)∥v∥Lp′(·)(G),

where p′(·) is the conjugate exponent of p(·), that is, 1
p(x)

+ 1
p′(x)

= 1.

When G is a domain (open and connected subset) of Rd and p ∈ P+(G), we can define
a Sobolev space, for an integer m ≥ 0,

Wm,p(·)(G) = {u ∈ Lp(·)(G); ∂αu ∈ Lp(·)(G) for |α| ≤ m},

where α = (α1, . . . , αd) is a multi-index, |α| =
∑d

i=1 αi, ∂
α = ∂α1

1 · · · ∂αd
d and

∂i = ∂/∂xi, endowed with the norm

∥u∥Wm,p(·)(G) =
∑
|α|≤m

∥∂αu∥Lp(·)(G).

Of course, W 0,p(·)(G) = Lp(·)(G). The local Sobolev space is defined by

W
m,p(·)
loc (G) = {u; for all open subset U ⋐ G, u ∈ W 1,p(·)(U)},

where U ⋐ G means that the closure U of U is compact and U ⊂ G.

For p ∈ P+(G), define

p∗(x) =

{
dp(x)
d−p(x) if p(x) < d,

∞ if p(x) ≥ d.
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Proposition 2.3. Let p ∈ P+(G) and m ≥ 0 be an integer. Then we can show the
following properties.

(i) The space Wm,p(·)(G) is a separable and reflexive Banach space.

(ii) Let G = Ω be a bounded domain of Rd. If q(·) ∈ P+(Ω) satisfies q(x) ≤ p(x)

for all x ∈ Ω, then Wm,p(·)(Ω) ↪→ Wm,q(·)(Ω), where ↪→ means that the embedding is
continuous.

(iii) Let G = Ω be a bounded domain of Rd. If p, q ∈ P+(Ω) ∩ C(Ω) satisfies that
q(x) < p∗(x) for all x ∈ Ω, then the embedding W 1,p(·)(Ω) ↪→ Lq(·)(Ω) is compact.

Let G be a domain of Rd with a Lipschitz-continuous boundary ∂G and p ∈ P+(G).
Since W 1,p(·)(G) ⊂ W 1,1

loc (G), the trace u
∣∣
∂G

to ∂G of any function u in W 1,p(·)(G) is
well defined as a function in L1

loc(∂Ω). We define

Tr(W 1,p(·)(G)) = {f ; f is the trace to ∂G of a function F ∈ W 1,p(·)(G)}

equipped with the norm

∥f∥Tr(W 1,p(·)(G)) = inf{∥F∥W 1,p(·)(G);F ∈ W 1,p(·)(G) satisfying F
∣∣
∂G

= f on ∂G}

for f ∈ Tr(W 1,p(·)(G)). Then Tr(W 1,p(·)(G)) is a Banach space. More precisely, see
[5, Chapter 12].

For general measurable subset G of Rd, we say that p ∈ P log(G) if p ∈ P+(G) and p
has the globally log-Hölder continuity in G and globally log-Hölder decay condition,
that is, p : G → R satisfies that there exist a constant Clog(p) > 0 and p∞ ∈ R such
that the following inequlities hold:

|p(x)− p(y)| ≤ Clog(p)

log(e+ 1/|x− y|)
for all x, y ∈ G,

and

|p(x)− p∞| ≤ Clog(p)

log(e+ |x|)
for all x ∈ G,

respectively.

We also write P log
+ (G) = P log(G) ∩ P+(G).

Proposition 2.4. If G is a domain of Rd and p ∈ P log
+ (G), then it has an extension

q ∈ P log
+ (Rd) with Clog(q) = Clog(p), q− = p− and q+ = p+. If G is unbounded, then

additionally q∞ = p∞.

For the proof, see [5, Proposition 4.1.7].
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Proposition 2.5. If p ∈ P log
+ (G), then D(G) := C∞

0 (G) is dense in W 1,p(·)
0 (G) := {u ∈

W 1,p(·)(G);u
∣∣
∂G

= 0}.

For the proof, see [5, Corollary 11.2.4].

Frequently we use the following Poincaré inequality later.

Theorem 2.6. (i) If Ω is a bounded domain of Rd and p ∈ P log
+ (Ω), then there exists a

constant c depending only on d and Clog(p) such that

∥u∥Lp(·)(Ω) ≤ c diam(Ω)∥∇u∥Lp(·)(Ω) for all u ∈ W
1,p(·)
0 (Ω),

where diam(Ω) denotes the diameter of Ω.

(ii) If Ω is a bounded domain of Rd with a Lipschitz-continuous boundary ∂Ω and
p ∈ P log

+ (Ω), then there exists a constant c depending only on d and Clog(p) such that

∥u− ⟨u⟩Ω∥Lp(·)(Ω) ≤ c diam(Ω)∥∇u∥Lp(·)(Ω) for all u ∈ W 1,p(·)(Ω),

where ⟨u⟩Ω = 1
|Ω|

∫
Ω
udx.

For the proof, see [5, Theorem 8.2.4].

3. THE SPACE EP (·)(G) AND A MAIN THEOREM

This section consists of two subsections. In subsection 3.1, we define a closed
subspace Ep(·)(G) of Lp(·)(G) when G is a domain (not necessarily bounded) of Rd

and p ∈ P log
+ (G), and then we consult some properties of Ep(·)(G). In subsection

3.2, we state a main theorem in the case where G = Ω is a bounded domain with a
C1-boundary.

3.1. The space Ep(·)(G).

LetG be a domain (not necessarily bounded) ofRd (d ≥ 2) with a Lipschitz-continuous
boundary ∂G and p ∈ P log

+ (G). Define a space

Ep(·)(G) = {∇v; v ∈ L
p(·)
loc (G),∇v ∈ Lp(·)(G)}

equipped with the norm ∥∇v∥Ep(·)(G) = ∥∇v∥Lp(·)(G). Here

L
p(·)
loc (G) = {v; v

∣∣
G∩B∈ Lp(·)(G ∩B) for each ball B with G ∩B ̸= ∅}.
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Proposition 3.1. Let G be a domain of Rd (d ≥ 2) with a boundary ∂G and let
p ∈ P log

+ (G). If uj ∈ W
1,p(·)
loc (G) (j = 1, 2, . . .) such that {∇uj}∞j=1 is a Cauchy

sequence in L
p(·)
loc (G), then there exist a sequence {cj}∞j=1 ⊂ R and u ∈ W

1,p(·)
loc (G)

such that uj − cj → u in W 1,p(·)
loc (G) as j → ∞.

Proof. Step 1. For x ∈ G, define

dx =

{
1
2
dist(x, ∂G) if ∂G ̸= ∅,

1 otherwise ,

and put B(x) = {y ∈ Rd; |y − x| < dx}. Then by the Poincaré inequality (Theorem
2.6 (ii)), there exists a constant Cx = C(d, Clog(p), |B(x)|) > 0 such that∥∥∥∥f − 1

|B(x)|

∫
B(x)

f(y)dy

∥∥∥∥
Lp(·)(B(x)

≤ Cx∥∇f∥Lp(·)(B(x)) (3.1)

for all f ∈ W 1,p(·)(B(x)). Assume that uj ∈ W
1,p(·)
loc (G) (j = 1, 2, . . .) such that

{∇uj}∞j=1 is a Cauchy sequence in L
p(·)
loc (G). If we put cj(x) = 1

|B(x)|

∫
B(x)

uj(y)dy,
then it follows from (3.1) that {uj − cj(x)}∞j=1 is a Cauchy sequence in Lp(·)(B(x)).

Step 2. Let x, y ∈ G and H = B(x) ∩ B(y) ̸= ∅. Assume that {aj}∞j=1, {bj}∞j=1 ⊂ R
such that {uj − aj}∞j=1 converges in Lp(·)(B(x)) and {uj − bj}∞j=1 converges in
Lp(·)(B(y)). According to the generalized Hölder inequality (Proposition 2.2), since

|(aj − bj)− (ak − bk)| =
1

|H|

∫
H

{(aj − bj)− (ak − bk)}dx

≤ 2

|H|
∥(aj − bj)− (ak − bk)∥Lp(·)(H)∥1∥Lp′(·)(H)

= C(H)∥{(uj − aj)− (uk − ak)}
−{(uj − bj)− (uk − bk)}∥Lp(·)(H)

≤ C(H)∥(uj − aj)− (uk − ak)∥Lp(·)(H)

+∥(uj − bj)− (uk − bk)∥Lp(·)(H) → 0

as j, k → ∞ with some constant C(H). Thus the sequence {aj − bj}∞j=1 converges in
R. Moreover, we see that uj − aj = uj − bj + (bj − aj) converges in Lp(·)(B(y)).

Step 3. Choose an arbitrary but fixed x0 ∈ G and define cj = cj(x0). Put

M = {x ∈ G; {uj − cj} is a Cauchy sequence in Lp(·)(B(x))}.

Then x0 ∈ M . M is an open subset of G. Indeed, let x ∈ M . Then for any y ∈ B(x),
since B(x) ∩ B(y) ̸= ∅, {uj − cj} is a Cauchy sequence in Lp(·)(B(y)) from Step 2,
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so y ∈ M , that is, B(x) ⊂ M . So M is open. M is a closed subset of G. Indeed,
let xn ∈ M and xn → z ∈ G. Then there exists n0 ∈ N such that xn ∈ B(z) for all
n ≥ n0. Hence B(xn0) ∩ B(z) ̸= ∅. From Step 2, {uj − cj} is a Cauchy sequence
in Lp(·)(B(z)), so z ∈ M . Thsu M is a closed subset of G. Since G is connected, we
conclude M = G.

Step 4. There exist open subsets {Gi}∞i=1 such that G1 ⋐ G2 ⋐ · · · ⋐ G and
G = ∪∞

i=1Gi. Since {(uj − cj)
∣∣
Gi
} is a Cauchy sequence in W 1,p(·)(Gi), there exists

ûi ∈ W 1,p(·)(Gi) such that (uj − cj)
∣∣
Gi
→ ûi in W 1,p(·)(Gi). Without loss of generality

we may assume ûi
∣∣
Gk
= ûk for i ≥ k. Define u ∈ W

1,p(·)
loc (G) by u(x) = ûk(x) if

x ∈ Gk. Then the definition is well defined. Then uj − cj → u in W
1,p(·)
loc (G) as

j → ∞.

Corollary 3.2. Let G be a domain of Rd (d ≥ 2) with a Lipschitz-continuous boundary
and let p ∈ P log

+ (G). Then the space Ep(·)(G) is complete with respect to the norm
∥∇v∥Ep(·)(G) = ∥∇v∥Lp(·)(G), so Ep(·)(G) is a closed subspace of Lp(·)(G). Therefore,
Ep(·)(G) is a reflexive Banach space.

Proof. Let {∇uj}∞j=1 be a Cauchy sequence in Ep(·)(G). For any U ⋐ G, choose
a ball B such that U ⊂ B. Then by definition, uj ∈ Lp(·)(G ∩ B) ⊂ Lp(·)(U).
Hence uj ∈ W

1,p(·)
loc (G). By Proposition 3.1, there exists a sequence {cj} ⊂ R and

u ∈ W
1,p(·)
loc (G) such that uj − cj → u in W

1,p(·)
loc (G), so ∇uj → ∇u in L

p(·)
loc (G)

as j → ∞. On the other hand, since {∇uj} is a Cauchy sequence in Lp(·)(G),
there exists g ∈ Lp(·)(G) such that ∇uj → g in Lp(·)(G) as j → ∞. So we have
∇u = g ∈ Lp(·)(G). Thus we see that u ∈ W

1,p(·)
loc (G) ⊂ L1

loc(G) and ∇u ∈ Lp(·)(G).
For any ball B with G ∩ B ̸= ∅, there exists a bounded set C such that B ⊂ C and
∂(G∩C) is Lipschitz-continuous. Therefore, u ∈ L1

loc(G∩C) and ∇u ∈ Lp(·)(G∩C).
By [5, Corollary 8.26], we have, for any G′ ⋐ G,

∥u− ⟨u⟩G′∥Lp(·)(G∩B) ≤ ∥u− ⟨u⟩G′∥Lp(·)(G∩C)

≤ C(d, Clog(p), G ∩ C)∥∇u∥Lp(·)(G∩C)

≤ C(d, Clog(p), G ∩ C)∥∇u∥Lp(·)(G) <∞.

So we get u ∈ Lp(·)(G ∩B). Therefore, ∇u ∈ Ep(·)(G).

3.2. A main theorem.

We are in a position to state a main theorem.
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Theorem 3.3. Let Ω be a bounded domain of Rd (d ≥ 2) with a C1-boundary ∂Ω and
p ∈ P log

+ (Ω). Then there exists a constant C1 = C1(p, d,Ω) > 0 such that

∥∇u∥Ep(·)(Ω) ≤ C1 sup
0̸=∇v∈Ep′(·)(Ω)

|⟨∇u,∇v⟩Ω|
∥∇v∥Ep′(·)(Ω)

for all ∇u ∈ Ep(·)(Ω), (3.2)

where
⟨∇u,∇v⟩Ω =

∫
Ω

∇u ·∇vdx.

If Ω is bounded, then it clearly follows that Ep(·)(Ω) = {∇v; v ∈ W 1,p(·)(Ω)}. Hence
we have the following corollary.

Corollary 3.4. Let Ω be a bounded domain of Rd (d ≥ 2) with a C1-boundary ∂Ω and
p ∈ P log

+ (Ω). Then there exists a constant C1 = C1(p, d,Ω) > 0 such that

∥∇u∥Lp(·)(Ω) ≤ C1 sup
v∈W 1,p′(·)(Ω)

∇v ̸=0

|⟨∇u,∇v⟩Ω|
∥∇v∥Lp′(·)(Ω)

for all u ∈ W 1,p(·)(Ω). (3.3)

Remark 3.5. If Ω is a bounded domain, the authors of [18] showed the result in the
case where p(·) = p is a constant such that 1 < p <∞.

4. PROOF OF THEOREM 3.3.

In this section, we give a proof of Theorem 3.3. For the purpose, since we use the
localization method, we devide this section into four subsections. In subsection 4.1, we
consider the properties in the general domain G. In subsection 4.2, we treat the case
G = Rd. Subsection 4.3 devote to the case G is a half-space or a bended half-space. In
the last subsection 4.4, we complete the proof of Theorem 3.3.

4.1. The case where G is a general (not necessarily bounded) domain.

Definition 4.1. Let G be a domain of Rd with a C1-boundary and q ∈ P log
+ (G).

(i) We say that G has the property Q1(q) if there exists a constant Cq = C(q, d,G) > 0

such that

∥∇u∥Eq(·)(G) ≤ Cq sup
0̸=∇v∈Eq′(·)(G)

|⟨∇u,∇v⟩G|
∥∇v∥Eq′(·)(G)

for all ∇u ∈ Eq(·)(G), (4.1)

where ⟨∇u,∇v⟩G =
∫
G
∇u ·∇vdx.
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(ii) We say thatG has the propertyQ2(q) if we define a linear operator σq : Eq(·)(Ω) →
(Eq′(·)(G))′ by

σq(∇u)(∇ϕ) = ⟨∇u,∇ϕ⟩G for ∇u ∈ Eq(·)(G) and ∇ϕ ∈ Eq′(·)(G), (4.2)

then σq is topologically bijective and there exists a constant C̃q = C̃(q, d,G) ≥ 1 such
that

C̃q
−1
∥∇u∥Eq(·)(G) ≤ ∥σq(∇u)∥(Eq′(·)(G))′ ≤ C̃q∥∇u∥Eq(·)(G) for all ∇u ∈ Eq(·)(G).

(4.3)

Lemma 4.2. Let G be a domain of Rd with a C1-boundary and p ∈ P log
+ (G). Then G

has the property Q1(q) for q = p and q = p′ if and only if G has the property Q2(q) for
q = p and q = p′.

Proof. Suppose that G has the property Q1(q) for q = p and q = p′. Let ∇u ∈
Eq(·)(G). Then it follows from (4.1) and the generalized Hölder inequality (Proposition
2.2) that

C−1
q ∥∇u∥Eq(·)(G) ≤ sup

0̸=∇ϕ∈Eq′(·)(G)

|⟨∇u,∇ϕ⟩G|
∥∇ϕ∥Eq′(·)(G)

= sup
0̸=∇ϕ∈Eq′(·)(G)

|σq(∇u)(∇ϕ)|
∥∇ϕ∥Eq′(·)(G)

= ∥σq(∇u)∥(Eq′(·)(G))′

≤ sup
0̸=∇ϕ∈Eq′(·)(G)

2∥∇u∥Eq(·)(G)∥∇ϕ∥Eq′(·)(G)

∥∇ϕ∥Eq′(·)(G)

= 2∥∇u∥Eq(·)(G).

Thus the estimate (4.3) holds and σq is linear, continuous and injective.

As in the proof of Proposition 3.1, we can see that σq(Eq(·)(G)) is closed subspace of
(Eq′(·)(G))′. If σq(Eq(·)(G)) ⊊ (Eq′(·)(G))′, then it follows from the Hahn-Banach
theorem that there exists F ′′ ∈ (Eq′(·)(G))′′ such that F ′′ ̸= 0 and F ′′∣∣

σq(E
q(·)(G))

= 0.

Since Eq′(·)(G) is reflexive, there exists uniquely ∇ϕ ∈ Eq′(·)(G) such that F ′′(F ′) =

F ′(∇ϕ) for all F ′ ∈ (Eq′(·)(G))′ and ∥∇ϕ∥Eq′(·)(G) = ∥F ′′∥(Eq′(·)(G))′′ > 0. For any
∇u ∈ Eq(·)(G), we have 0 = σq(∇u)(∇ϕ) = ⟨∇u,∇ϕ⟩G. From Q1(q

′), we have
∥∇ϕ∥Eq′(·)(G) = 0. This is a contradiction. Thus σq is surjective. By the Banach open
mapping theorem, σ−1

q is also continuous.
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Conversely, suppose that G has the property Q2(q) for q = p and q = p′. Since
σq′(E

q′(·)(G)) = (Eq(·)(G))′ and Q2(q
′) holds, for any ∇u ∈ Eq(·)(G),

∥∇u∥Eq(·)(G) = sup
0̸=F ′∈(Eq(·)(G))′

|F ′(∇u)|
∥F ′∥(Eq(·)(G))′

= sup
0̸=∇v∈Eq′(·)(G)

|σq(∇v)(∇u)|
∥σq(∇v)∥(Eq(·)(G))′

≤ 1

C̃q′
sup

0̸=∇v∈Eq′(·)(G)

|⟨∇u,∇v⟩G|
∥∇v∥(Eq(·)(G))′

.

So we can get the estimate (4.1).

Corollary 4.3. LetG be a domain ofRd with a C1-boundary and p ∈ P log
+ (G). IfG has

the property Q1(q) for q = p and q = p′, then for any F ′ ∈ (Eq′(·)(G))′, there exists
a unique ∇u ∈ Eq(·)(G) such that ⟨∇u,∇ϕ⟩ = F ′(∇ϕ) for all ∇ϕ ∈ Eq′(·)(G).
Furthermore, there exists a constant c = c(q, d,G) ≥ 1 such that

c−1∥∇u∥Lq(·)(G) ≤ ∥F ′∥(Eq′(·)(G))′ ≤ c∥∇u∥Lq(·)(G).

4.2. The case G = Rd

In this subsection, we consider the case G = Rd. Let p ∈ P log
+ (Rd).

Lemma 4.4. If we define M := {∆v; v ∈ D(Rd) := C∞
0 (Rd)}, then M is dense in

Lp(·)(Rd).

Proof. Suppose that M ⊊ Lp(·)(Rd), where M is the closure of M in Lp(·)(Rd). By
the Hahn-Banach theorem, there exists F ′ ∈ (Lp(·)(Rd))′ with ∥F ′∥(Lp(·)(Rd))′ > 0 and
F ′

∣∣
M
= 0. Since we can regard (Lp(·)(Rd))′ = Lp

′(·)(Rd) isometrically, there exists
v ∈ Lp

′(·)(Rd) such that ∥v∥Lp′(·)(Rd) = ∥F ′∥(Lp(·)(Rd))′ > 0 and F ′(w) = ⟨v, w⟩Rd

for all w ∈ Lp(·)(Rd). Since F ′
∣∣
M
= 0, we have ⟨v,∆ϕ⟩ =

∫
Rd v∆ϕdx = 0 for all

ϕ ∈ D(Rd), so ∆v = 0 in D′(Rd). By the hypoellipticity of the Laplacian, we can
regard that v ∈ C∞(Rd) (eventually after change of a set of measure zero), so v is
harmonic in Rd. For any x ∈ Rd fixed, it follows from the second mean value theorem
for harmonic functions that

v(x) =
1

|BR(x)|

∫
BR(x)

v(y)dy,

where BR(x) = {y ∈ Rd : |y − x| < R} and |BR(x)| denotes the volume of BR(x).
By the generalized Hölder inequality (Proposition 2.2),

|v(x)| ≤ 2

|BR(x)|
∥v∥Lp′(·)(BR(x))∥1∥Lp(·)(BR(x)).
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Since ∥1∥Lp(·)(BR(x)) ≤ ρp(·),BR(x)(1)
1/p− = |BR(x)|1/p

− for large R > 0 and p− > 1,
we have

|v(x)| ≤ 2|BR(x)|−1+1/p−∥v∥Lp′(·)(Rd) → 0 as R → ∞.

Therefore, we have v(x) = 0. Since x ∈ Rd is arbitrary, v ≡ 0 in Rd. This is a
contradiction.

Define ∇2v = (∂i∂jv)i,j=1,...,d for v ∈ D(Rd). Then there exists a constant C =

C(p, d) > 0 such that

C∥∇2v∥Lp(·)(Rd) ≤ ∥∆v∥Lp(·)(Rd) for all v ∈ D(Rd). (4.4)

For the proof, see [5, Corollary 14.1.7] (cf. when p(·) = p (constant), see Gilbarg and
Trudinger [10, Corollary 9.10]).

For p ∈ P log
+ (Rd), we have Ep(·)(Rd) = {∇u;u ∈ L

p(·)
loc (Rd),∇u ∈ Lp(·)(Rd)} by

definition.

Lemma 4.5. Let p, q ∈ P log
+ (Rd). If ∇u ∈ Eq(·)(Rd) satisfies

sup
0̸=v∈D(Rd)

|⟨∇u,∇v⟩Rd|
∥∇v∥Lp′(·)(Rd)

<∞, (4.5)

then ∇u ∈ Ep(·)(Rd) and there exists a constant C1 = C1(p, d) > 0 such that

∥∇u∥Ep(·)(Rd) ≤ C1 sup
0̸=v∈D(Rd)

|⟨∇u,∇v⟩Rd|
∥∇v∥Lp′(·)(Rd)

. (4.6)

In particular, if ∇u ∈ Ep(·)(Rd), then

∥∇u∥Ep(·)(Rd) ≤ C1 sup
0̸=v∈D(Rd)

|⟨∇u,∇v⟩Rd|
∥∇v∥Ep′(·)(Rd)

(4.7)

≤ C1 sup
0̸=∇v∈Ep′(·)(Rd)

|⟨∇u,∇v⟩Rd|
∥∇v∥Ep′(·)(Rd)

,

that is, Rd has the property Q1(p) in the Definition 4.1.

Proof. Let ∇u ∈ Eq(·)(Rd). For every i = 1, . . . , d, using (4.4),

∞ > sup
0̸=v∈D(Rd)

|⟨∇u,∇v⟩Rd|
∥∇v∥Ep′(·)(Rd)

≥ sup
0̸=w∈D(Rd)

|⟨∇u,∇(∂iw)⟩Rd|
∥∇∂iw∥Lp′(·)(Rd)

≥ sup
0̸=w∈D(Rd)

|⟨∂iu,∆w⟩Rd|
∥∇2w∥Lp′(·)(Rd)

≥ C sup
0̸=w∈D(Rd)

|⟨∂iu,∆w⟩Rd|
∥∆w∥Lp′(·)(Rd)

, (4.8)



An extension of a variational inequality in the Simader-Sohr theorem 257

where C is the constant in (4.4). Therefore, the functional v 7→ ⟨∂iu, v⟩Rd is linear
and continuous on the dense subspace M of Lp′(·)(Rd), so the functional is uniquely
extended to a continuous linear functional on Lp′(·)(Rd) which is norm preserving. Thus
there exists g ∈ Lp(·)(Rd) such that ⟨∂iu, v⟩Rd = ⟨g, v⟩Rd for all v ∈M , that is,

⟨∂iu,∆w⟩Rd = ⟨g,∆w⟩Rd for all w ∈ D(Rd).

If we define W = ∂iu − g, then ∆W = 0 in D′(Rd), so W is harmonic in Rd.
By the same argument as in the proof of Lemma 4.4, we can regard W (x) ≡ 0, so
∂iu = g ∈ Lp(·)(Rd). Hence we have ∇u ∈ Lp(·)(Rd). Since ∇u ∈ Lp(·)(Rd) and
u ∈ L

q(·)
loc (Rd) ⊂ L1

loc(Rd), for any ball B, it follows from [5, Corollary 8.2.6] that

∥u− ⟨u⟩B∥Lp(·)(B) ≤ C(p, d, B)∥∇u∥Lp(·)(B).

This implies that u ∈ L
p(·)
loc (Rd), that is, ∇u ∈ Ep(·)(Rd). Since M is dense in

Lp
′(·)(Rd), using (4.8),

∥∂iu∥Lp(·)(Rd) = sup
0̸=f∈Lp′(·)(Rd)

|⟨∂iu, f⟩Rd|
∥f∥Lp′(·)(Rd)

= sup
0̸=w∈D(Rd)

|⟨∂iu,∆w⟩Rd|
∥∆w∥Lp′(·)(Rd)

≤ C−1 sup
0̸=v∈D(Rd)

|⟨∇u,∇v⟩Rd|
∥∇v∥Lp′(·)(Rd)

.

Hence (4.6) holds.

Corollary 4.6. Let p ∈ P log
+ (Rd). If we define E∞(Rd) = {∇v; v ∈ D(Rd)}, then

E∞(Rd) is dense in Ep(·)(Rd).

Proof. Let E∞(Rd) ⊊ Ep(·)(Rd). Then by the Hahn-Banach theorem, there exists
F ′ ∈ (Ep(·)(Rd))′ such that F ′ ̸= 0 and F ′∣∣

E∞(Rd)
= 0. For q = p and q = p′, since

∥∇u∥Eq(·)(Rd) ≤ C sup
0̸=∇ϕ∈Eq′(·)(Rd)

|⟨∇u,∇ϕ⟩Rd|
∥∇ϕ∥Eq′(·)(Rd)

for all ∇u ∈ Eq(·)(Rd)

from Lemma 4.5, Rd satisfiesQ1(q) for q = p and q = p′. By Corollary 4.3, there exists
uniquely ∇u ∈ Ep′(·)(Rd) such that ∥∇u∥Ep′(·)(Rd) > 0 and

F ′(∇ϕ) = ⟨∇u,∇ϕ⟩Rd for all ∇ϕ ∈ Ep(·)(Rd).

On the other hand, since F ′∣∣
E∞(Rd)

= 0, we have

0 = F ′(∇ϕ) = ⟨∇u,∇ϕ⟩Rd for all ϕ ∈ D(Rd).

From (4.7), we have ∇u = 0. This is a contradiction.
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4.3. The case where G is a half-space or a bended half-space

In this subsection, we consider the case where G is a half-space or a bended half-space.
Let G = H = {x = (x′, xd);x

′ = (x1, . . . , xd−1) ∈ Rd−1, xd < 0} and define
C∞

0 (H) = {v
∣∣
H
; v ∈ C∞

0 (Rd)}.

Lemma 4.7. Let p, q ∈ P log
+ (H). If ∇u ∈ Eq(·)(H) satisfies

sup
0̸=v∈C∞

0 (H)

|⟨∇u,∇v⟩H |
∥∇v∥Ep′(·)(H)

<∞,

then ∇u ∈ Ep(·)(H) and

∥∇u∥Ep(·)(H) ≤ C2 sup
0̸=v∈C∞

0 (H)

|⟨∇u,∇v⟩H |
∥∇v∥Ep′(·)(H)

, (4.9)

where C2 = 2C1 and C1 is the constant of the inequality of (4.6).

In particular, if ∇u ∈ Ep(·)(H), then (4.9) holds, that is, H has the property Q1(p).

Proof. We reduce this case to the previous case by reflection argument. For any
function v : Rd → R, define v(x′, xd) = v(x′,−xd), and for any function u : H → R,
define

u∗(x′, xd) =

{
u(x′, xd) if xd ≤ 0,

u(x′,−xd) if xd > 0.

We note that if p, q ∈ P log
+ (H), then clearly p∗, q∗ ∈ P log

+ (Rd). Let ∇u ∈ Eq(·)(H),
that is, u ∈ L

q(·)
loc (H) and ∇u ∈ Lq(·)(H). Since

∂iu
∗(x) =

{
∂iu(x) for xd < 0,

(−1)δid(∂iu)(x
′,−xd) for xd > 0

for i = 1, . . . , d. Since

ρq∗(·),Rd(|∇u∗|) =

∫
Rd

|∇u∗|q∗(x)dx

=

∫
H

|∇u∗|q(x)dx+
∫
{xd>0}

|∇u(x′,−xd)|q
(x′,−xd)dx

= 2

∫
H

|∇u∗|q(x)dx <∞,

we can see that ∇u∗ ∈ Lq∗(·)(Rd). For any v ∈ D(Rd),

⟨∇u∗,∇v⟩Rd =

∫
{xd<0}

∇u(x) ·∇v(x)dx+

∫
{xd>0}

∇u∗(x) ·∇v(x)dx

=

∫
H

∇u(x) ·∇v(x)dx+

∫
H

∇u(x) ·∇v(x)dx.
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Hence ⟨∇u∗,∇v⟩Rd = ⟨∇u,∇(v + v)⟩H . Since ∥∇(v + v)∥Lp′(·)(H) ≤
2∥∇v∥L(p∗)′(·)(Rd) and v + v ∈ C∞

0 (H), we have

sup
0̸=v∈D(Rd)

|⟨∇u∗,∇v⟩Rd|
∥∇v∥Lp̃′(·)(Rd)

≤ 2 sup
v∈D(Rd)
v+v ̸=0

|⟨∇u,∇(v + v)⟩H |
∥∇(v + v)∥Lp′(·)(H)

≤ 2 sup
0̸=w∈C∞

0 (H)

|⟨∇u,∇w⟩H |
∥∇w∥Lp′(·)(H)

<∞.

By Lemma 4.5, ∇u∗ ∈ Ep∗(·)(Rd), so ∇u ∈ Ep(·)(H) and

∥∇u∥Ep(·)(H) ≤ ∥∇u∗∥Ep∗(·)(Rd) ≤ C1 sup
0̸=v∈D(Rd)

|⟨∇u∗,∇v⟩Rd|
∥∇v∥L(p∗)′(·)(Rd)

≤ 2C1 sup
0̸=w∈C∞

0 (H)

|⟨∇u,∇w⟩H |
∥∇w∥Lp′(·)(H)

.

Next we consider the case of a bended half-space. Let ω = ω(x′) be a C1-function
defined in Rd−1 such that ω(x′) = 0 for |x′| > R = R(ω) > 0 and define a bended half
space

Hω = {x = (x′, xd) ∈ Rd : xd < ω(x′)}.

Lemma 4.8. (i) Let G = Hω and p ∈ P log
+ (Hω). Then E∞(Hω) := {∇v

∣∣
Hω

; v ∈
C∞

0 (Hω)} is dense in Ep(·)(Hω).

(ii) Let G = Ω, where Ω is a bounded domain with a C1- boundary and p ∈ P log
+ (Ω).

Then E∞(Ω) := {∇v
∣∣
Ω
; v ∈ C∞

0 (Ω)} is dense in Ep(·)(Ω).

Proof. For each case, it follows from Proposition 2.4 that we can assume that p ∈
P log

+ (Rd). Let ∇v ∈ Ep(·)(G). Since ∂G is of class C1, there exists ∇ṽ ∈ Ep(·)(Rd)
such that ∇v = ∇ṽ in Hω (cf. [5, Theorem 8.5.2] and Miyajima [15, Theorem
6.17]). Then from Corollary 4.6, there exists {ϕj} ⊂ C∞

0 (Rd) such that ∥∇ϕj −
∇ṽ∥Lp(·)(Rd) → 0 as j → ∞. Thus ∇ϕj

∣∣
G
∈ E∞(G) and ∥∇ϕj − ∇v∥Lp(·)(G) ≤

∥∇ϕj −∇ṽ∥Lp(·)(Rd) → 0 as j → ∞.

Lemma 4.9. Let p, q ∈ P log
+ (Hω). Then there exists a constant K = K(p, q, d) >

0 such that if ∥∇′ω∥L∞(Rd−1) = ess supx′∈Rd−1|∇′ω(x′)| ≤ K, where ∇′ =

(∂x1 , . . . , ∂xd−1
), then there exists a constant C(s) = C(s,K, d) > 0 such that

∥∇u∥Ls(·)(Hω)
≤ C(s) sup

0̸=∇v∈E∞(Hω)

|⟨∇u,∇v⟩Hω |
∥∇v∥Ls′(·)(Hω)

for s(·) = p(·), p′(·), q(·), q′(·) and any ∇u ∈ Es(·)(Hω).
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Proof. Define a mapping y = y(x) from Rd to Rd by yi(x) = xi for i = 1, . . . , d − 1

and yd(x) = xd − ω(x′). Then the mapping is of class C1 and y maps Hω to H

bijectively with the Jacobian J(y(x)) ≡ 1. Let x = x(y) be the inverse mapping.
For s ∈ P log

+ (Hω). Denote (s)∗ by an even extension of s with respect to yd, and define
s∗(x) = (s)∗(y(x)), Then s∗ ∈ P log

+ (Rd). For ∇u ∈ Es(·)(Hω), define u(y) = u(x(y)).
We use the following notations ∂i = ∂/∂yi, ∂i = ∂/∂xi, ∇ = (∂1, . . . , ∂d),
∇ = (∂1, . . . , ∂d). Then ∂i = ∂i − ∂ω

∂xi
∂d for i = 1, . . . , d − 1 and ∂d = ∂d.

Hence ∇u ∈ Es(·)(Hω) if and only if ∇u ∈ Es(·)(H) and there exist constants
ei = ei(s(·), d) > 0 (i = 1, 2) independent of ω such that

∥∇v∥Ls′(·)(Hω)
≤ e1(1 + ∥∇′ω∥L∞(Rd−1))∥∇v∥Ls′(·)(H)

and

|⟨∇u,∇v⟩Hω |

=

∣∣∣∣∫
H

(∇′
u−∇′ω(∂du), ∂du) · (∇

′
v −∇′ω(∂dv), ∂dv)dy

∣∣∣∣
≥ |⟨∇u,∇v⟩H | − e2∥∇′ω∥L∞(Rd−1)(1 + ∥∇′ω∥L∞(Rd−1))∥∇u∥Ls(·)(H)∥∇v∥Ls′(·)(H).

Therefore, we have

sup
0̸=∇v∈E∞(Hω)

|⟨∇u,∇v⟩Hω |
∥∇v∥Ls′(·)(Hω)

≥
(
e1(1 + ∥∇x′ω∥L∞(Rd−1))

)−1
sup

0̸=∇v∈E∞(H)

|⟨∇u,∇v⟩H |
∥∇v∥Ls′(·)(H)

−e2e−1
1 ∥∇x′ω∥L∞(Rd−1)∥∇u∥Ls(·)(H).

Choose K ≤ 1 so that (e1(1 +K))−1C−1
2 − e−1

1 e2K > 0 and put

C(s(·))−1 =
{
(e1(1 +K))−1C−1

2 − e−1
1 eeK

}(
e1(1 +K))−1.

Then using Lemma 4.7, we have

sup
0̸=∇v∈E∞(Hω)

|⟨∇u,∇v⟩Hω |
∥∇v∥Ls′(·)(Hω)

≥ C(s(·))−1∥∇u∥Ls(·)(Hω)
.

This completes the proof.

4.4. End of the proof of Theorem 3.3

Lemma 4.10. Let Ω be a bounded domain with a C1-boundary and p ∈ P log
+ (Ω). If

∇u ∈ Ep(·)(Ω) satisfies ⟨∇u,∇v⟩Ω = 0 for all ∇v ∈ Ep′(·)(Ω), then ∇u = 0.
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Proof. Since p(x) ≥ p−, p′(x) ≤ (p−)′ and Ω is bounded, Ep(·)(Ω) ⊂ Ep−(Ω)

and E(p−)′(Ω) ⊂ Ep′(·)(Ω). Hence ∇u ∈ Ep−(Ω) satisfies ⟨∇u,∇v⟩Ω = 0 for all
∇v ∈ E(p−)′(Ω). Therefore, it follows from [18, Lemma 3.9] that ∇u = 0.

Proof of Theorem 3.3.

Let Ω be a bounded domain of Rd with a C1-boundary ∂Ω. For every x0 ∈ ∂Ω,
there exist ρ > 0 and σ ∈ C1(Bρ(x0)) such that ∇σ(x0) ̸= 0, Ω ∩ Bρ(x0) =

{x ∈ Bρ(x0);σ(x) < 0} and ∂Ω ∩ Bρ(x0) = {x ∈ Bρ(x0);σ(x) = 0}. Then
|∇σ(x0)|−1∇σ(x0) is the exterior unit normal vector at x0. Hence there exists an
orthogonal matrix S such that S

(
∇σ(x0))
|∇σ(x0)|

)
= ed =t (0, . . . , 0, 1). Define a map

y = y(x) = S(x − x0) from Bρ(x0) to B̂ρ(0) := {y ∈ Rd; |y| < ρ} and
σ̂(y) = σ(x0 + S−1y), Ωρ = Ω ∩ Bρ(x0), Ω̂ = SΩ and Ω̂ρ = Ω̂ ∩ B̂ρ(0). Then for
s ∈ P log

+ (Ω), ∇u ∈ Es(·)(Ωρ) and ∇v ∈ Es′(·)(Ωρ), we define ŝ(y) = s(x0 + S−1y),

û(y) = u(x0 + S−1y) and v̂(y) = v(x0 + S−1y). Then we see that ŝ ∈ P log
+ (Ω̂),

⟨∇û,∇v̂⟩Ω̂ρ
= ⟨∇u,∇v⟩Ωρ

and by definition of Ls(·)-norm, ∥∇û∥Lŝ(·)(Ω̂ρ)
(resp. ∥∇v̂∥Lŝ(·)(Ω̂ρ)

) and ∥∇u∥Ls(·)(Ωρ)

(resp. ∥∇u∥Ls(·)(Ωρ)
) are equivalent. Since ∇σ̂(0) = |∇σ(x0)|ed ̸= 0, using the

implicit function theorem, there exist 0 < ρ′ < ρ, h > 0 and ψ ∈ C1(B′
ρ′), where

B′
ρ′ = {y′ ∈ Rd−1; |y′| ≤ ρ′} such that

Z := Zρ′,h = {y = (y′, yd) ∈ Rd; |y′| < ρ′, |yd| < h} ⊂ B̂ρ(0),

(y′, ψ(y′)) ∈ Z if y′ ∈ B′
ρ′ , σ̂(y

′, ψ(y′)) = 0, ψ(0) = 0, (∇′ψ)(0) = 0, where
∇′ = (∂y1 , . . . , ∂yd−1

),

∂Ω̂ ∩ Z = {y ∈ Z; yd = ψ(y′)} and Ω̂ ∩ Z = {y ∈ Z; yd < ψ(y′)}.

Let η ∈ C∞
0 (Rd−1) such that η(y′) = 1 for |y′| ≤ 1 and η(y′) = 0 for |y′| ≥ 2. For

0 < λ < ρ′/2, if we define ηλ(y′) := η(λ−1y′) and

ωλ(y
′) =

{
ηλ(y

′)ψ(y′) for |y′| < ρ′,

0 otherwise ,

then by ψ(0) = 0,∇ψ(0) = 0 and the mean value theeorem, we have

sup{|∇′ωλ(y
′)|; y′ ∈ Rd−1} → 0 as λ→ +0.

Thereby if we choose K > 0 as in Lemma 4.9 and λ > 0 is small enough, then
∥∇′ωλ(y

′)∥L∞(Rd−1) ≤ K. Choose r = r(x0) > 0 such that 0 < r < ρ′ and
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Br(x0) ⊂ Z and choose ϕ ∈ C∞
0 (Br(x0)) such that 0 ≤ ϕ ≤ 1, ϕ(x) ≡ 1 on

B′(x0) = Br/2(x0). If ∇u ∈ Ep(·)(Ω), then ∇(ϕu) ∈ Ep(·)(Ω). Here we extend
ϕu outside Ω ∩ Br(x0) by zero, we may assume that ϕ̂u is defined in Hωλ

. By Lemma
4.10, there exists C(p(·)) = C(p(·), K, d) > 0 such that

∥∇(ϕu)∥Ep(·)(Br(x0)∩Ω) ≤ C(p(·)) sup
0̸=∇v∈E∞(Hωλ

)

|⟨∇(ϕ̂u),∇v̂⟩Hωλ
|

∥∇v̂∥Ep′(·)(Hωλ
)
.

Since ∂Ω is compact and of class C1, there exist finitely many xi ∈ ∂Ω and
ri = ri(xi) > 0 (i = 1, . . . ,M) such that B′

i := Bri/2(xi) ⊂ Bi := Bri(xi) and
∂Ω ⊂ ∪Mi=1B

′
i. If we choose ϕi ∈ C∞

0 (Bi) such that 0 ≤ ϕi ≤ 1 and ϕi ≡ 1 on B′
i, then

∥∇(ϕiu)∥Ep(·)(Bi∩Ω) ≤ Ci sup
0̸=∇v̂∈E∞(Hωλi

)

|⟨∇(ϕ̂iu),∇v̂⟩Hωλi
|

∥∇v̂∥Ep′(·)(Hωλi

)
. (4.10)

Since Ω is bounded, Ω1 = Ω \ (∪Mi=1B
′
i) is compact. Hence r := dist (Ω1, ∂Ω) > 0, so

there exist finitely many xi ∈ Ω (i =M + 1, . . . , N) such that Ω1 ⊂ ∪Ni=M+1B
′
i, where

B′
i = Br/2(xi) and Bi = Br(xi). Let ϕi ∈ C∞

0 (Bi) such that 0 ≤ ϕi ≤ 1, ϕi ≡ 1 on B′
i.

By Corollary 4.6, for every i =M + 1, . . . , N ,

∥∇(ϕiu)∥Ep(·)(Bi)
≤ Ci sup

0̸=v∈D(Rd)

|⟨∇(ϕiu),∇v⟩Rd|
∥∇v∥Ep′(·)(Rd)

. (4.11)

Now suppose that the statement of Theorem 3.3 is not true. Then there exists a sequence
{∇uk} ⊂ Ep(·)(Ω) such that ∥∇uk∥Ep(·)(Ω) = 1 and

εk := sup
0̸=∇v∈Ep′(·)(Ω)

|⟨∇uk,∇v⟩Ω|
∥∇v∥Ep′(·)(Ω)

→ 0 as k → ∞. (4.12)

Without loss of generality, we may assume that
∫
Ω
ukdx = 0. Since Ep(·)(Ω) is a

reflexive Banach space, there exist ∇u ∈ Ep(·)(Ω) and a subsequence of {uk} (still
denoted by {uk}) such that ∇uk → ∇u weakly in Ep(·)(Ω). For any ∇v ∈ Ep′(·)(Ω),
using (4.12), we have

⟨∇u,∇v⟩Ω = lim
k→∞

⟨∇uk,∇v⟩Ω = 0.

By Lemma 4.10, we have
∇u = 0. (4.13)

From the Poincaré inequality (Theorem 2.6 (ii)),

∥uk∥Lp(·)(Ω) ≤ C(p(·), d,Ω)∥∇uk∥Lp(·)(Ω).
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Since p(x) < p∗(x) for all x ∈ Ω, the embedding W 1,p(·)(Ω) ↪→ Lp(·)(Ω) is compact
from Proposition 2.3. Hence choosing again a subsequence, we may assume that
uk → u strongly in Lp(·)(Ω). Since

∫
Ω
ukdx = 0, we see that

∫
Ω
udx = 0. From (4.13),

we have u = 0, so uk → 0 strongly in Lp(·)(Ω). Fix any i = 1, . . . ,M,M + 1, . . . , N .
If i = 1, . . . ,M , from (4.10) C−1

i ∥∇(ϕiuk)∥Lp(·)(Bi∩Ω) ≤ dik, where

dik = sup
0̸=∇v̂∈E∞(Hωλi

)

|⟨∇(ϕ̂iu),∇v̂⟩Hωλi
|

∥∇v̂∥Ep′(·)(Hωλi

)
.

If i =M + 1, . . . , N , from (4.11), C−1
i ∥∇(ϕiuk)∥Lp(·)(Bi)

≤ dik, where

dik = sup
0̸=v∈D(Rd)

|⟨∇(ϕiu),∇v⟩Rd|
∥∇v∥Ep′(·)(Rd)

.

For each k ∈ N, there exist ∇v̂k ∈ Ep(·)(Hωλi
) such that ∥∇v̂k∥Lp′(·)(Hωλi

) = 1 and

0 ≤ dik − ⟨∇(ϕ̂iuk),∇v̂k⟩Hωλi
≤ 1

k
for i = 1, . . . ,M,

and ∇vk ∈ Ep(·)(Rd) such that ∥∇vk∥Lp′(·)(Rd) = 1 and

0 ≤ dik − ⟨∇(ϕiuk),∇vk⟩Rd ≤ 1

k
for i =M + 1, . . . , N

We may assume that
∫
Hωλi

v̂kdy = 0 for i = 1, . . . ,M and
∫
Bi
vkdx = 0 for

i =M + 1, . . . , N . By the Poincaré inequality, we conclude

∥v̂k∥W 1,p′(·)(Hωλi
) ≤ C for i = 1, . . . ,M and ∥vk∥W 1,p′(·)(Bi)

≤ C for i =M +1, . . . , N

for some constant C > 0. Passing to a subsequence, we can assume that there exist
∇v̂i ∈ E p̂′(·)(Hωλi

) and ∇vi ∈ Ep′(·)(Rd) such that

∇v̂k → ∇v̂i weakly in E p̂′(·)(Hωλi
) and v̂k → v̂i strongly in Lp

′(·)(Bi ∩Hωλi
)

for i = 1, . . . ,M and

∇vk → ∇vi weakly in Ep′(·)(Rd) and vk → vi strongly in Lp
′(·)(Bi) for i =M+1, . . . , N.

For the brevity of notations, we write G = Hωλi
for i = 1, . . . ,M or G = Rd for

i =M + 1, . . . , N and v̂k, v̂i by vk, vi. Then we have

dik ≤ 1

k
+ ⟨∇uk,∇(ϕivk)⟩G + ⟨uk∇ϕi,∇vk⟩G − ⟨∇uk, vk∇ϕi⟩G

≤ 1

k
+ εk∥∇(ϕivk)∥Lp′(·)(G) + |⟨uk∇ϕi,∇vk⟩G|+ |⟨∇uk, vk∇ϕi⟩G|.
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Since supp∇ϕi ⊂ Bi, uk → 0 strongly in Lp(·)(Bi ∩ G) and ∇vk → ∇vi weakly
in Lp′(·)(Bi ∩ G), we have |⟨uk∇ϕi,∇vk⟩G| → 0 as k → ∞. Similarly, we have
|⟨uk, vk∇ϕi⟩G| → 0 as k → ∞. Since εk → 0 as k → ∞ and ∥∇(ϕivk)∥Lp′(·)(G) ≤ C,
we have dk → 0 as k → ∞, so ∥∇(ϕiuk)∥Lp(·)(Bi∩Ω) → 0 as k → ∞ for i = 1, . . . , N .
Since Ω ⊂ ∪Ni=1B

′
i, we have

∥∇uk∥Ep(·)(Ω) ≤
N∑
i=1

∥∇(ϕiuk)∥Lp(·)(B′
i∩Ω) ≤

N∑
i=1

∥∇(ϕiuk)∥Lp(·)(Bi∩Ω) → 0

as k → ∞. This is a contradiction. This completes the proof of Theorem 3.3.

5. POISSON EQUATION WITH THE NEUMANN CONDITIONS

In this section, as an application of Corollary 3.4 we consider the following Poisson
equation with the Neumann boundary condition in a bounded domain Ω of Rd with a
C1-boundary ∂Ω. {

−∆u = f in Ω,
∂u
∂n

= g on ∂Ω.
(5.1)

First we consider the normal trace of a vector field.

Lemma 5.1. Let Ω be a bounded domain of Rd with a C1-boundary ∂Ω and p ∈
P log

+ (Ω). If v ∈ Lp(·)(Ω) satisfies div v ∈ (W 1,p′(·)(Ω))′, then we can define v · n ∈
(Tr(W 1,p′(·)(Ω)))′ by

⟨v·n, φ⟩∂Ω =

∫
Ω

v·∇φdx+⟨div v, φ⟩(W 1,p′(·)(Ω))′,W 1,p′(·)(Ω) for φ ∈ W 1,p′(·)(Ω). (5.2)

Proof. The definition (5.2) is well defined. Indeed, if ψ ∈ W 1,p′(·)(Ω) satisfies ψ = φ

on ∂Ω, then χ = ψ − φ ∈ W
1,p′(·)
0 (Ω). Since D(Ω) is dense in W

1,p′(·)
0 (Ω) from

Proposition 2.5, there exists a sequence {χj} ⊂ D(Ω) such that χj → χ in W 1,p′(·)
0 (Ω).

We see that ∫
Ω

v ·∇χdx+ ⟨div v, χ⟩(W 1,p′(·)(Ω))′,W 1,p′(·)(Ω)

= lim
j→∞

(∫
Ω

v ·∇χjdx+ ⟨div v, χj⟩(W 1,p′(·)(Ω))′,W 1,p′(·)(Ω)

)
= lim

j→∞

(∫
Ω

v ·∇χjdx+ ⟨div v, χj⟩D′(Ω),D(Ω)

)
= lim

j→∞

(∫
Ω

v ·∇χjdx−
∫
Ω

v ·∇χjdx

)
= 0.



An extension of a variational inequality in the Simader-Sohr theorem 265

Hence∫
Ω

v ·∇φdx+ ⟨div v, φ⟩(W 1,p′(·)(Ω))′,W 1,p′(·)(Ω)

=

∫
Ω

v ·∇ψdx+ ⟨div v, ψ⟩(W 1,p′(·)(Ω))′,W 1,p′(·)(Ω).

Let φ ∈ Tr(W 1,p′(·)(Ω)). For any ψ ∈ W 1,p′(·)(Ω) with ψ = φ on ∂Ω, using the
generalized Hölder inequality, we have

|⟨v · n, φ⟩∂Ω| ≤
∣∣∣∣∫

Ω

v ·∇ψdx

∣∣∣∣+ |⟨div v, ψ⟩(W 1,p′(·)(Ω))′,W 1,p′(·)(Ω)|

≤ 2∥v∥Lp(·)(Ω)∥∇ψ∥Lp′(·)(Ω) + ∥div v∥(W 1,p′(·)(Ω))′∥ψ∥W 1,p′(·)(Ω)

≤ 2(∥v∥Lp(·)(Ω) + ∥div v∥(W 1,p′(·)(Ω))′)∥ψ∥W 1,p′(·)(Ω).

From the definition of ∥φ∥Tr(W 1,p(·)(Ω)), we see that v · n ∈ (Tr(W 1,p′(·)(Ω)))′ and

∥v · n∥(Tr(W 1,p′(·)(Ω)))′ ≤ 2(∥v∥Lp(·)(Ω) + ∥div v∥(W 1,p′(·)(Ω))′).

For the brevity of notations, we write

⟨f, φ⟩Ω = ⟨f, φ⟩(W 1,p′(·)(Ω))′,W 1,p′(·)(Ω) for f ∈ (W 1,p′(·)(Ω))′ and φ ∈ W 1,p′(·)(Ω),

⟨g, φ⟩∂Ω = ⟨g, φ⟩(Tr(W 1,p′(·)(Ω)))′,Tr(W 1,p′(·)(Ω)) for g ∈ (Tr(W 1,p′(·)(Ω)))′

and φ ∈ Tr(W 1,p′(·)(Ω)).

We are in a position to state a main theorem in this section.

Theorem 5.2. Let Ω be a bounded domain with a C1-boundary ∂Ω and p ∈ P log
+ (Ω).

Assume that f ∈ (W 1,p′(·)(Ω))′ and g ∈ (Tr(W 1,p′(·)(Ω)))′ satisfying the compatibility
condition

⟨f, 1⟩Ω + ⟨g, 1⟩∂Ω = 0. (5.3)

Then problem (5.1) has a unique weak solution [u] ∈ W 1,p(·)(Ω)/R, that is,∫
Ω

∇u ·∇φdx = ⟨f, φ⟩Ω + ⟨g, φ⟩∂Ω for all [φ] ∈ W 1,p′(·)(Ω)/R. (5.4)

We note that the right-hand side of (5.4) is independent of the choice of representative
of [φ] according to the compatibility condition (5.3).

Furthermore, there exists a constant C = C(p(·), d,Ω) > 0 such that

∥[u]∥W 1,p(·)(Ω) ≤ C(∥f∥(W 1,p′(·)(Ω))′ + ∥g∥(Tr(W 1,p′(·)(Ω)))′). (5.5)
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For the proof of Theorem 5.2, we apply Corollary 3.4 and the following proposition.

Proposition 5.3. LetX andM be two reflexive Banach spaces, andX ′ andM ′ be their
dual spaces, respectively. Assume that a : X ×M → R is continuous bilinear form,
and let A ∈ L(X,M ′) be the continuous linear operator from X to M ′ defined by

a(v, w) = ⟨Av,w⟩M ′,M for v ∈ X,w ∈M,

and put V = kerA. Then the following statements are equivalent.

(i) There exists a constant β > 0 such that

inf
0̸=w∈M

sup
0̸=v∈X

a(v, w)

∥v∥X∥w∥M
≥ β.

(ii) The operator A : X/V → M ′ is a topological isomorphism and 1/β is the
continuity constant of A−1.

For the proof, see Amrouche and Seloula [1, Theorem 4.2].

Proof of Theorem 5.2.

Define a linear functional l on W 1,p′(·)(Ω)/R by

l([φ]) = ⟨f, φ⟩Ω + ⟨g, φ⟩∂Ω for [φ] ∈ W 1,p′(·)(Ω)/R. (5.6)

We note that from the compatibility condition (5.3), the right-hand side of (5.6) is
independent of the choice of representative of [φ]. For any ψ ∈ [φ],

|l([φ])| = |l([ψ])| ≤ ∥f∥(W 1,p′(·)(Ω))′∥ψ∥W 1,p′(·)(Ω) + ∥g∥(Tr(W 1,p′(·)(Ω)))′∥ψ∥Tr(W 1,p′(·)(Ω))

≤ (∥f∥(W 1,p′(·)(Ω))′ + ∥g∥(Tr(W 1,p′(·)(Ω)))′)∥ψ∥W 1,p′(·)(Ω).

Therefore, we can see that l ∈ (W 1,p′(·)(Ω)/R)′ and

∥l∥(W 1,p′(·)(Ω)/R)′ ≤ ∥f∥(W 1,p′(·)(Ω))′ + ∥g∥(Tr(W 1,p′(·)(Ω)))′ . (5.7)

Since p ∈ P log
+ (Ω), we can see that W 1,p(·)(Ω)/R is a reflexive Banach space

and according to the Poincaré inequality (Theorem 2.6 (ii)), ∥[u]∥W 1,p(·)(Ω)/R ≃
∥∇u∥Lp(·)(Ω).

We apply Proposition 5.3 with X = W 1,p(·)(Ω)/R, M = W 1,p′(·)(Ω)/R and

a([u], [v]) =

∫
Ω

∇u ·∇vdx for [u] ∈ X, [v] ∈M.
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Using the generalized Hölder inequality, there exists a constant C > 0 such that

|a([u], [v])| =
∣∣∣∣∫

Ω

∇u ·∇vdx

∣∣∣∣ ≤ 2∥∇u∥Lp(·)(Ω)∥∇v∥Lp′(·)(Ω) ≤ C∥[u]∥X∥[v]∥M .

Thus a is a continuous bilinear form on X ×M . The operator A : X →M ′ is defined

⟨A([u]), [v])⟩M ′,M = a([u], [v]) =

∫
Ω

∇u ·∇vdx for [u] ∈ X, [v] ∈M.

If [u] ∈ KerA, then 0 =
∫
Ω
∇u · ∇vdx for all [v] ∈ M . By Corollary 3.4, we have

∇u = 0 in Ω, so u = const., that is, [u] = 0. Hence KerA = {0}. Proposition
5.3 (i) follows from Corollary 3.4. Thereby, A : X → M ′ is an isomorphism and
∥A−1l∥X ≤ C1∥l∥M ′ for all l ∈ M ′, where C1 is the constant of (3.3). Thus for the
linear functional l in (5.6), there exists a unique [u] ∈ X = W 1,p(·)(Ω)/R such that
A([u]) = l and ∥[u]∥X ≤ C1∥l∥M ′ , that is, (5.4) holds and from (5.7), the estimate (5.5)
holds.

Taking φ ∈ D(Ω) as a test function of (5.4), we have

⟨f, φ⟩Ω =

∫
Ω

∇u ·∇φdx = ⟨−∆u, φ⟩D′(Ω),D(Ω).

So we have −∆u = f in (W 1,p′(·)(Ω))′. Since ∇u ∈ Lp(·)(Ω) and −div∇u = −∆u =

f ∈ (W 1,p′(·)(Ω)′, for any φ ∈ W 1,p′(·)(Ω), we have

⟨n ·∇u, φ⟩∂Ω =

∫
Ω

∇u ·∇φdx+ ⟨div∇u, φ⟩(W 1,p′(·)(Ω))′,W 1,p′(·)(Ω)

=

∫
Ω

∇u ·∇φdx− ⟨f, φ⟩Ω = ⟨g, φ⟩∂Ω.

Hence n · ∇u = ∂u
∂n

= g in (Tr(W 1,p′(·)(Ω)))′. This completes the proof of Theorem
5.2.

6. THE HELMHOLTZ DECOMPOSITION

As the next application of Corollary 3.4, we consider the Helmholz decomposition. Let
Ω be a bounded domain of Rd with a C1-boundary ∂Ω and let p ∈ P log

+ (Ω). Then
Ep(·)(Ω) = {∇v; v ∈ W 1,p(·)(Ω)} and define

Dσ(Ω) = {φ ∈ D(Ω); divφ = 0 in Ω},
Lp(·)
σ (Ω) = the closure of Dσ(Ω) in Lp(·)(Ω).
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Lemma 6.1. If u ∈ Lp(·)(Ω) satisfies

⟨u,φ⟩ :=
∫
Ω

u ·φdx = 0 for all φ ∈ Dσ(Ω),

then there exists π ∈ W 1,p(·)(Ω) such that u = ∇π in Ω.

Proof. If u ∈ Lp(·)(Ω) satisfies

⟨u,φ⟩ =
∫
Ω

u ·φdx = 0 for all φ ∈ Dσ(Ω),

then clearly u ∈ W−1,p(·)(Ω) and by the simplified version of the de Rham theorem (cf.
Aramaki [2], [3]), there exists π ∈ Lp(·)(Ω) such that u = ∇π in W−1,p(·)(Ω). Since
∇π = u ∈ Lp(·)(Ω), we see that π ∈ W 1,p(·)(Ω).

We state the following main theorem in this section.

Theorem 6.2 (The Helmholtz decomposition). Let Ω be a bounded domain of Rd with
a C1-boundary ∂Ω and let p ∈ P log

+ (Ω). Then for every f ∈ Lp(·)(Ω), there exist
uniquely u ∈ Lp(·)

σ (Ω) and ∇π ∈ Ep(·)(Ω) such that

f = u+∇π,

that is, Lp(·)(Ω) = Lp(·)
σ (Ω)⊕Ep(·)(Ω). Furthermore,

∥∇π∥Lp(·)(Ω) ≤ C1∥f∥Lp(·)(Ω) and ∥u∥Lp(·)(Ω) ≤ (C1 + 1)∥f∥Lp(·)(Ω),

where C1 is the constant in Corollary 3.4.

Proof. Step 1. If u ∈ Lp(·)
σ (Ω), then ⟨u,∇ψ⟩Lp(·)(Ω),Lp′(·)(Ω) = 0 for all ∇ψ ∈

Ep′(·)(Ω).

Indeed, if u ∈ Lp(·)
σ (Ω), then there exists a sequence {uj}∞j=1 ⊂ Dσ(Ω) such that

∥uj − u∥Lp(·)(Ω) → 0 as j → ∞. Then for all ∇ψ ∈ Ep′(·)(Ω),

⟨uj,∇ψ⟩ = −⟨divuj, ψ⟩ = 0.

Hence
⟨u,∇ψ⟩ = lim

j→∞
⟨uj,∇ψ⟩ = 0 for all ∇ψ ∈ Ep′(·)(Ω).

Step 2. Lp(·)
σ (Ω) ∩Ep(·)(Ω) = {0}.

Indeed, let u = ∇v ∈ Lp(·)
σ (Ω) ∩Ep(·)(Ω). By Step 1, we can see that 0 = ⟨u,∇ψ⟩ =

⟨∇v,∇ψ⟩ for all ∇ψ ∈ Ep′(·)(Ω). By Corollary 3.4, ∇v = 0, so u = 0.
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Step 3. Lp(·)
σ (Ω)⊕Ep(·)(Ω) is a closed subspace of Lp(·)(Ω).

First we note that Lp(·)
σ (Ω) and Ep(·)(Ω) are closed subspaces of Lp(·)(Ω). Suppose that

f j = uj +∇vj , where uj ∈ Lp(·)
σ (Ω) and ∇vj ∈ Ep(·)(Ω), and f j → f in Lp(·)(Ω) as

j → ∞. By Corollary 3.4 and Step 1,

∥∇(vj − vk)∥Lp(·)(Ω) ≤ C1 sup
0̸=∇ψ∈Ep′(·)(Ω)

|⟨∇(vj − vk),∇ψ⟩|
∥∇ψ∥Lp′(·)(Ω)

= C1 sup
0̸=∇ψ∈Ep′(·)(Ω)

|⟨f j − fk,∇ψ⟩|
∥∇ψ∥Lp′(·)(Ω)

≤ C1∥f j − fk∥Lp(·)(Ω) → 0 as j, k → ∞.

Hence {∇vj} is a Cauchy sequence in Ep(·)(Ω) which is a closed subspace of Lp(·)(Ω).
Therefore, there exists ∇v ∈ Ep(·)(Ω) such that ∇vj → ∇v in Ep(·)(Ω). Thus
uj = f j −∇vj → u := f −∇v in Lp(·)(Ω). Since Lp(·)

σ (Ω) is a closed subspace of
Lp(·)(Ω), we see that u ∈ Lp(·)

σ (Ω) and f = u+∇v ∈ Lp(·)
σ (Ω)⊕Ep(·)(Ω).

Step 4. Lp(·)
σ (Ω)⊕Ep(·)(Ω) = Lp(·)(Ω).

Suppose that Lp(·)
σ (Ω) ⊕ Ep(·)(Ω) ⊊ Lp(·)(Ω). By the Hahn-Banach theorem, there

exists F ′ ∈ (Lp(·)(Ω))′ such that F ′ ̸= 0 and F ′∣∣
L

p(·)
σ (Ω)⊕Ep(·)(Ω)

= 0. Since we can

identify (Lp(·)(Ω))′ with Lp′(·)(Ω), there exists u ∈ Lp′(·)(Ω) such that F ′(g) = ⟨u, g⟩Ω
for all g ∈ Lp(·)(Ω) and ∥u∥Lp′(·)(Ω) = ∥F ′∥(Lp(·)(Ω))′ > 0. For any ϕ ∈ Dσ(Ω) ⊂
Lp(·)
σ (Ω), F ′(ϕ) = 0 = ⟨u,ϕ⟩. By Lemma 6.1, there exists π ∈ W 1,p′(·)(Ω) such that

u = ∇π. Since

⟨∇π,∇ψ⟩ = ⟨u,∇ψ⟩ = F ′(∇ψ⟩ = 0 for all ∇ψ ∈ Ep(·)(Ω),

it follows from Corollary 3.4 that ∇π = 0, so u = 0. This is a contradiction.

Step 5. Estimate.

Let f = u +∇π, f ∈ Lp(·)(Ω),u ∈ Lp(·)
σ (Ω),∇π ∈ Ep(·)(Ω). By Corollary 3.4 and

Step 1,

∥∇π∥Lp(·)(Ω) ≤ C1 sup
0̸=∇ψ∈Ep′(·)(Ω)

|⟨∇π,∇ψ⟩|
∥∇ψ∥Lp′(·)(Ω)

= C1 sup
0̸=∇ψ∈Ep′(·)(Ω)

|⟨f ,∇ψ⟩|
∥∇ψ∥Lp′(Ω)

≤ C1∥f∥Lp(·)(Ω)

and

∥u∥Lp(·)(Ω) = ∥(u+∇π)−∇π∥Lp(·)(Ω) = ∥f −∇π∥Lp(·)(Ω) ≤ (C1 + 1)∥f∥Lp(·)(Ω).
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We have the following characterization of Lp(·)
σ (Ω).

Corollary 6.3. We have Lp(·)
σ (Ω) = W p(·)(Ω), where

W p(·)(Ω) = {v ∈ Lp(·)(Ω); ⟨v,∇ψ⟩ = 0 for all ∇ψ ∈ Ep′(·)(Ω)}.

Proof. By Step 1 in the proof of Theorem 6.2, we see that Lp(·)
σ (Ω) ⊂ W p(·)(Ω).

Let u ∈ W p(·)(Ω). Then by Theorem 6.2, we can write

u = v +∇π, where v ∈ Lp(·)
σ (Ω),∇π ∈ Ep(·)(Ω).

Using again Step 1 in the proof of Theorem 6.2, we have

⟨∇π,∇ψ⟩ = ⟨u,∇ψ⟩ − ⟨v,∇ψ⟩ = 0 for all ∇ψ ∈ Ep′(·)(Ω).

By Corollary 3.4, ∇π = 0, so u = v ∈ Lp(·)
σ (Ω). This means that W p(·)(Ω) ⊂

Lp(·)
σ (Ω).
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