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Abstract 
In this paper, modified and accurate numerical technique based on Bernoulli 
wavelets operational matrix for the solution of delay differential equations of 
fractional order is presented. The fundamental definitions of Bernoulli 
wavelets and their properties are utilized to construct the operational matrix 
of fractional integration which transforms the given problem in to system of 
algebraic equations with unknown coefficients. The numbers of examples are 
included to exhibit the efficiency, accuracy and wide range of applicability of 
the present scheme. 
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1. INTRODUCTION 

Recently, fractional calculus is considered as an important and developing concept.It 
may be also considered as an old topic since it was introduced in 1695 for the 

derivative of order 1

2

 
 
 

. The mathematicians L’Hospital and Leibnitz have worked 

on fractional calculus in the beginning. The equations containing fractional order are 
mainly occurring in engineering branches, physics, medicine, economics, signal 
processing, solid mechanics, fluid dynamics traffic model, etc. Eventually, the prime 
importance is given to the fractional equations occurred from various models. 
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In the available literature, many authors have been worked on analytic solutions for 
the differential equations of fractional order [1, 2].But it is also noted that obtaining 
analytic solution is difficult and for most of the fractional differential equations, 
analytic solutions are not known. It is because of this, developing numerical methods 
for these equations is essential.  

Delay differential equation is the extended concept of ordinary differential equations 
and it consists of the systems whose present course of actions depends on their 
previous data. From last two decades, many researchers devoted to the numerical 
solution of the delay differential equations. Some of them are Chebyshev polynomials 
[3], Laguerre polynomials [4], Hermite polynomials [5], Adomian decomposition 
method [6], Haar wavelets [7], variational iteration method [8], etc. 

Fractional delay differential equations are the habitual class of delay differential 
equations. We found only few numerical methods for solving these equations which 
contain fractional order. Some of the available numerical techniques are based on 
Hermite wavelets [9], Bernoulli wavelets [10], Taylor wavelets [11] and Legendre 
functions [12].In this article, we use the Bernoulli wavelets for the numerical solution 
of fractional order delay differential equations of various kinds in modified form as 
compare to [10]. 

In the last few years, wavelet theory has received more importance in many fields like 
signal processing, numerical analysis and optimal control because of its powerful 
characteristic properties. In this present work, we have used Bernoulli wavelets for the 
numerical solution delay differential equations of fractional order. 

In this paper, we consider the fractional delay differential equations of the form: 

       , ,D y t f t y t y t      ,  0 1, 0&0 1t                     (1) 

 with  
   

   

0 0,...,

0

j

jy j

y t t t

 



      


 

                         (2) 

Where, y is unknown function, &f   are known functions.  ,  and the initial 
values 

j are given. Here    is the smallest integer which is larger than or equal to

 . In this work, fractional derivative of the unknown function  D y t   in the given 
problem is approximated by linear combinations of the Bernoulli wavelets and then 
truncating them at suitable levels. Finally, the problem is converted in to a system of 
algebraic equations by using the Bernoulli wavelets operational matrix of the 
fractional integration. 

The paper is organized as follows: In section 2, the basic definitions of fractional 
calculus, Bernoulli wavelets and function approximations are given. Operational 
matrix for the fractional order integration using Bernoulli wavelets introduced in 
section 3. In section 4, the numerical method of solution is described. Error analysis 
of the approximate solution is given in section 5. The numbers of standard numerical 
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examples are included to demonstrate the accuracy of the proposed technique. Lastly, 
conclusion and scope is presented in section 7. 

 

2.  PRELIMINARIES OF FRACTIONAL CALCULUS AND BERNOULLI 

WAVELETS 

In this part, we briefly recall the basic definitions of fractional calculus and 
prelimaries of Bernoulli wavelets. 

2.1  Fractional Calculus 

Definition : The fractional integral operator of order 0m  is defined in Riemann-
Liouville sense as [12] 

  

 

 

 

10

1
, 0, 0

, 0

x

mm s

v s
ds m t

m x sI V x

v x m




 

  






                   

                     (3) 

The following properties hold good for the Riemann-Liouville fractional integral  

         m m mi I Av x Bv x AI v x BI v x     , where A and B are the constants. 

 
1

, 1
1

m mii I x x
m

 








  
 

. 

Definition :The frcational derivative operator of order m in the Caputo’s sense id 

defined as 

  
   

 
10

1
, 1 ,

k
x

m

m ks

v s
D v x ds k m k k N

k m x s
 

    
 


            

       (4) 

The following properties hold good for the Caputo derivative 

             m mi D I v x v x  

                 
1

0

0
!

ik
im m

i

x
ii I D v x v x v

i





 
 

2.2 Bernoulli wavelets 

Wavelets constitute a family of functions constructed by the dilation variable a and 
translation variable b of a signal function is known as ‘mother wavelet’. If dilation 

parameter and translation parameter vary continuously, then the family of continuous 
wavelets given by the following equation 

  
1

2
,a b

t b
t a

a
 

  
  

 
 where, ,a R b R   and 0a      (5) 
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When these parameters &a b restrict to the discrete values like  
0

k
a a


  , 

 
0 0

k
b nb a


  with 

0 01, 0a b  , &n k are positive constants. Then the family of 
discrete wavelets are given by 

  2
, 0 0 0

k
k

k n t a a t nb       

where the wavelet basis for  2L R is formed  ,k n t . 

The Bernoulli polynomials  p x having order p and defined in 0 1x   as [10] 

  
0

m
i

p p i

i

p
x x

i
  



 
  

 
                    (6) 

with  0 , 0,1,2,3,...,i i i p   are the Bernoulli numbers. The starting few 
polynomials are as follows: 

        
2

2 3

0 1 2 3

1 1 3
1, , ,

2 6 2 2

x x
x x x x x x x x             and so on. 

It is also noted that Bernoulli polynomials hold the following property 

      
 

1
1

0

! !
1 , 1, 1

!

q

q p p q

x

p q
x x dx p q

p q
  







   
                   (7) 

If  0,1x then the Bernoulli wavelets denoted by    ,
ˆ, , ,n m x k n m x   are defined 

as 

    2
1 1

,

ˆ2 2 ,

0, otherwise

k

k

p
n m

x q a x b
x



   

 


               (8) 

where 
1

ˆ 1

2k

q
a


  and 

1

ˆ 1

2k

q
b


  

with         
   

 

21

2

1, 0

1
, 0

1 !

2 !

pp

p

p

x p
p

p











 





            (9) 

where the parameters , ,k p q are varies as : ˆ2,3,4,...,k q
11,2,3,...,2 &kq   

0,1,2,3,..., 1p M   . Here p  is the Bernoulli polynomial order , M is the  fixed 
positive integer. 
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When 2 ka   and ˆ2 kb q   then the coefficient parameter    
 

21

2

1

1 !

2 !

p

p

p

p



 holds the 

normality property. 

 

2.3 Function approximation 

Let f be a function such that 2f L  defined in 0 1x  . By using Bernoulli wavelets 
f can be expressed as                                   

    , ,1 0 n m n mn m
f x c x

 

 
                             (10) 

It can also written by truncated series of the function f  as 

      
12 1

, ,1 0

k M T

n m n mn m
f x c x c x 

 

 
                  (11) 

where 0,1,2,3,..., 1m M   and    11,2,3,...,2kn   

The above equation () can be re-written as  

      , ,1

m T

i p i pi
f x c x c x 


                        (12) 

Where C is the coefficient matrix and is                 

 1 1 11,0 1,1 1, 1 2,0 2,1 2, 1 2 ,0 2 ,1 2 , 1
, ,...., , , ,...., , , ,....,k k k

T

M M M
C c c c c c c c c c    

 
 

    (13) 

Also,  

                   1 1 11,0 1,1 1, 1 2,0 2,1 2, 1 2 ,0 2 ,1 2 , 1
, ,..., , , ,..., , , ,...,k k k

T

M M M
x x x x x x x x x x             

 
 

  (14) 

The coefficient vector C can be determined as follows: 

        
1

0
.p p p

x
f f x x f x x dx 


    

From the equation (12), we have 

    
1

, , ,1 10

n m

p i p i p i p i pi ix
f c x x dx c k 

 
   where 1,2,3,...,p m  

with     
1

,
0

ˆ, 1,2,3,...,i p i p
x

k x x dx p m 


   

Therefore, 1, 2, ,, ,..., 1,2,3,...,
T

T

p p p m pf c k k k p m     

      
T T

F C k 
                                               (15) 

where          1,0 1,1 1,2 1,, , ,...,
TT

mF f f f f     and 
,i pk k     
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where k is a matrix of order m n  and is  

        
1

0
, . T

x
k x x x x dx   


    

Thus, the coefficient vector Tc in (11) is given by the following equation as 

    
1TTc F k


                                                    (16) 
 

 

3. FRACTIONAL INTEGRATION OPERATIONAL MATRIX  

We obtain a operational matrix of fractional integration by using Bernoulli 
wavelets.The following property and theorem are helpful in constructing the 
opeartional matrix. 

Property: Any component  x of 

                   1 1 11,0 1,1 1, 1 2,0 2,1 2, 1 2 ,0 2 ,1 2 , 1
, ,..., , , ,..., , , ,...,k k k

T

M M M
x x x x x x x x x x             

 
 

can be expressed by using Bernoulli polynomials as 

 

 

  

1 1

1 1

1
,

2 2
2

,

1
,

2 2

, 0

2
2 2 1 , 0

k k

k k

q q
k

n m k

q q

x p

x
x q p




 

 

 

 
 
 

 
 
 

 


 
  

             

                      (17) 

where 0,1,2,3,..., 1m M   ,  
11,2,3,...,2kn  , 

 
1 1

1
,

2 2k k

q q
x

 

 
 
 

denotes the characteristic  

function and is given by  
1 1

1 1

1
,

2 2

1
1,

2 2

0, otherwisek k

k k

q q

q q
x

x
 

 

 
 
 


 

 



 

Theorem: Let  ,n m x be the thk term of the equation (14) and    ,

u

n mI x be the 

fractional integral having order u of  ,n m x . Then 

    

 
 

   
 

,

1 1
2

,

,

,

1 1

, 0

2

0

qM
q

l n m
k l q Mu

n m qM
p q

l n m

l q M

A x p

I x

B x p







  

  





 

 







            (18) 

where     
     

1 1

1

1 1 1 2 1
,

2 2

, ,..., .
k k

uq q q

qM q qq M q M q q
A A A I x x K 

 



     
 
 

       , 
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 

   
 

,

0 0 1 2

2

1 !

2 !

p i
p ip q

l jli j p

p

p

i
B r

p

p







  

 
 
 


           and 

     
     

1 1

1

, 1 1 , 1 2 , 1
,

2 2

, ,..., , , 0,1,2,...,
k k

u j

q qj q M j q M j q M q q
r r r I x x x K j i 

 



     
 
 

 
          

 

 

also        1 1 1 2
, ,...,

T

q q M q M q M
x   

   
 
 

 ,    ,q q qk x x     . 

Proof:  [10] 

 

Corollary: Let  x  denote the Bernoulli wavelets vector as defined in (14). Then, 

        u u
I x P x                                                                            (19) 

where  u
P is the matrix of order ˆ ˆm m and is called Bernoulli wavelet operational 

matrix of integration of order u . It is given by 

 

1

1

2

3

2

0 0 0

0 0 0

0 0 0

0 0 0 k

u

H

H

HP

H 

 
 
 
 
 
 
 
 

                                                                  (20) 

Here 1, 1,2,3,...,2kH    is ˆ ˆM M matrix and the  
th

,w z  component is     

 
     

2 1

,
1 ,

0 0

, 1

2
ˆ2 1 2 1 , 2,

zk

w i
i j i jkjw z

jz w i
i j

Q w

H i
d e w M

j







 


 

 


            
 


      (21) 

 

Proof: The instant consequence of the above theorem. 
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To understand the actual importance of the above corollary, we have the following 
examples: 

(i) For 3, 2M k  and 1u  , the operational matrix using Bernoulli wavelets can be      
expressed   a 

 

17

16

1

16

15

3 90211 69389
10 0 0 0

8 1250000 25000

469097 166533 322749
10 0 0 0

500000 100000 10000000

341 129099 1
0 0 0

100 1000000 8

7 90211 194289
0 0 0 10

8 1250000 25000

32927 105471 322749
0 0 0 10

6250 50000 10000000

117533
0 0 0

25

P









 

 

 





 

129099 1

00 1000000 8

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   

 (22) 

 

(ii) For 3, 2M k  and 1

2
u  , the operational matrix using Bernoulli wavelets can 

be expressed   as 

1

2

1383 148069 849583
0 0 0

2000 2500000 100000000

117139 391343 416931
0 0 0

100000 1000000 5000000

392507 28037 150251
0 0 0

100000 25000 1000000

3296 433813 13041
0 0 0

3125 10000000 12500000

423529 53041 33
0 0 0

100000 100000

P

 
 
 





 






8039

10000000

340343 251573 11571
0 0 0

10000 100000 50000

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

   (23)
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4. METHOD OF SOLUTION 

In this section, an accurate numerical scheme for the solution of fractional delay 
differential equations is described as follows: 

For the positive integer k , the function    D y t
 can be expressed over  0 1t   as  

          
1ˆ 1 2

ˆ, , ,
0 1

kM
T

n m n m k M
m n

D y t C t C t


 



 

                   (24) 

where the coefficient vector  T
C  and  ˆ,k M

t are given respectively in equations (13) 
and (14).  

Now, the integral operator  
I

 is applied o both sides of the above equation, then we 
have 

                   ˆ ˆ ˆ, , ,
0 !

T T T u j j

k M k M k M
j

y t I C t C I t C P t t
j


  

  
  



    
                    (25) 

By using the properties of Caputo derivatives along with initial conditions  

    0
j

jy   for 0,1,2,3,...,j     , we get 

      
     

 

ˆ,
0

,when 0 t<1
!

, when t<0

T j j

k M
j

C I t t
jy t

t


 




  




 

 




                                   (26)   

Thus, 

                 
       

 

ˆ,
0

,when t<1
!

, when t<

jT j

k M
j

C I t t
jy t

t


 
   



 

  




   

  




              (27) 

Substituting the values of the above equations (24), (26) and (27) in the given 
fractional delay differential equation, we get algebraic equation with unknown 
constant coefficients. Then, we collocate resultant algebraic equation using following 
Newton-Cotes nodes as                       

 
2 1 ˆ, 1,2,3,...,2

ˆ2

k

i k

i
t i M

M


   

Now, we obtained a system of algebraic equations of 1 ˆ2k M numbers with unknown 
constant coefficients 

,n mC  . By solving these systems of equations using Newton’s 

method, we get the approximate solution of the given problem. It is also noted that 
with the increase in the of values of M̂ , the result will be more convergent towards 
exact solution. 
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5. ERROR ANALYSIS 

In this part, we estimate the error related to the best Bernoulli wavelet based 
approximation. To do this, we have the following results. 

Lemma: If   2f x L  defined over a x b  is approximated using Bernoulli 

polynomials having degree at most ˆ 1M  and      
ˆ 1

ˆ

0

in [13]
M

i iM
i

f x f x k x




 

where   ˆ0,1,2,3,..., 1.i x M    Then,    ˆˆ 2
lim 0

MM
f x f x


  .          (28) 

Theorem: If   2f x L  defined over interval 0 1x   and is approximated by 

 appf x  as        

        
ˆ

1

m T

app i ii
f x f x C x C x 


        

where,                           

 1 1 11,0 1,1 1, 1 2,0 2,1 2, 1 2 ,0 2 ,1 2 , 1
, ,...., , , ,...., , , ,....,k k k

T

M M M
C c c c c c c c c c    

 
 

    and  

                   1 1 11,0 1,1 1, 1 2,0 2,1 2, 1 2 ,0 2 ,1 2 , 1
, ,..., , , ,..., , , ,...,k k k

T

M M M
x x x x x x x x x x             

 
 

Then,      ˆ 2ˆ
lim 0m
m

f x f x


  .                                       (29) 

Proof: For proof see in [10] 

 

6. NUMERICAL EXAMPLES 

In this section, we apply the present method as described in previous section for 
various fractional delay differential equations. 

Example 1. Consider the following fractional delay differential equation [9]. 

           0.3 , 0,1 , 2,3D y t y t y t f t t                                          (30) 

    where 0.3( ) tf t e   with initial conditions      ' ''0 1, 0 1, 0 1y y y     , 0t  . 

The exact solution of the above equation (30) is   ty t e  when 3  .In table 1, the 

values of the exact solution and the numerical solutions obtained by applying the 
present method and comparison with other existing method have given.     
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Table 1. Comparison of exact solution, Hermite wavelet method solution and present  
method 2& 7, 3k M    at different values of t  for example 1. 

  

 

Fig.1 Comparison of the exact solutions, Hermite method and present method at 
different values of t  for example 1. 

 

 

 

t  Exact  solution Hermite wavelet [9] Present method 

0.0 1.0000 1.0000 1.0000 

0.2 0.8187 0.8187 0.8179 

0.4 0.6703 0.6703 0.6738 

0.6 0.5488 0.5488 0.5486 

0.8 0.4493 0.4493 0.4482 
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Example 2. Consider another following fractional delay differential equation [12] 

        1.5

2

t
D y t y t y g t

 
    

 
,  0,1t                                                    (31) 

 where   3 1.57 6

8 5
2

g t t t   and with the following boundary conditions

   0 0, 1 1y y  . 

We solve this equation by applying the present method and the solutions obtained are 
very close to the exact solution   3y t t . These results are given in the following 
table 2. Also, we plot the achieved numerical results by the present method with exact 
solution of the equation (31) in Fig.2. It is clear that numerical solutions approach to 
the exact solutions at different values of t .  

 

Table 2. Solution by present method at different values of t  of example 2. 

t  Exact  solution Present method 

0.0 0.000000 0.000000 

0.1 0.001000 0.009945 

0.2 0.008000 0.009895 

0.3 0.027000 0.026924 

0.4 0.064000 0.059874 

0.5 0.125000 0.124975 

0.6 0.216000 0.215845 

0.7 0.343000 0.342759 

0.8 0.512000 0.511984 

0.9 0.729000 0.728941 

1.0 1.000000 0.998452 
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Fig.2  The graphs of the exact solutions and the numerical solutions for example 2 at 
different values of t . 

Example 3. Consider the following fractional delay differential equation [10]. 

        D y t y t y t f t                                                     (32)   

 where   
   2 1

22
2

3 2

t t
f t t

 

  
 

 

    
 

 with  0,1t ,  0,1  and   2y t t t   

if 0t  . 

We solve this equation (32) for 2& 3k M   and approximate  D y t as 

               1,0 1,0 1,1 1,1 1,2 1,2 2,0 2,0 2,1 2,1 2,2 2,2 2,2

TD y t C t C t C t C t C t C t C t             

 

Where 1,0 1,1 1,2 2,0 2,1 2,2, , , , ,
T

C C C C C C C    is the vector of unknown constants that we 
need to determine. Then we have       

  
   2,2

2

, 0,1

, 0

TC I t t
y t

t t t

 
 

 
                                               (33) 

and  

  
   

   

2,2

2

, , 1

,

TC I t t
t

t t t

   


  

   
  

   

                                                  (34) 
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By substituting equations (33) and (34) to equation (32), we obtain an algebraic 

equation. By collocating the algebraic equation using 2 1
, 1,2,...,6

12
i

i
t i


  . We get 

linear system in the
,n mC ’s and by substituting these values and after simplification, we 

obtain   2y t t t  .  

In case, if there is a delay term  , we obtain approximations of the solutions 
depending on &  .In table 3, we demonstrate the absolute errors for the method by 
taking 2& 3k M  or with the number of bases .The values in the table 3 suggest 
that numerical results are having more accuracy. 

Table 3. The absolute errors for 2& 3, 1k M    at different values of  of 
example 3. 

t 30.1 10    20.1 10    10.1 10    

0.2 178.3291 10  161.9395 10  90.0135 10  

0.4 162.2237 10  163.3296 10  161.0962 10  

0.6 141.4692 10  148.5962 10  143.1492 10  

0.8 141.5743 10  148.5694 10  143.2863 10  

1.0 60.0025 10  80.016 10  80.0264 10  

 

Fig.3 The graphs of the exact solutions and approximate  solutions for example 3 at 
different values of t . 
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Example 4. Consider the fractional order delay differential equation [14]. 

        1 0,2D y t y t f t t                                                           (35)           

 with   1 , 0y t t  where  0,1   and the function  f t is given by             

  
 

 

2.1 1.05 0,1

1.05 1,2

t t
f t

t

  
 

 
 

If 1   then equation (35) has the exact solution as                       

  
 

 

2

2 3

1 1.1 0525 0,1

0.25 1.575 1.075 0.175 1,2

t t t
y t

t t t t

   
 

      
If 1   then the exact solution of equation (35) is not known .In such case, we 
consider the        residual error     

          
1

1 2 2
2

D y t y t f t D g t g t u t    
       

   

We compare the residual errors of numerical solutions from the present method and 
Legendre multi-wavelet collocation method in [14] with 0.95   . 

 

Table 4.  Comparison of residue errors for numerical solutions by present method and 
the Legendre multi-wavelet collocation method [LMWM] at 0.95   

t  
LMWM[14] Present Method 

7M   10M   7M   10M   

0.2 41.92 10  51.49 10  131.69 10  121.09 10  

0.4 51.36 10  61.61 10  148.98 10  112.58 10  

0.6 69.72 10  61.13 10  122.52 10  102.68 10  

0.8 56.10 10  64.47 10  122.52 10  91.79 10  

1.2 53.11 10  61.56 10  48.16 10  42.42 10  

1.4 62.85 10  72.17 10  43.78 10  52.48 10  

1.6 62.40 10  71.81 10  42.75 10  50.78 10  

1.8 51.72 10  78.23 10  42.62 10  57.68 10  
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Example 5. Consider the nonlinear fractional order delay differential equation [12] 

        
3

32 1
, 0,1

2
D y t y t y t g t t

 
 
   

     
 

                                         (36) 

where   
 

 
21

622 1

23
2

g t t t t

 
 
   

    
 

 with boundary conditions: 

   0 0, 1 1y y  . 

In the above equation the value of  is 3

2
and   solved by applying the present 

method. The solutions obtained are converging with the exact solution   2y t t . 
Obtained numerical results are tabulated in table 5. 

 

Table 5. Numerical solutions by present method at different values of t  of example 5. 

t  Exact  solution Numerical solution 

0.0 0.000000 0.000000 

0.1 0.010000 0.009956 

0.2 0.040000 0.039985 

0.3 0.090000 0.089547 

0.4 0.160000 0.159874 

0.5 0.250000 0.248957 

0.6 0.360000 0.359842 

0.7 0.490000 0.489895 

0.8 0.640000 0.639981 

0.9 0.810000 0.809748 

1.0 1.000000 0.999986 
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Fig.4 The graphs of the exact solutions and approximate solutions for example 5 at 
different values of t . 

 

7. CONCLUSION 

The main purpose of this research work was to provide an efficient and accurate 
numerical technique through Bernoulli wavelets. We re-constructed the operational 
matrix and utilized for solving fractional order delay differential equations. The 
achieved approximate results from the illustrative examples were compared with 
exact solutions & some other existing methods and are in good agreement as shown in 
tables and figures. Thus, we conclude that presented method is very accurate and 
efficient. Further, this technique can be extended to solve the other types of problems. 
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