Q-Cubic bi-quasi Ideals of Semigroups

Natthinee Deetae 1 and Pannawit Khamrot $^{*, 2}$

1Department of Statistics, Faculty of Science and Technology, Pibulsongkram Rajabhat University, Phitsanulok 65000, Thailand.
2Department of Mathematics, Faculty of Sciences and Agricultural Technology, Rajamangala University of Technology Lanna, Phitsanulok 65000, Thailand.

Abstract

In this paper, we introduce the notion of a Q-cubic bi-quasi ideal of semigroup and we characterize the regular semigroup in terms of a Q-cubic bi-quasi ideal of a semigroup.

AMS subject classification: 16Y60, 08A72, 03G25, 03E72.

Keywords: semigroup, regular semigroup, Q-cubic ideal, Q-cubic bi-quasi ideal.

1. INTRODUCTION

In 1965, the fundamental concept of fuzzy sets was introduced by Zadeh [17]. At present, it is an important tool in science, engineering, computer science, control engineering, etc. In 1979, Kuroki [8, 9, 10] was given the idea of fuzzy ideal, fuzzy bi-ideals, and fuzzy interior ideals in semigroups. Later, concepts were expanded about interval-valued fuzzy sets that have many applications such as approximate reasoning, image processing, decision making, medicine, and mobile networks, etc. In 2006 [15], Narayanan and Manikanran initiated the notion of interval valued fuzzy ideal in semigroup. In 2012, Jun [6], introduced a new notion, called a cubic set, and investigated several properties and introduced cubic subsemigroups and cubic left (right) ideals of semigroups. Later, in 2015 Sadaf et al. [16], discussed cubic bi-ideal of a semigroup. In later years V. Chinnadurai and K. Bharathivelan[3], studied cubic ideal in Γ-semigroup and PO-Γ-semigroup.

*Corresponding author’s E-mail: pk.g@rmutl.ac.th
The idea of an intuitionistic Q-fuzzy set was first discussed by Atanassov [1, 2], as a generalization of the notion of a fuzzy set. Kyung Ho Kim [7] introduced on intuitionistic Q-Fuzzy semiprime ideals in Semigroups. Thillaigovindan et al. [12] discussed on interval-valued fuzzy quasi-ideals of semigroups. In 2020, the concept of fuzzy semigroups has been discussed in research on the prime fuzzy m-bi ideals in semigroups [14], Manahon et al. [13] studied on BF-semigroups and fuzzy BF-semigroups, and T. Gaketem [5] introduced cubic interior ideals in semigroups, etc.

The aim of this paper we define definition of Q-cubic bi-quasi ideal in semigroup and properties of Q-cubic bi-quasi ideals are investigated. Then we characterized regular semigroup in terms of Q-cubic bi-quasi ideal.

2. PRELIMINARIES

In this section, we give definitions that are used in this paper. By a subsemigroup of a semigroup S we mean a non-empty subset A of S such that A^2 ⊆ A, and by a left (right) ideal of S we mean a non-empty subset A of S such that SA ⊆ A(AS ⊆ A). By a two-sided ideal or simply an ideal, we mean a non-empty subset of a semigroup S that is both a left and a right ideal of S. A non-empty subset A of S is called an interior ideal of S if SAS ⊆ A. A subsemigroup A of a semigroup S is called a bi-ideal of S if ASA ⊆ A. A non-empty subset A of a semigroup S is called a quasi-ideal of S if AS ∩ SA ⊆ A. A subsemigroup A of a semigroup S is said to be left (right) bi-quasi ideal of S if SA ∩ ASA ⊆ A(AS ∩ ASA ⊆ A). A subsemigroup A of a semigroup S is said to be bi-quasi ideal of S if it is both a left bi-quasi and right bi-quasi ideal of S.

Definition 1. Let X and Q be non-empty sets. A mapping \(f : X \times Q \rightarrow [0, 1] \) is called a Q-fuzzy set of X over Q.

Definition 2. Let X and Q be a non-empty set. A mapping \(\bar{f} : X \times Q \rightarrow D[0, 1] \) is called interval Q-fuzzy set over Q, where \(D[0, 1] \) denote the family of all closed subinterval of \([0, 1]\) and \(\bar{f} = [f^-, f^+] \), where \(f^- \) and \(f^+ \) are Q-fuzzy sets of X such that \(f^-(x, q) \leq f^+(x, q) \) for all \(x \in X, q \in Q \).

Definition 3. Let X and Q be a non-empty sets. A Q-cubic set A is an object having the form \(A = \{(x, q, f(x, q), \omega(x, q)) : x \in X, q \in Q\} \) which is briefly denoted by \(A = (f, \omega) \) with respect to Q, where \(f : X \times Q \rightarrow D[0, 1] \) is an interval Q-fuzzy set over Q and \(\omega : X \times Q \rightarrow [0, 1] \) is a Q-fuzzy set over Q.

Definition 4. Let \(A = (f_A, \omega_A) \) be a Q-cubic set in X. Define \(U(A; \ell, n) = \{x \in X | \ell \leq f(x, q), \omega(x, q) \leq n\} \), where \(\ell \in D[0, 1] \) and \(n \in [0, 1] \) is called the Q-cubic level set of A.

For any non-empty subset I of a set X, the characteristic function of I is defined to be a structure \(\chi_I = \{(x, f_I(x, q), \omega_I(x, q)) : x \in X, q \in Q\} \) which is briefly denoted by \(\chi_I = (f_I, \omega_I) \).
for all x, y

Definition 5. Let A be a Q-cubic set in a semigroup S with respect to Q.

It satisfies the following conditions:

- ω denoted by A (with respect to Q) satisfies $\omega(x, q) \geq \omega(y, q)$ for all $x, y, q \in Q$.

The whole cubic set S in a semigroup S is defined to be a structure

$$\chi_S = \{(x, \bar{f}_{xs}(x, q), \omega_{xs}(x, q)) : x \in S, q \in Q\},$$

with $\bar{f}_{xs}(x, q) = [1, 1]$ and $\omega_{xs}(x, q) = 0$. It will be briefly denoted by $\chi_S = (\bar{f}_{xs}, \omega_{xs})$.

For two Q-cubic sets $A = (f, \omega)$ and $B = (g, \upsilon)$ in a semigroup S, we define $A \subseteq B$ if and only if $f \subset g$ and $\omega \gtrless \upsilon$, where $f \subset g$ means that $f(x, q) \subseteq g(x, q)$ and $\omega \gtrless \upsilon$ means that $\omega(x, q) \geq \upsilon(x, q)$ for all $x \in S, q \in Q$.

The Q-cubic product of $A = (f, \omega)$ and $B = (g, \upsilon)$ is defined to be a Q-cubic set

$$A \sim B = \{(x, q), (f \circ g)(x, q), (\omega \circ \upsilon)(x, q)) : x \in S, q \in Q\}$$

$$\begin{align*}
(f \circ g)(x, q) &= \left\{ \begin{array}{ll}
\bigcup_{x = yz} \{f(y, q) \cap g(z, q)\} & \text{for some } x, y, z \in S, q \in Q; \\
0 & \text{otherwise.}
\end{array} \right.
\\
(\omega \circ \upsilon)(x, q) &= \left\{ \begin{array}{ll}
\bigwedge_{y = yz} \{\omega(y, q) \lor \upsilon(z, q)\} & \text{for some } x, y, z \in S, q \in Q; \\
1 & \text{otherwise.}
\end{array} \right.
\end{align*}$$

Let $A = (f, \omega)$ and $B = (g, \upsilon)$ be two Q-cubic sets in S. The intersection of A and B denoted by $A \cap B$ is the Q-cubic set $A \cap B = (\bar{f} \cap \bar{g}, \omega \cap \upsilon)$ with respect to Q, where $(\bar{f} \cap \bar{g})(x, q) = f(x, q) \cap g(x, q)$ and $(\omega \cap \upsilon)(x, q) = \omega(x, q) \lor \upsilon(x, q)$.

The union of A and B denoted by $A \cup B$ is the Q-cubic set $A \cup B = (\bar{f} \cup \bar{g}, \omega \lor \upsilon)$ with respect to Q, where $(\bar{f} \cup \bar{g})(x, q) = f(x, q) \cup g(x, q)$ and $(\omega \lor \upsilon)(x, q) = \omega(x, q) \land \upsilon(x, q)$.

Definition 5. A Q-cubic set $A = (f, \omega)$ of S is called a Q-cubic subsemigroup of S if it satisfies the following conditions:

1. $f(x, q) \cap f(y, q) \subseteq f(xy, q)$,
2. $\omega(xy, q) \leq \omega(x, q) \lor \omega(y, q)$

for all $x, y \in S$ and $q \in Q$.

Definition 6. A Q-cubic set $A = (\bar{f}, \omega)$ of S is called a Q-cubic left(resp.right) ideal of S if it satisfies the following conditions:

1. $\bar{f}(y, q) \subseteq \bar{f}(xy, q)(\bar{f}(x, q) \subseteq \bar{f}(xy, q))$,
2. $\omega(xy, q) \leq \omega(y, q)(\omega(xy, q) \leq \omega(x, q))$

for all $x, y \in S$ and $q \in Q$.

A Q-cubic set $A = (\bar{f}, \omega)$ of S is called a Q-cubic ideal of S if it is both Q-cubic left ideal and Q-cubic right ideal of S.

3. Q-CUBIC BI-QUASI IDEALS OF SEMIGROUPS

In this section we define Q-cubic bi-quasi ideals in semigroup and investigation properties of Q-cubic bi-quasi ideals.

Definition 7. A Q-cubic subsemigroup $A = (\bar{f}, \omega)$ of S is called a Q-cubic left(right) bi-quasi ideal of S if it satisfies the following conditions:

1. $\bar{f}_x \circ \bar{f} \circ \bar{f} \subseteq \bar{f} (\bar{f} \circ \bar{f}_x \cap \bar{f} \circ \bar{f} \subseteq \bar{f})$,
2. $\omega \preceq \omega_x \circ \omega \circ \omega_x \circ \omega (\omega \preceq \omega \circ \omega_x \circ \omega \circ \omega_x \circ \omega)$,

A Q-fuzzy set $A = (\bar{f}, \omega)$ of semigroup S is called a Q-cubic bi-quasi ideal if it is both Q-cubic left bi-quasi ideal and Q-cubic right bi-quasi ideal of S.

Theorem 8. Every Q-cubic left ideal of a semigroup S is a Q-cubic left bi-quasi ideal of S.

Proof. Let $A = (\bar{f}, \omega)$ be a Q-cubic left ideal of a semigroup S. Let $x \in S$ and $q \in Q$. Then

$$ (\bar{f}_x \circ \bar{f})(x, q) = \bigcup_{x=yz} \{\bar{f}_x(y, q) \cap \bar{f}(z, q)\} $$

$$ = \bigcup_{x=yz} \{\bar{f}(z, q)\} $$

$$ \subseteq \bigcup_{x=yz} \{\bar{f}(yz, q)\} $$

$$ = \bigcup_{x=yz} \{\bar{f}(x, q)\} $$

$$ = \bar{f}(x, q). $$

Thus $\bar{f}_x \circ \bar{f} \circ \bar{f} \subseteq \bar{f}$.

And

\[
(\omega_{xS} \circ \omega)(x, q) = \bigwedge_{x = yz} \{\omega_{xS}(y, q) \lor \omega(z, q)\}
\]

\[
= \bigwedge_{x = yz} \{\omega(z, q)\}
\]

\[
\geq \bigwedge_{x = yz} \{\omega(yz, q)\}
\]

\[
= \bigwedge_{x = yz} \{\omega(x, q)\}
\]

\[
= \omega(x, q).
\]

Then \(\omega_{xS} \circ \omega \geq \omega \circ \omega_{xS} \circ \omega \geq \omega\).

Hence \(A = (\bar{f}, \omega)\) be a Q-cubic left bi-quasi ideal of the semigroup \(S\). \(\square\)

Theorem 9. Every Q-cubic left ideal of a semigroup \(S\) is a Q-cubic right bi-quasi ideal of \(S\).

Proof. Let \(A = (\bar{f}, \omega)\) be a Q-cubic left ideal of a semigroup \(S\). Let \(x \in S\) and \(q \in Q\). We have \((\bar{f}_{xS} \circ \bar{f})(x, q) \subseteq \bar{f}(x, q)\) and \((\omega_{xS} \circ \omega)(x, q) \geq \omega(x, q)\). Then

\[
(\bar{f} \circ \bar{f}_{xS} \circ \bar{f})(x, q) = \bigcup_{x = abc} \{\bar{f}(a, q) \cap (\bar{f}_{xS} \circ \bar{f})(bc, q)\}
\]

\[
\subseteq \bigcup_{x = abc} \{\bar{f}(a, q) \cap \bar{f}(bc, q)\}
\]

\[
\subseteq \bar{f}(x, q).
\]

Thus \(\bar{f} \circ \bar{f}_{xS} \cap \bar{f} \circ \bar{f}_{xS} \circ \bar{f} \subseteq \bar{f}\).

And

\[
(\omega \circ \omega_{xS} \circ \omega)(x, q) = \bigwedge_{x = abc} \{\omega(a, q) \lor (\omega_{xS} \circ \omega)(bc, q)\}
\]

\[
\geq \bigwedge_{x = abc} \{\omega(a, q) \lor \omega(bc, q)\}
\]

\[
\geq \omega(x, q).
\]

Now \(\omega \circ \omega_{xS} \geq \omega \circ \omega_{xS} \circ \omega \geq \omega\).

Hence \(A = (\bar{f}, \omega)\) be a Q-cubic right bi-quasi ideal of the semigroup \(S\). \(\square\)
Theorem 10. Every Q-cubic right ideal of a semigroup S is a Q-cubic right bi-quasi ideal of S.

Proof. Let $A = (\bar{f}, \omega)$ be a Q-cubic right ideal of a semigroup S. Let $x \in S$ and $q \in Q$. Then

$$
(f \circ \bar{f}_{\chi_S})(x, q) = \bigcup_{x = yz} \{f(y, q) \cap \bar{f}_{\chi_S}(z, q)\}
$$

$$
= \bigcup_{x = yz} \{f(y, q)\}
$$

$$
\subseteq \bigcup_{x = yz} \{\bar{f}(yz, q)\}
$$

$$
= \bigcup_{x = yz} \{\bar{f}(x, q)\}
$$

$$
= \bar{f}(x, q).
$$

Thus $f \circ \bar{f}_{\chi_S} \cap f \circ \bar{f}_{\chi_S} \subseteq \bar{f}$.

And

$$
(\omega \circ \omega_{\chi_S})(x, q) = \bigwedge_{x = yz} \{\omega(y, q) \lor \omega_{\chi_S}(z, q)\}
$$

$$
= \bigwedge_{x = yz} \{\omega(z, q)\}
$$

$$
\geq \bigwedge_{x = yz} \{\omega(yz, q)\}
$$

$$
= \bigwedge_{x = yz} \{\omega(x, q)\}
$$

$$
= \omega(x, q).
$$

Then $\omega \circ \omega_{\chi_S} \lor \omega \circ \omega_{\chi_S} \circ \omega \supseteq \omega$.

Hence $A = (\bar{f}, \omega)$ be a Q-cubic right bi-quasi ideal of the semigroup S.

Corollary 11. Every Q-cubic right ideal of a semigroup S is a Q-cubic left bi-quasi ideal of S.

Corollary 12. Every Q-cubic right(left) ideal of a semigroup S is a Q-cubic bi-quasi ideal of S.

Theorem 13. Let S be a semigroup and $A = (\bar{f}, \omega)$ be a non-empty Q-fuzzy set of S. A Q-fuzzy set $A = (\bar{f}, \omega)$ is a Q-cubic left bi-quasi ideal of a semigroup S if and only if the Q-cubic level set $U(A; \bar{t}, n)$ of A is a left bi-quasi ideal of a semigroup S for every $\bar{t} \in D[0, 1], n \in [0, 1], \text{ where } U(A; \bar{t}, n) \neq \emptyset$.

Lemma 16. It is straightforward.

Proof. Assume that $A = (\bar{f}, \omega)$ is a Q-cubic left bi-quasi ideal of a semigroup S. Let $U(A; \bar{t}, n) = \emptyset$, $\bar{t} \in D[0, 1]$, $n \in [0, 1]$. Let $x \in SU(A; \bar{t}, n) \cap U(A; \bar{t}, n)$. Then $x = ba = cde$ where $b, d \in S$ and $a, c, e \in U(A; \bar{t}, n)$. Then $\bar{t} \subseteq (\bar{f}_x \circ \bar{f})(x, q)$ and $\bar{t} \subseteq (\bar{f} \circ \bar{f}_x \circ \bar{f})(x, q)$ implies that $\bar{t} \subseteq \bar{f}(x, q)$ and $(\omega_x \circ \omega)(x, q) \leq n$ and $(\omega \circ \omega_x \circ \omega)(x, q) \leq n$ implies that $\omega(x, q) \leq n$. Then $x \in U(A; \bar{t}, n)$. Therefore $U(A; \bar{t}, n)$ is a left bi-quasi ideal of the semigroup S.

Conversely suppose that $U(A; \bar{t}, n)$ is a left bi-quasi ideal of the semigroup S, for all $\bar{t} \in Im(\bar{f})$ and $n \in Im(\omega)$. Let $x, y \in S, q \in Q$. Then $\bar{f}(x, q) = \bar{t}_1, \bar{f}(y, q) = \bar{t}_2, \omega(x, q) = n_1, \omega(y, q) = n_2, \bar{t}_1 \geq \bar{t}_2$ and $n_1 \leq n_2$. Then $x, y \in U(A; \bar{t}, n)$. We have $SU(A; \bar{t}, m) \cap U(A; \bar{t}, n) SU(A; \bar{t}, m) \subseteq U(A; \bar{t}, m)$, for all $\bar{t} \in Im(\bar{f})$ and $m \in Im(\omega)$. Suppose $\bar{t} = \min\{Im(\bar{f})\}$ and $n = \max\{Im(\omega)\}$. Then $SU(A; \bar{t}, n) \cap U(A; \bar{t}, n) SU(A; \bar{t}, n) \subseteq U(A; \bar{t}, n)$. Therefore $\bar{f}_x \circ \bar{f} \cap \bar{f} \circ \bar{f}_x \circ \bar{f} \subseteq \bar{f}$ and $\omega \leq \omega_x \circ \omega \gamma \omega \circ \omega_x \circ \omega$. Hence $A = (\bar{f}, \omega)$ is a Q-cubic left bi-quasi ideal of a semigroup S. □

Corollary 14. Let S be a semigroup and $A = (\bar{f}, \omega)$ be a non-empty Q-fuzzy set of S. A Q-fuzzy set $A = (\bar{f}, \omega)$ is a Q-cubic right bi-quasi ideal of a semigroup S if and only if the Q-cubic level set $U(A; \bar{t}, n)$ of A is a right bi-quasi ideal of a semigroup S for every $\bar{t} \in D[0, 1], n \in [0, 1]$, where $U(A; \bar{t}, n) \neq \emptyset$.

Corollary 15. Let S be a semigroup and $A = (\bar{f}, \omega)$ be a non-empty Q-fuzzy set of S. A Q-fuzzy set $A = (\bar{f}, \omega)$ is a Q-cubic bi-quasi ideal of a semigroup S if and only if the Q-cubic level set $U(A; \bar{t}, n)$ of A is a bi-quasi ideal of a semigroup S for every $\bar{t} \in D[0, 1], n \in [0, 1]$, where $U(A; \bar{t}, n) \neq \emptyset$.

Lemma 16. For non-empty subsets G and H of a semigroup S, we have

1. $\bar{f}_x \circ \bar{f}_y = \bar{f} \chi_{GH}$,
2. $\bar{f}_x \cap \bar{f}_y = \bar{f} \chi_{GH}$,
3. $\omega_x \circ \omega_y = \omega \chi_{GH}$,
4. $\omega \chi_x \gamma \omega_y = \omega \chi_{GH}$.

Proof. It is straightforward. □

Theorem 17. Let I be a non-empty subset of a semigroup S and $\chi_I = (\bar{f}_I, \omega_I)$ be the characteristic function of I. Then I is a left bi-quasi ideal of a semigroup S if and only if $\chi_I = (\bar{f}_I, \omega_I)$ is a Q-cubic left bi-quasi ideal of a semigroup S.

Q-Cubic bi-quasi Ideals of Semigroups 559
Proof. Suppose I is a left bi-quasi ideal of S. Then I is a subsemigroup of S and $SI \cap ISI \subseteq I$. Obviously $\chi_I = (f_{xI}, \omega_{xI})$ is a Q-cubic subsemigroup of S. And

$$(f_{xs} \circ f_{xi} \cap f_{xs} \circ f_{xi})(x, q) = (f_{xs} \circ f_{xi})(x, q) \cap (f_{xs} \circ f_{xi})(x, q)$$

$$= f_{xsI}(x, q) \cap f_{xsisI}(x, q)$$

$$= f_{xsisI}(x, q).$$

Thus, $f_{xs} \circ f_{xi} \cap f_{xs} \circ f_{xi} \subseteq f_{xi}$. Similarly, we can show that $\omega_{xs} \circ \omega_{sx} = \omega \circ \omega_{xs} \circ \omega \geq \omega$. Hence $\chi_I = (f_{xI}, \omega_{xI})$ is a Q-cubic left bi-quasi ideal of S.

Conversely suppose that $\chi_I = (f_{xI}, \omega_{xI})$ is a Q-cubic left bi-quasi ideal of S. Then I is a subsemigroup of S. We have

$$(f_{xs} \circ f_{xi})(x, q) \cap (f_{xs} \circ f_{xi})(x, q) \subseteq f_{xi}(x, q)$$

$$\Rightarrow f_{xsI}(x, q) \cap f_{xsisI}(x, q) \subseteq f_{xi}(x, q)$$

$$\Rightarrow f_{xsisI}(x, q) \subseteq f_{xi}(x, q).$$

Thus $SI \cap ISI \subseteq I$. Hence I is a left bi-quasi ideal of a semigroup S. \hfill \Box

Corollary 18. Let I be a non-empty subset of a semigroup S and $\chi_I = (f_{xI}, \omega_{xI})$ be the characteristic function of I. Then I is a right bi-quasi ideal of a semigroup S if and only if $\chi_I = (f_{xI}, \omega_{xI})$ is a Q-cubic right bi-quasi ideal of a semigroup S.

Corollary 19. Let I be a non-empty subset of a semigroup S and $\chi_I = (f_{xI}, \omega_{xI})$ be the characteristic function of I. Then I is a bi-quasi ideal of a semigroup S if and only if $\chi_I = (f_{xI}, \omega_{xI})$ is a Q-cubic bi-quasi ideal of a semigroup S.

Theorem 20. if $A = (f, \omega)$ and $B = (\bar{g}, \nu)$ are Q-cubic bi-quasi ideals of a semigroup S, then $A \cap B = (f \cap \bar{g}, \omega \cap \nu)$ is a Q-cubic left bi-quasi ideal of a semigroup S.

Proof. Let $A = (f, \omega)$ and $B = (\bar{g}, \nu)$ be Q-cubic bi-quasi ideals of a semigroup S. Then

$$(f_{xs} \circ f \cap \bar{g})(x, q) = \bigcup_{x=ab} \{ f_{xs}(a, q) \cap (f \cap \bar{g})(b, q) \}$$

$$= \bigcup_{x=ab} \{ f_{xs}(a, q) \cap f(b, q) \cap \bar{g}(b, q) \}$$

$$= \bigcup_{x=ab} \{ \{ f_{xs}(a, q) \cap f(b, q) \} \cap \{ f_{xs}(a, q) \cap \bar{g}(b, q) \} \}$$

$$= \bigcup_{x=ab} \{ f_{xs}(a, q) \cap f(b, q) \} \cap \bigcup_{x=ab} \{ f_{xs}(a, q) \cap \bar{g}(b, q) \}$$

$$= (f_{xs} \circ f)(x, q) \cap (f_{xs} \circ \bar{g})(x, q)$$

$$= (f_{xs} \circ f \cap f_{xs} \circ \bar{g})(x, q).$$
Therefore $\tilde{f}_x \circ \tilde{f} \cap \tilde{g} = \tilde{f}_x \circ \tilde{f} \cap \tilde{g} \circ \tilde{f}_x \circ \tilde{g}$.

$$(\tilde{f} \cap \tilde{g} \circ \tilde{f}_x \circ \tilde{f} \cap \tilde{g})(x, q) = \bigcup_{x=abc} \{(\tilde{f} \cap \tilde{g})(a, q) \cap (\tilde{f}_x \circ \tilde{f} \cap \tilde{g})(bc, q)\}
= \bigcup_{x=abc} \{(\tilde{f} \cap \tilde{g})(a, q) \cap ((\tilde{f}_x \circ \tilde{f} \cap \tilde{g})(bc, q))\}
= \bigcup_{x=abc} \{(\tilde{f}(a, q) \cap (\tilde{f}_x \circ \tilde{f})(bc, q)) \cap \{\tilde{g}(a, q) \cap (\tilde{f}_x \circ \tilde{g})(bc, q)\}\}
= (\tilde{f} \circ \tilde{f}_x \circ \tilde{f}_{\cap} \tilde{g})(x, q) \cap (\tilde{g} \circ \tilde{f}_x \circ \tilde{g})(x, q) = (\tilde{f} \circ \tilde{f}_x \circ \tilde{f} \cap \tilde{g} \circ \tilde{f}_x \circ \tilde{g})(x, q).$$

Therefore $\tilde{f} \cap \tilde{g} \circ \tilde{f}_x \circ \tilde{f} \cap \tilde{g} = \tilde{f} \circ \tilde{f}_x \circ \tilde{f} \cap \tilde{g} \circ \tilde{f}_x \circ \tilde{g}$.

Then $\tilde{f}_x \circ (\tilde{f} \cap \tilde{g}) \cap (\tilde{f} \cap \tilde{g}) \circ \tilde{f}_x \circ (\tilde{f} \cap \tilde{g}) = \tilde{f}_x \circ \tilde{f} \cap \tilde{f} \circ \tilde{f}_x \circ \tilde{f} \cap \tilde{g} \circ \tilde{f}_x \circ \tilde{g} \circ \tilde{f}_x \circ \tilde{g} \circ \tilde{f}_x \circ \tilde{g}$.

Similarly, we can show that $\omega_{\times} \circ \omega_{\gamma} \circ \omega_{\gamma} \cap \omega_{\gamma} \cap \omega_{\times} \circ \omega_{\gamma} \circ \omega_{\gamma} \circ \omega_{\times} \circ \omega_{\gamma} \circ \omega_{\gamma} \cap \omega_{\gamma} \cap \omega_{\gamma}$. Therefore $A \cap B = (\tilde{f} \cap \tilde{g}, \omega \cap \gamma, \gamma)$ is a Q-cubic left bi-quasi ideal of a semigroup S.

Corollary 21. If $A = (\tilde{f}, \omega)$ and $B = (\tilde{g}, \nu)$ are Q-cubic bi-quasi ideals of a semigroup S, then $A \cap B = (\tilde{f} \cap \tilde{g}, \omega \cap \gamma, \nu)$ is a Q-cubic right bi-quasi ideal of a semigroup S.

Corollary 22. If $A = (\tilde{f}, \omega)$ and $B = (\tilde{g}, \nu)$ are Q-cubic bi-quasi ideals of a semigroup S, then $A \cap B = (\tilde{f} \cap \tilde{g}, \omega \cap \gamma, \nu)$ is a Q-cubic bi-quasi ideal of a semigroup S.

Theorem 23. If $A = (\tilde{f}, \omega)$ and $B = (\tilde{g}, \nu)$ are Q-cubic right ideals and a Q-cubic left ideal of a semigroup S respectively. Then $A \cap B = (\tilde{f} \cap \tilde{g}, \omega \cap \nu, \nu)$ is a Q-cubic left bi-quasi ideal of a semigroup S.

Proof. It following Theorem 20. □

Corollary 24. If $A = (\tilde{f}, \omega)$ and $B = (\tilde{g}, \nu)$ are Q-cubic right ideals and a Q-cubic left ideal of a semigroup S respectively. Then $A \cap B = (\tilde{f} \cap \tilde{g}, \omega \cap \gamma, \nu)$ is a Q-cubic right bi-quasi ideal of a semigroup S.

Corollary 25. If $A = (\tilde{f}, \omega)$ and $B = (\tilde{g}, \nu)$ are Q-cubic right ideals and a Q-cubic left ideal of a semigroup S respectively. Then $A \cap B = (\tilde{f} \cap \tilde{g}, \omega \cap \gamma, \nu)$ is a Q-cubic bi-quasi ideal of a semigroup S.

Definition 26. A semigroup S is called regular if for all $a \in S$ there exists $x \in S$ such that $a = axa$.

Definition 27. A Q-cubic subsemigroup $A = (\tilde{f}, \omega)$ of S is called a Q-cubic quasi ideal of S if it satisfies the following conditions:
Proof. Let $f_{xS} \circ \bar{f} \cap f_{xS} \subseteq \bar{f}$.

2. $\omega \leq \omega_{xS} \circ \omega \gamma \omega \circ \omega_{xS}$.

Theorem 28. If $A = (\bar{f}, \omega)$ be a Q-cubic quasi ideal of a regular semigroup S. Then $A = (\bar{f}, \omega)$ is a Q-cubic ideal of a semigroup S.

Proof. Assume that $A = (\bar{f}, \omega)$ is a Q-cubic quasi-ideal of S and let $x, y \in S, q \in Q$. Then

$$f(xy, q) \supseteq (f \circ f_{xS})(xy, q) \cap (f_{xS} \circ \bar{f})(xy, q)$$

$$= \bigcup_{xy=ab} \{f(a, q) \cap f_{xS}(b, q)\} \cap \bigcup_{xy=ij} \{f_{xS}(i, q) \cap \bar{f}(j, q)\}$$

$$\supseteq f(x, q) \cap f_{xS}(y, q) \cap f_{xS}(x, q) \cap \bar{f}(y, q)$$

$$= \bar{f}(x, q) \cap \bar{f}(y, q).$$

Thus $f(xy, q) \supseteq \bar{f}(x, q) \cap \bar{f}(y, q)$. And similarly we can show that $\omega(xy, q) \leq \omega(x, q) \lor \omega(y, q)$.

Hence $A = (\bar{f}, \omega)$ is a Q-cubic subsemigroup of S. Let $x, y, z \in S, q \in Q$. Then

$$f(xyz, q) \supseteq (f \circ f_{xS})(xyz, q) \cap (f_{xS} \circ \bar{f})(xyz, q)$$

$$= \bigcup_{xyz=ab} \{f(a, q) \cap f_{xS}(b, q)\} \cap \bigcup_{xyz=ij} \{f_{xS}(i, q) \cap \bar{f}(j, q)\}$$

$$\supseteq f(x, q) \cap f_{xS}(y, q) \cap f_{xS}(z, q) \cap \bar{f}(z, q)$$

$$= \bar{f}(x, q) \cap \bar{f}(z, q).$$

Thus $f(xyz, q) \supseteq \bar{f}(x, q) \cap \bar{f}(z, q)$. And similarly we can show that $\omega(xyz, q) \leq \omega(x, q) \lor \omega(z, q)$. Hence $A = (\bar{f}, \omega)$ is a Q-cubic bi-ideal of S. Since S is regular, $A = (\bar{f}, \omega)$ is a Q-cubic bi-ideal of S and $x, y \in S$ we have $xy \in (xSx)S \subseteq xSx$. Thus there exists $k \in S$ such that $xy = xkx$. So

$$\bar{f}(xy, q) = f(xkx, q) \supseteq \bar{f}(x, q) \cap \bar{f}(z, q) = \bar{f}(x, q).$$

And similarly $\omega(xy, q) \leq \omega(x, q)$. Thus, $A = (\bar{f}, \omega)$ is a Q-cubic right ideal of S. Similarly, we can show that $\bar{f}(xy, q) \supseteq \bar{f}(y, q)$ and $\omega(xy, q) \leq \omega(y, q)$. Thus $A = (\bar{f}, \omega)$ is a Q-cubic left ideal of S. Hence $A = (\bar{f}, \omega)$ is a Q-cubic ideal of S. \qed

Theorem 29. Let S be a regular semigroup. Then $A = (\bar{f}, \omega)$ is a Q-cubic left bi-quasi ideal of S if and only if $A = (\bar{f}, \omega)$ is a Q-cubic quasi ideal of S.

Proof. Let $A = (\bar{f}, \omega)$ is a Q-cubic left bi-quasi ideal of S and $x \in S, q \in Q$. Thus,

$$(\bar{f}_{xS} \circ \bar{f})(x, q) \cap (f \circ f_{xS} \circ \bar{f})(x, q) \subseteq \bar{f}(x, q)$$

and $\omega(x, q) \leq (\omega_{xS} \circ \omega)(x, q) \gamma (\omega \circ \omega_{xS})$. Therefore,
\(\omega_{xs} \circ \omega)(x, q). \) Suppose \((\bar{f}_{xs} \circ \bar{f})(x, q) \supseteq \bar{f}(x, q) \). Since \(S \) is regular, there exists \(y \in S \) such that \(x = xyx. \) Then

\[
(\bar{f} \circ \bar{f}_{xs} \circ \bar{f})(x, q) = \bigcup_{x = xyx} \{ \bar{f}(xy, q) \cap (\bar{f}_{xs} \circ \bar{f})(x, q) \}
\]

\[
\supseteq \bigcup_{x = xyx} \{ \bar{f}(x, q) \cap \bar{f}(x, q) \}
\]

\[
= \bar{f}(x, q).
\]

Which is a contradiction. Therefore \(A = (\bar{f}, \omega) \) is a \(Q \)-cubic quasi ideal of \(S \). By Theorem 28, converse is true.

Corollary 30. Let \(S \) be a regular semigroup. Then \(A = (\bar{f}, \omega) \) is a \(Q \)-cubic right bi-quasi ideal of \(S \) if and only if \(A = (\bar{f}, \omega) \) is a \(Q \)-cubic quasi ideal of \(S \).

Corollary 31. Let \(S \) be a regular semigroup. Then \(A = (\bar{f}, \omega) \) is a \(Q \)-cubic bi-quasi ideal of \(S \) if and only if \(A = (\bar{f}, \omega) \) is a \(Q \)-cubic quasi ideal of \(S \).

Theorem 32. Let \(S \) be a semigroup. \(S \) is a regular semigroup if and only if \(B = SB \cap BSB, \) for every bi-quasi ideal of \(S \).

Theorem 33. Let \(S \) be a semigroup. Then \(S \) is a regular if and only if \(\bar{f} = \bar{f}_{xs} \circ \bar{f} \cap \bar{f} \subseteq \bar{f} \) and \(\omega = \omega_{xs} \circ \omega \cap \gamma \circ \omega_{xs} \circ \omega \), for any \(Q \)-cubic left bi-quasi ideal of a semigroup \(S \).

Proof. Let \(A = (\bar{f}, \omega) \) be a \(Q \)-cubic left bi-quasi ideal of the regular semigroup \(S \). Then \(\bar{f}_{xs} \circ \bar{f} \cap \bar{f} \subseteq \bar{f} \) and \(\omega \leq \omega_{xs} \circ \omega \cap \gamma \circ \omega_{xs} \circ \omega \). Let \(x \in S, q \in Q \). Since \(S \) is regular, there exists \(a \in S \) such that \(x = xax. \) Thus

\[
(\bar{f} \circ \bar{f}_{xs} \circ \bar{f})(x, q) = \bigcup_{x = xax} \{ \bar{f}(x, q) \cap (\bar{f}_{xs} \circ \bar{f})(ax, q) \}
\]

\[
= \bigcup_{x = xax} \{ \bar{f}(x, q) \cap \bigcup_{ax = yz} \{ \bar{f}_{xs}(y, q) \cap \bar{f}(z, q) \} \}
\]

\[
\supseteq \bigcup_{x = xax} \{ \bar{f}(x, q) \cap \bar{f}(x, q) \}
\]

\[
= \bar{f}(x, q).
\]

Similarly, \((\bar{f}_{xs} \circ \bar{f})(x, q) \supseteq \bar{f}(x, q), \omega(x, q) \supseteq (\omega_{xs} \circ \omega)(x, q) \) and \(\omega(x, q) \supseteq (\omega \circ \omega_{xs} \circ \omega)(x, q) \). Therefore \(\bar{f} = \bar{f}_{xs} \circ \bar{f} \cap \bar{f}_{xs} \circ \bar{f} \) and \(\omega = \omega_{xs} \circ \omega \cap \gamma \circ \omega \circ \omega_{xs} \circ \omega \).

Conversely suppose that let \(B \) be a left bi-quasi ideal of a semigroup \(S \). Then by Theorem 17, \(\chi_B = (\bar{f}_{xs}, \omega_B) \) be a \(Q \)-cubic bi-interior ideal of the semigroup \(S \). Thus

\[
\bar{f}_{xb}(x, q) = (\bar{f}_{xs} \circ \bar{f}_{xb})(x, q) \cap (\bar{f}_{xs} \circ \bar{f}_{xb})(x, q)
\]

\[
= \bar{f}_{xs}(x, q) \cap \bar{f}_{xb}(x, q)
\]

\[
= \bar{f}_{xb}(x, q).
\]

Therefore \(B = SB \cap BSB. \) By Theorem 32, \(S \) is regular semigroup.

Corollary 34. Let S be a semigroup. Then S is a regular if and only if $\tilde{f} = \tilde{f}_x \circ \bigcap \tilde{f} \circ \tilde{f}_x \circ \tilde{f}$ and $\omega = \omega_x \circ \omega \circ \omega_x \circ \omega$, for any Q-cubic right bi-quasi ideal of a semigroup S.

Corollary 35. Let S be a semigroup. Then S is a regular if and only if $\tilde{f} = \tilde{f}_x \circ \bigcap \tilde{f} \circ \tilde{f}_x \circ \tilde{f}$ and $\omega = \omega_x \circ \omega \gamma \circ \omega \circ \omega_x \circ \omega$ or $\tilde{f} = \tilde{f} \circ \tilde{f}_x \cap \tilde{f} \circ \tilde{f}_x \circ \tilde{f}$ and $\omega = \omega \circ \omega_x \gamma \circ \omega_x \circ \omega$, for any Q-cubic bi-quasi ideal of a semigroup S.

Theorem 36. Let S be a semigroup. Then S is a regular if and only if $\tilde{f} \cap \tilde{g} \circ \tilde{f} \cap \tilde{f}$ and $\omega \gamma \nu \subseteq \nu \circ \omega \gamma \circ \nu \circ \omega$, for every Q-cubic left bi-quasi ideal $A = (\tilde{f}, \omega)$ and every Q-cubic ideal $B = (\tilde{g}, \nu)$ of a semigroup S.

Proof. Let S be a regular semigroup and $x \in S$. Then there exists $y \in S$ such that $x = xyx$.

$$(\tilde{f} \circ \tilde{g} \circ \tilde{f})(x, q) = \bigcup_{x = xyz} \{(\tilde{f} \circ \tilde{g})(xy, q) \cap \tilde{f}(x, q)\}$$

$$= \bigcup_{x = xyz} \bigcup_{xy = xyz} \{\tilde{f}(x, q) \cap \tilde{g}(yx, yx) \cap \tilde{f}(x, q)\}$$

$$\supseteq \{\tilde{f}(x, q) \cap \tilde{g}(x, q)\} \cap \tilde{f}(x, q)$$

$$= \tilde{f}(x, q) \cap \tilde{g}(x, q)$$

$$= (\tilde{f} \cap \tilde{g})(x, q).$$

And

$$(\tilde{g} \circ \tilde{f})(x, q) = \bigcup_{x = xyz} \{\tilde{g}(xy, q) \cap \tilde{f}(x, q)\}$$

$$\supseteq \tilde{g}(x, q) \cap \tilde{f}(x, q)$$

$$= (\tilde{g} \cap \tilde{f})(x, q).$$

Similarly we can prove $(\omega \circ \nu \circ \omega)(x, q) \subseteq (\nu \gamma \omega)(x, q)$ and $(\nu \circ \omega)(x, q) \subseteq (\nu \gamma \omega)(x, q)$. Hence $\tilde{f} \cap \tilde{g} \subseteq \tilde{g} \circ \tilde{f} \circ \tilde{g} \circ \tilde{f}$ and $\omega \gamma \nu \subseteq \nu \circ \nu \gamma \circ \nu \circ \omega$. Conversely suppose that the condition holds. Let $A = (\tilde{f}, \omega)$ be a Q-cubic left bi-quasi ideal. We have $\tilde{f} \cap \tilde{f}_x \subseteq \tilde{f}_x \circ \bigcap \tilde{f} \circ \tilde{f} \circ \tilde{f}_x \circ \tilde{f}$ and $\omega \gamma \nu \subseteq \nu \circ \omega \gamma \circ \nu \circ \omega$, for every Q-cubic right bi-quasi ideal $A = (\tilde{f}, \omega)$ and every Q-cubic ideal $B = (\tilde{g}, \nu)$ of a semigroup S.

Corollary 37. Let S be a semigroup. Then S is a regular if and only if $\tilde{f} \cap \tilde{g} \subseteq \tilde{g} \circ \tilde{f} \circ \tilde{g} \circ \tilde{f}$ and $\omega \gamma \nu \subseteq \nu \circ \omega \gamma \circ \nu \circ \omega$, for every Q-cubic right bi-quasi ideal $A = (\tilde{f}, \omega)$ and every Q-cubic ideal $B = (\tilde{g}, \nu)$ of a semigroup S.

Corollary 38. Let S be a semigroup. Then S is a regular if and only if $\tilde{f} \cap \tilde{g} \subseteq \tilde{g} \circ \tilde{f} \circ \tilde{g} \circ \tilde{f}$ and $\omega \gamma \nu \subseteq \nu \circ \omega \gamma \circ \nu \circ \omega$, for every Q-cubic bi-quasi ideal $A = (\tilde{f}, \omega)$ and every Q-cubic ideal $B = (\tilde{g}, \nu)$ of a semigroup S.

□
REFERENCES

